
Formal Analysis of Multi-Device
Group Messaging in WhatsApp

Martin R. Albrecht King’s College London, martin.albrecht@kcl.ac.uk
Benjamin Dowling King’s College London, benjamin.dowling@kcl.ac.uk
Daniel Jones Royal Holloway, University of London, dan.jones@rhul.ac.uk

Eurocrypt 2025 (Madrid, Spain) Thursday 8th May 2025

1



Motivation

[https://play.google.com/store/apps/details?id=com.whatsapp]

2

https://play.google.com/store/apps/details?id=com.whatsapp


Motivation

3



Motivation

3



Motivation

3



Motivation

3



Motivation

4



Motivation

4



Motivation

4



Motivation

5



À How does WhatsApp implement
multi-device group messaging?

5



À How does WhatsApp implement
multi-device group messaging?

5



Á What security guarantees
does it provide?

5



Our Work

1. Comprehensive description of multi-device group messaging in WhatsApp.
• Group Messaging
• Pairwise Channels (incl. Session Management)
• Device Management
• History Sharing

→ Sourced by reverse-engineering its client software.

2. Propose a variant of Device-Oriented Group Messaging to capture device revocation.
3. State and prove WhatsApp’s security guarantees within the DOGM w/ revocations model.

6



Our Work

1. Comprehensive description of multi-device group messaging in WhatsApp.
• Group Messaging
• Pairwise Channels (incl. Session Management)
• Device Management
• History Sharing
→ Sourced by reverse-engineering its client software.

2. Propose a variant of Device-Oriented Group Messaging to capture device revocation.
3. State and prove WhatsApp’s security guarantees within the DOGM w/ revocations model.

6



Our Work

1. Comprehensive description of multi-device group messaging in WhatsApp.
• Group Messaging
• Pairwise Channels (incl. Session Management)
• Device Management
• History Sharing
→ Sourced by reverse-engineering its client software.

2. Propose a variant of Device-Oriented Group Messaging to capture device revocation.

3. State and prove WhatsApp’s security guarantees within the DOGM w/ revocations model.

6



Our Work

1. Comprehensive description of multi-device group messaging in WhatsApp.
• Group Messaging
• Pairwise Channels (incl. Session Management)
• Device Management
• History Sharing
→ Sourced by reverse-engineering its client software.

2. Propose a variant of Device-Oriented Group Messaging to capture device revocation.
3. State and prove WhatsApp’s security guarantees within the DOGM w/ revocations model.

6



Group Messaging



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.

(b) Send inbound session over two-party channels.
cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.

z← 0 // message index

ck←$ {0, 1}256 // symmetric ratchet

(gsk, gpk)←$ XDH.Gen() // signing key pair

ustout,A1 ← (usid, z, ck, gsk) // outbound session

ustin,A1 ← (usid, z, ck, gpk) // inbound session

(b) Send inbound session over two-party channels.
cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

(pstC1, cC1)← PAIR.Enc(pstC1, ustin,A1)

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1)

(pstA2, cA2)← PAIR.Enc(pstA2, ustin,A1)

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

(pstC1, cC1)← PAIR.Enc(pstC1, ustin,A1)

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1)

(pstA2, cA2)← PAIR.Enc(pstA2, ustin,A1)

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

(pstC1, cC1)← PAIR.Enc(pstC1, ustin,A1)

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1)

(pstA2, cA2)← PAIR.Enc(pstA2, ustin,A1)

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

(pstC1, cC1)← PAIR.Enc(pstC1, ustin,A1)

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1)

(pstA2, cA2)← PAIR.Enc(pstA2, ustin,A1)

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(1) Initialisation

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(2) Messaging

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(2) Messaging

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.

z← z + 1

(b) Derive key material
and ratchet symmetric key.

(c) Encrypt then sign.
(d) Server distributes one ctxt.

cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(2) Messaging

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
mk← HMAC(ck,0x01)
ck← HMAC(ck,0x02)

(c) Encrypt then sign.
(d) Server distributes one ctxt.

cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(2) Messaging

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

k← HKDF(∅,mk,WhisperGroup, 50B)
iv, ek← k[0B→ 15B], k[16B→ 47B]
c← AES-CBC.Enc(ek, iv,m)

σU ← XEd.Sign(gsk, (usid, z, c))
cU ← (usid, z, c, σU)

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(2) Messaging

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(2) Messaging

(a) Generate Sender Keys session.
(b) Send inbound session over two-party channels.

cB1

cC1cA2

(c) Receive inbound session from A1.

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

(pstA1, ustin,A1)← PAIR.Dec(pstA1, cC1)(pstA1, ustin,A1)← PAIR.Dec(pstA1, cA2)

Sessions
(∗, ustout,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(A1, ustin,A1)

Sessions
(∗, ustout,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,A2)

(A1, ustin,A1)

(B1, ustin,B1)

(C1, ustin,C1)

Sessions
(∗, ustout,B1)

(A1, ustin,A1)

(A2, ustin,A2)

(C1, ustin,C1)

Sessions
(∗, ustout,C1)

(A1, ustin,A1)

(A2, ustin,A2)

(B1, ustin,B1)

(a) Increment message counter.
(b) Derive key material

and ratchet symmetric key.
(c) Encrypt then sign.

(d) Server distributes one ctxt.
cU

cU

cU

cU

(e) Decrypt with inbound session.

7



Group Messaging with Sender Keys

(3) Membership Changes

Add



Add



Add



Rem



8



Group Messaging with Sender Keys

(3) Membership Changes

Add



Add



Add



Rem



• Adding device – Share current value of the receiving session.
→ Symmetric ratchet protects old messages.

8



Group Messaging with Sender Keys

(3) Membership Changes

Add



Add



Add



Rem



• Adding device – Share current value of the receiving session.
→ Symmetric ratchet protects old messages.

8



Group Messaging with Sender Keys

(3) Membership Changes

Add



Add



Add



Rem



• Adding device – Share current value of the receiving session.
→ Symmetric ratchet protects old messages.

8



Group Messaging with Sender Keys

(3) Membership Changes

Add



Add



Add



Rem



• Adding device – Share current value of the receiving session.
→ Symmetric ratchet protects old messages.

8



Group Messaging with Sender Keys

(3) Membership Changes

Add



Add



Add



Rem



• Removing device – Generate and distribute a new Sender Keys session.
→ Two-party channels protect new session, which protects new messages.

8



Security of Sender Keys (in Theory)

Consider Alice sharing her Sender Keys session with Bob:

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1) (pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

cB1

9



Security of Sender Keys (in Theory)

Consider Alice sharing her Sender Keys session with Bob:

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1) (pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

cB1

Intuitively, we expect that

9



Security of Sender Keys (in Theory)

Consider Alice sharing her Sender Keys session with Bob:

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1) (pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

cB1

Intuitively, we expect that
if the two-party channel used to distribute a session was { confidential, authentic },
so too should be the Sender Keys sessions and resulting messages.

9



Security of Sender Keys (in Theory)

Consider Alice sharing her Sender Keys session with Bob:

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1) (pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

cB1

This should apply to state compromise, too.

9



Security of Sender Keys (in Theory)

Consider Alice sharing her Sender Keys session with Bob:

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1) (pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

cB1

This should apply to state compromise, too.
For post-compromise security, Sender Keys sessions are rotated at regular intervals.

9



Security of Sender Keys (in Theory)

Consider Alice sharing her Sender Keys session with Bob:

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1) (pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

cB1

This should apply to state compromise, too.
For post-compromise security, Sender Keys sessions are rotated at regular intervals.
For forward secrecy, confidentiality of two-party channels protects earlier versions
of Sender Keys session.

9



Security of Sender Keys (in Theory)

Consider Alice sharing her Sender Keys session with Bob:

(pstB1, cB1)← PAIR.Enc(pstB1, ustin,A1) (pstA1, ustin,A1)← PAIR.Dec(pstA1, cB1)

cB1

This should apply to state compromise, too.
For post-compromise security, Sender Keys sessions are rotated at regular intervals.
For forward secrecy, confidentiality of two-party channels protects earlier versions
of Sender Keys session.

9



Security of Sender Keys (in Practice)

Consider Alice sharing her Sender Keys session with Bob:

. . .

cB1

(pstB1, cB1)← PAIR.Enc(pstB1, ustin) (pstA1, ustin)← PAIR.Dec(pstA1, cB1)

PST (A1)
pst0
pst1
· · ·
pst39

10



Security of Sender Keys (in Practice)

Consider Alice sharing her Sender Keys session with Bob:

. . .

cB1

(pstB1, cB1)← PAIR.Enc(pstB1, ustin) (pstA1, ustin)← PAIR.Dec(pstA1, cB1)

PST (A1)
pst0
pst1
· · ·
pst39

10



Security of Sender Keys (in Practice)

Consider Alice sharing her Sender Keys session with Bob:

. . .

cB1?

(pstB1, cB1)← PAIR.Enc(pstB1, ustin) (pstA1, ustin)← PAIR.Dec(pstA1, cB1)

PST (A1)
pst0
pst1
· · ·
pst39

10



Security of Sender Keys (in Practice)

Consider Alice sharing her Sender Keys session with Bob:

. . .

cB1?

(pstB1, cB1)← PAIR.Enc(pstB1, ustin) (pstA1, ustin)← PAIR.Dec(pstA1, cB1)

PST (A1)
pst0
pst1
· · ·
pst39

SKST (A1)
ustin,0
ustin,1
ustin,2
ustin,3
ustin,4

10



Security of Sender Keys (in Practice)

Post-compromise security is limited:

• Recovery requires compromised pairwise session to be ejected from local cache of the 40
most recent pairwise sessions.

and all Sender Keys sessions distributed over it to be ejected
from local cache of 5 most recent sessions.

• Adversary’s control over the network, coupled with (partial) state compromise, enables
occasionally active attacker to maintain compromise indefinitely.

11



Security of Sender Keys (in Practice)

Post-compromise security is limited:

• Recovery requires compromised pairwise session to be ejected from local cache of the 40
most recent pairwise sessions.

and all Sender Keys sessions distributed over it to be ejected
from local cache of 5 most recent sessions.

• Adversary’s control over the network, coupled with (partial) state compromise, enables
occasionally active attacker to maintain compromise indefinitely.

11



Security of Sender Keys (in Practice)

Post-compromise security is limited:

• Recovery requires compromised pairwise session to be ejected from local cache of the 40
most recent pairwise sessions.

and all Sender Keys sessions distributed over it to be ejected
from local cache of 5 most recent sessions.

• Adversary’s control over the network, coupled with (partial) state compromise, enables
occasionally active attacker to maintain compromise indefinitely.

11



Security of Sender Keys (in Practice)

Post-compromise security is limited:

• Recovery requires compromised pairwise session to be ejected from local cache of the 40
most recent pairwise sessions.

and all Sender Keys sessions distributed over it to be ejected
from local cache of 5 most recent sessions.

• Adversary’s control over the network, coupled with (partial) state compromise, enables
occasionally active attacker to maintain compromise indefinitely.

11



Security of Sender Keys (in Practice)

Does there exist any deployed messaging application that achieves PCS in practice?
→ WhatsApp provides a compelling alternative: device revocation.

12



Device Management



Device Management in WhatsApp

• Users are represented by their primary device.

iskp, ipkp ←$ XDH.Gen()

• A user may add a number of companion devices.
• Only the primary device may add or remove companion devices.

13



Device Management in WhatsApp

• Users are represented by their primary device.

iskp, ipkp ←$ XDH.Gen()

• A user may add a number of companion devices.
• Only the primary device may add or remove companion devices.

13



Device Management in WhatsApp

• Users are represented by their primary device.

iskp, ipkp ←$ XDH.Gen()

• A user may add a number of companion devices.

iskc, ipkc ←$ XDH.Gen()

• Only the primary device may add or remove companion devices.

13



Device Management in WhatsApp

• Users are represented by their primary device.

iskp, ipkp ←$ XDH.Gen()

• A user may add a number of companion devices.

iskc, ipkc ←$ XDH.Gen()

• Only the primary device may add or remove companion devices.

13



Device Management in WhatsApp

Linking a new companion device:

1. New companion device generates identity key.
2. Verify keys out-of-band (e.g. through a QR code).
3. Primary device generates and signs a timestamped linking metadata.
4. Primary device adds companion to their timestamped device list.
5. Companion device signs the same linking metadata structure.

σp→c ← XEd.Sign(iskp,0x0600 ∥ time1 ∥ ipkp ∥ ipkc)

dr← (time1, ipkp, ipkc, σp→c)

dl← dl ∥ [ipkc]

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time1)

iskc, ipkc ←$ XDH.Gen()
σc→p ← XEd.Sign(

iskc,0x0601 ∥ time1 ∥ ipkp ∥ ipkc)

dr← dr ∥ σc→p

14



Device Management in WhatsApp

Linking a new companion device:

1. New companion device generates identity key.

2. Verify keys out-of-band (e.g. through a QR code).
3. Primary device generates and signs a timestamped linking metadata.
4. Primary device adds companion to their timestamped device list.
5. Companion device signs the same linking metadata structure.

σp→c ← XEd.Sign(iskp,0x0600 ∥ time1 ∥ ipkp ∥ ipkc)

dr← (time1, ipkp, ipkc, σp→c)

dl← dl ∥ [ipkc]

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time1)

iskc, ipkc ←$ XDH.Gen()

σc→p ← XEd.Sign(
iskc,0x0601 ∥ time1 ∥ ipkp ∥ ipkc)

dr← dr ∥ σc→p

14



Device Management in WhatsApp

Linking a new companion device:

1. New companion device generates identity key.
2. Verify keys out-of-band (e.g. through a QR code).

3. Primary device generates and signs a timestamped linking metadata.
4. Primary device adds companion to their timestamped device list.
5. Companion device signs the same linking metadata structure.

σp→c ← XEd.Sign(iskp,0x0600 ∥ time1 ∥ ipkp ∥ ipkc)

dr← (time1, ipkp, ipkc, σp→c)

dl← dl ∥ [ipkc]

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time1)

iskc, ipkc ←$ XDH.Gen()

σc→p ← XEd.Sign(
iskc,0x0601 ∥ time1 ∥ ipkp ∥ ipkc)

dr← dr ∥ σc→p

14



Device Management in WhatsApp

Linking a new companion device:

1. New companion device generates identity key.
2. Verify keys out-of-band (e.g. through a QR code).
3. Primary device generates and signs a timestamped linking metadata.

4. Primary device adds companion to their timestamped device list.
5. Companion device signs the same linking metadata structure.

σp→c ← XEd.Sign(iskp,0x0600 ∥ time1 ∥ ipkp ∥ ipkc)

dr← (time1, ipkp, ipkc, σp→c)

dl← dl ∥ [ipkc]

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time1)

iskc, ipkc ←$ XDH.Gen()

σc→p ← XEd.Sign(
iskc,0x0601 ∥ time1 ∥ ipkp ∥ ipkc)

dr← dr ∥ σc→p

14



Device Management in WhatsApp

Linking a new companion device:

1. New companion device generates identity key.
2. Verify keys out-of-band (e.g. through a QR code).
3. Primary device generates and signs a timestamped linking metadata.
4. Primary device adds companion to their timestamped device list.

5. Companion device signs the same linking metadata structure.

σp→c ← XEd.Sign(iskp,0x0600 ∥ time1 ∥ ipkp ∥ ipkc)

dr← (time1, ipkp, ipkc, σp→c)

dl← dl ∥ [ipkc]

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time1)

iskc, ipkc ←$ XDH.Gen()

σc→p ← XEd.Sign(
iskc,0x0601 ∥ time1 ∥ ipkp ∥ ipkc)

dr← dr ∥ σc→p

14



Device Management in WhatsApp

Linking a new companion device:

1. New companion device generates identity key.
2. Verify keys out-of-band (e.g. through a QR code).
3. Primary device generates and signs a timestamped linking metadata.
4. Primary device adds companion to their timestamped device list.
5. Companion device signs the same linking metadata structure.

σp→c ← XEd.Sign(iskp,0x0600 ∥ time1 ∥ ipkp ∥ ipkc)

dr← (time1, ipkp, ipkc, σp→c)

dl← dl ∥ [ipkc]

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time1)

iskc, ipkc ←$ XDH.Gen()
σc→p ← XEd.Sign(

iskc,0x0601 ∥ time1 ∥ ipkp ∥ ipkc)

dr← dr ∥ σc→p

14



Device Management in WhatsApp

To revoke a companion device, the primary device:

1. Removes the companion device from the device list.
2. Signs the new device list with an updated timestamp.
3. Requests that the server distributes the new device list.

dl← dl \ {ipkc}

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time2)

15



Device Management in WhatsApp

To revoke a companion device, the primary device:

1. Removes the companion device from the device list.

2. Signs the new device list with an updated timestamp.
3. Requests that the server distributes the new device list.

dl← dl \ {ipkc}

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time2)

15



Device Management in WhatsApp

To revoke a companion device, the primary device:

1. Removes the companion device from the device list.
2. Signs the new device list with an updated timestamp.

3. Requests that the server distributes the new device list.

dl← dl \ {ipkc}

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time2)

15



Device Management in WhatsApp

To revoke a companion device, the primary device:

1. Removes the companion device from the device list.
2. Signs the new device list with an updated timestamp.
3. Requests that the server distributes the new device list.

dl← dl \ {ipkc}

σdl ← XEd.Sign(iskp,0x0602 ∥ dl ∥ time2)

15



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition

upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device

(or through a companion device that has been notified of the update, and so on…).

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

(a) At start, all parties agree on device-level membership as {A1,A2,B1 }.

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

(a) At start, all parties agree on device-level membership as {A1,A2,B1 }.

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

(a) At start, all parties agree on device-level membership as {A1,A2,B1 }.

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

(b) When A1 revokes A2, A1 views device-level membership as {A1,B1 }

16



Device Consistency

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

(b) When A1 revokes A2, A1 views device-level membership as {A1,B1 }
but, initially, B1 views device-level membership as {A1,A2,B1 }.

16



Device Consistency – Revocation works

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

In practice, this is triggered automatically when
the primary device rotates their own Sender Keys session.

16



Device Consistency – Revocation works

WhatsApp guarantees clients have an up-to-date view of each participant’s device composition
upon reception of the first pairwise message from the respective user’s primary device
(or through a companion device that has been notified of the update, and so on…).

(a) Generate Sender Keys session.
(b) Send inbound session over two-party

channels (with inline device update).
(pstB1, cB1)← PAIR.Enc(pstA1, (ustin,B1, dev-upd))

cB1 (c) Bob learns of A2’s revocation
& rotates own Sender Keys session.

In practice, this is triggered automatically when
the primary device rotates their own Sender Keys session.

16



Group Membership



Server Controls the Group Membership

The server has full control over group membership.1

→ Lack of participant consistency weakens visibility of this control.

1Publicly known issue since at least 2017, see [EUROSP:RosMaiSch18].

17



Server Controls the Group Membership

The server has full control over group membership.1
→ Lack of participant consistency weakens visibility of this control.

1Publicly known issue since at least 2017, see [EUROSP:RosMaiSch18].

17



Lack of Participant Consistency

WhatsApp provides no guarantee that devices have a consistent view of a group’s membership.

18



Lack of Participant Consistency

WhatsApp provides no guarantee that devices have a consistent view of a group’s membership.

18



Lack of Participant Consistency

WhatsApp provides no guarantee that devices have a consistent view of a group’s membership.

(a) A1 sees user-level group membership as {A,B }

18



Lack of Participant Consistency

WhatsApp provides no guarantee that devices have a consistent view of a group’s membership.

(b) A2 sees user-level group membership as {A,B,C }

18



Lack of Participant Consistency

WhatsApp provides no guarantee that devices have a consistent view of a group’s membership.

If Alice ensures Claire is not in the group on her phone (A1),
WhatsApp does not guarantee that Claire is not a recipient on Alice’s laptop (A2).

18



Lack of Participant Consistency

WhatsApp provides no guarantee that devices have a consistent view of a group’s membership.

Individual devices only have knowledge of the (user) recipient list for messages they send.

18



Results



Â Security Analysis

• Provides confidentiality and authentication in the straightforward case.

• History sharing enables retroactive confidentiality and authenticity breaks,
through the reveal of plaintexts and modification of message history
only when two-party channels are compromised.

• Limited post-compromise security, against even occasionally active adversaries.
But (!) it is unclear if any deployed messaging application achieves PCS in practice.

• WhatsApp provides a compelling alternative: device revocation.
Device management provides strong revocation guarantees,
giving users control over compromise recovery.

• Server-controlled group membership and lack of participant consistency,
fail to fulfil our expectations for a group messaging protocol.

19



Â Security Analysis

• Provides confidentiality and authentication in the straightforward case.

• History sharing enables retroactive confidentiality and authenticity breaks,
through the reveal of plaintexts and modification of message history
only when two-party channels are compromised.

• Limited post-compromise security, against even occasionally active adversaries.
But (!) it is unclear if any deployed messaging application achieves PCS in practice.

• WhatsApp provides a compelling alternative: device revocation.
Device management provides strong revocation guarantees,
giving users control over compromise recovery.

• Server-controlled group membership and lack of participant consistency,
fail to fulfil our expectations for a group messaging protocol.

19



Â Security Analysis

• Provides confidentiality and authentication in the straightforward case.

• History sharing enables retroactive confidentiality and authenticity breaks,
through the reveal of plaintexts and modification of message history
only when two-party channels are compromised.

• Limited post-compromise security, against even occasionally active adversaries.
But (!) it is unclear if any deployed messaging application achieves PCS in practice.

• WhatsApp provides a compelling alternative: device revocation.
Device management provides strong revocation guarantees,
giving users control over compromise recovery.

• Server-controlled group membership and lack of participant consistency,
fail to fulfil our expectations for a group messaging protocol.

19



Â Security Analysis

• Provides confidentiality and authentication in the straightforward case.

• History sharing enables retroactive confidentiality and authenticity breaks,
through the reveal of plaintexts and modification of message history
only when two-party channels are compromised.

• Limited post-compromise security, against even occasionally active adversaries.
But (!) it is unclear if any deployed messaging application achieves PCS in practice.

• WhatsApp provides a compelling alternative: device revocation.
Device management provides strong revocation guarantees,
giving users control over compromise recovery.

• Server-controlled group membership and lack of participant consistency,
fail to fulfil our expectations for a group messaging protocol.

19



Â Security Analysis

• Provides confidentiality and authentication in the straightforward case.

• History sharing enables retroactive confidentiality and authenticity breaks,
through the reveal of plaintexts and modification of message history
only when two-party channels are compromised.

• Limited post-compromise security, against even occasionally active adversaries.
But (!) it is unclear if any deployed messaging application achieves PCS in practice.

• WhatsApp provides a compelling alternative: device revocation.
Device management provides strong revocation guarantees,
giving users control over compromise recovery.

• Server-controlled group membership and lack of participant consistency,
fail to fulfil our expectations for a group messaging protocol.

19



Á Modelling

All of the features, limitations and attacks discussed in this talk
are captured in our modelling and security analysis,

i.e. within the Device Oriented Group Messaging with Revocation model we
introduce in this work.1

To see how our model and analysis captures these properties,
take a look at our DOGM with Revocation formalism,
and security analysis of WhatsApp in Section 7 of our paper.

+ Consider our Public Key Orbits formalism next time you need to analyze device management.

1A variant of the DOGM model introduced by the same authors in [SP:AlbDowJon24].

20



Á Modelling

All of the features, limitations and attacks discussed in this talk
are captured in our modelling and security analysis,

i.e. within the Device Oriented Group Messaging with Revocation model we
introduce in this work.1

To see how our model and analysis captures these properties,
take a look at our DOGM with Revocation formalism,
and security analysis of WhatsApp in Section 7 of our paper.

+ Consider our Public Key Orbits formalism next time you need to analyze device management.

1A variant of the DOGM model introduced by the same authors in [SP:AlbDowJon24].

20



Á Modelling

All of the features, limitations and attacks discussed in this talk
are captured in our modelling and security analysis,

i.e. within the Device Oriented Group Messaging with Revocation model we
introduce in this work.1

To see how our model and analysis captures these properties,
take a look at our DOGM with Revocation formalism,
and security analysis of WhatsApp in Section 7 of our paper.

+ Consider our Public Key Orbits formalism next time you need to analyze device management.

1A variant of the DOGM model introduced by the same authors in [SP:AlbDowJon24].

20



Á Modelling

All of the features, limitations and attacks discussed in this talk
are captured in our modelling and security analysis,

i.e. within the Device Oriented Group Messaging with Revocation model we
introduce in this work.1

To see how our model and analysis captures these properties,
take a look at our DOGM with Revocation formalism,
and security analysis of WhatsApp in Section 7 of our paper.

+ Consider our Public Key Orbits formalism next time you need to analyze device management.

1A variant of the DOGM model introduced by the same authors in [SP:AlbDowJon24].

20



À Description

All of the features, limitations and attacks discussed in this talk
are captured in our description,

developed through our reverse-engineering effort.

For a more complete description of how group messaging in WhatsApp works,
take a look at our description in Section 3 of our paper.

21



À Description

All of the features, limitations and attacks discussed in this talk
are captured in our description, developed through our reverse-engineering effort.

For a more complete description of how group messaging in WhatsApp works,
take a look at our description in Section 3 of our paper.

21



À Description

All of the features, limitations and attacks discussed in this talk
are captured in our description, developed through our reverse-engineering effort.

For a more complete description of how group messaging in WhatsApp works,
take a look at our description in Section 3 of our paper.

21



Interested?
ia.cr/2025/794

21

https://ia.cr/2025/794

	Group Messaging
	Device Management
	Group Membership
	Results

