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Main Contribution: A new post-quantum Verifiable Unpredictable
Function (VUF) and the resulting constructions :

1. The most compact post-quantum Verifiable Random Function
(VRF) scheme in the ROM with the fastest implementation of
a VRF scheme.

2. The first (hash-and-sign) isogeny-based signature scheme in
the standard model.
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e KeyGen: params — pk, sk.
e Eval: sk, x — v, 7.

e Verif: pk,x,v,m — b.
Basic Security Properties:

e Correctness.

e Uniqueness: there must be only one output that passes the
verification.

Moreover, the function needs to be hard to evaluate without pk.

1. Unpredictability: output is hard to compute = VUF.

2. Pseudo-Randomness: output is indistinguishable from
random = VRF.
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In the ROM : VUF = VRF

A VUF can either be seen as a:

1. Verifiable unpredictable function

2. Unique signature.

Signature schemes are usually not designed to be unique (especially
in the PQ setting):

1. All signature based on sigma-protocols are not suitable (this
rules out any SQIsign-based idea).

2. Lattices are inherently poorly adapted to uniqueness (due to
noise).
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Endomorphisms, supersingular curves and quaternions

An endomorphism is an isogeny ¢ : E — E.

End(E) is a ring. In characteristic p, it has dimension 2 or 4.
Supersingular curves < End(E) is a max. order in B(—q, —p).

B(-q,-p) =Q+iQ+jQ+kQ, *=-q,j°=—p.

The problem of recovering End(E) from E is the fundamental
problem behind isogeny-based cryptography.
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In the quaternion world all relevant operations are efficient!
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Isogeny representations

What does it mean to “compute an isogeny”?
Most of the times: compute the polynomials defining it.

Crypto sizes: the degree might be too big!
Solution when N is smooth: factor ¢ in isogenies of prime degree.

Not satisfactory in general — abstraction of isogeny representation:

Representation xx: s for unique isog. ¢ : E — E' of deg. N
is data with algorithm IsogEval,, to evaluate ¢.
Efficient: si has size polylog (pN),
IsogEval,, runs in polylog (p*/V) on input contained
in E[F].
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Existing representations: an overview

1. Poly: defining polynomials.
2. Ker: generator(s) of the kernel (points of the domain EC).

3. Id: ideal associated to ¢ under the Deuring correspondence.
Efficient!

4. HD: p(P),(Q) for P, Q a basis of E[D] where D is smooth.
Used to embed ¢ into a D-isogeny of higher dimension.
Efficient!

The HD representation appeared with the attacks to break SIDH
[CD22,MMPPW22,R22].



Isogeny representations: algorithmic strengths & weaknesses
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Isogeny representations: algorithmic strengths & weaknesses

e N =degy,
[ ] /V/ = maxd‘N d,
o k=maxg|n, E[d]CE[F] K

Required Compactness Computation  Evaluation Sampling
Knowledge Efficiency Efficiency Efficiency
Poly 1%} poly (N') poly (N') poly (N') poly (N')
Ker %} poly (min(N, k)) poly (N') poly () poly (klog(N))
Id End(E) polylog (N) polylog (N)  polylog (N) polylog (N)
HD %) polylog (V) poly (N) polylog (V) poly (N')

Conclusion: everything is efficient when N is smooth, but all

representations are not equivalent in the generic case.

Worst case (or best case for us): N is prime.
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Building a VUF from isogeny representations of big prime degree:

e Keys: hard to recover the secret key
— pk = E, sk = End(E).
e Input: easy to sample from the public key
— Py = H(E, x) € E[N].
e QOutput: hard to compute without the secret key
— v = p(E) with ker o = (Px), deg ¢ a big prime.
e Proof: easy to verify from the public key
— HD representation of .

The Id representation will main tool behind the evaluation process
of our VUF.

10
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The main algorithmic challenges

Use of the ideal representation to compute s, (i.e. evaluate )

from /.

This is done in a single execution of the ideal-to-isogeny algorithm
from SQIsign2D-West [BDDFLMPRW?24].
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A new hard problem.

N-FIXDIO4x oracle:
Input: E, P € E[N]

Output: isogeny representation s for the N-isogeny
p:E— E/(P)

One-More Isogeny Problem (OMIPyy) Given access to the
N-FIXDIOyy oracle on input E, compute the codomain of an

isogeny not given as the output of N-FIXDIOy.

The OMIPxx is related to the complexity of IsogEvaly,,.
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First application: VRF

Public Key ~ Proof  Unrestricted Uniqueness Assumption Security
(bytes) (bytes)  evaluation level
LB - VRF [EK+21] 3.3K 4.9K X Computational ~ MSIS/MLWE(Latt.) 128
SL - VRF [BD+22] 48 40K v Computational LowMC(Hash) 128
LaV [ESLR22] 8.81K 10.27K v omputational MSIS/MLWR(Latt.) 128
CAPYBARA [L23] 8.3K 39K v omputational DDH(lsog.) <128
TSUBAKI [L23] 5.3K 34K 4 Computational sDDH(lsog.) < 128
DeuringVRF H 192 256 v Unconditional OMIP gim 2(Isog.) 128

Table 1: Comparison of the sizes and security properties of several
post-quantum VRF schemes
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TSUBAKI [L23] 5.3K 34K 4 Computational sDDH(lsog.) < 128
DeuringVRF H 192 256 v Unconditional OMIP gim 2(Isog.) 128

Table 1: Comparison of the sizes and security properties of several
post-quantum VRF schemes

Proof of concept C implementation :

1. Verification: 18 ms
2. Signature : 160 ms

Hope of improvement: ~x3 13
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Second Application : hash-and-sign signature

Comparison with SQIsign: performance and sizes are comparable
(within a factor 2). More precisely:

1. Faster Signing
2. Slower Evaluation

3. Bigger Signature
The main interest is that the principle is very different technique

(and falls within the hash-and-sign paradigm). It might open new
possibilities for isogeny-based cryptography.
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Conclusion

Future work:

e Analysis of the OMIP (in particular in the quantum setting).

e More constructions from this framework?
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Conclusion

Future work:

e Analysis of the OMIP (in particular in the quantum setting).

e More constructions from this framework?

Main Take-away: VUF/VRF might be the most promising
application for isogeny-based cryptography.

https://eprint.iacr.org/2023/1251
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