Verifiable Random Function from the Deuring correspondence and higher dimensional isogenies.

Antonin Leroux

Eurocrypt, May 5, 2025

DGA, Université de Rennes, France

Main Contribution: A new post-quantum Verifiable Unpredictable Function (VUF) and the resulting constructions :

- The most compact post-quantum Verifiable Random Function (VRF) scheme in the ROM with the fastest implementation of a VRF scheme.
- 2. The first (hash-and-sign) isogeny-based signature scheme in the standard model.

On Verifiable Functions

Verifiable Functions

- KeyGen: params $\rightarrow pk, sk$.
- Eval: $sk, x \rightarrow v, \pi$.
- Verif: $pk, x, v, \pi \rightarrow b$.

Verifiable Functions

- KeyGen: params $\rightarrow pk, sk$.
- Eval: $sk, x \rightarrow v, \pi$.
- Verif: $pk, x, v, \pi \rightarrow b$.

Basic Security Properties:

- Correctness.
- Uniqueness: there must be only one output that passes the verification.

Verifiable Functions

- KeyGen: params $\rightarrow pk, sk$.
- Eval: $sk, x \rightarrow v, \pi$.
- Verif: $pk, x, v, \pi \rightarrow b$.

Basic Security Properties:

- Correctness.
- Uniqueness: there must be only one output that passes the verification.

Moreover, the function needs to be hard to evaluate without pk.

- 1. Unpredictability: output is hard to compute \Rightarrow VUF.
- Pseudo-Randomness: output is indistinguishable from random ⇒ VRF.

Some remarks.

In the $\ensuremath{\mathsf{ROM}}$: $\ensuremath{\mathsf{VUF}}\xspace \Rightarrow \ensuremath{\mathsf{VRF}}\xspace$

```
In the ROM : VUF \Rightarrow VRF
```

A VUF can either be seen as a:

- 1. Verifiable unpredictable function
- 2. Unique signature.

```
In the \ensuremath{\mathsf{ROM}} : \ensuremath{\mathsf{VUF}}\xspace \Rightarrow \ensuremath{\mathsf{VRF}}\xspace
```

A VUF can either be seen as a:

- 1. Verifiable unpredictable function
- 2. Unique signature.

Signature schemes are usually not designed to be unique (especially in the PQ setting):

- 1. All signature based on sigma-protocols are not suitable (this rules out any SQIsign-based idea).
- 2. Lattices are inherently poorly adapted to uniqueness (due to noise).

Mathematical Background

Elliptic curve and isogenies

Elliptic Curve over \mathbb{F}_{p^k} :

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_{p^k}$

Elliptic curve and isogenies

Elliptic Curve over \mathbb{F}_{p^k} :

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_{p^k}$

Isogeny: rational map between elliptic curves.

$$\varphi : E \longrightarrow E'$$
$$(x, y) \longmapsto \left(\frac{g(x)}{h(x)}, y\left(\frac{g(x)}{h(x)}\right)'\right)$$

When separable, the **degree** is $deg(\varphi) = \# ker(\varphi) \approx deg g, deg h$.

Elliptic curve and isogenies

Elliptic Curve over \mathbb{F}_{p^k} :

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_{p^k}$

Isogeny: rational map between elliptic curves.

$$\varphi : E \longrightarrow E'$$
$$(x, y) \longmapsto \left(\frac{g(x)}{h(x)}, y\left(\frac{g(x)}{h(x)}\right)'\right)$$

When separable, the **degree** is $deg(\varphi) = \# ker(\varphi) \approx deg g, deg h$.

An endomorphism is an isogeny $\varphi: E \to E$.

End(E) is a ring. In characteristic p, it has dimension 2 or 4.

An endomorphism is an isogeny $\varphi: E \to E$.

End(E) is a ring. In characteristic p, it has dimension 2 or 4.

Supersingular curves $\Leftrightarrow \text{End}(E)$ is a max. order in $\mathcal{B}(-q, -p)$.

$$\mathcal{B}(-q,-p)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+k\mathbb{Q},\qquad i^2=-q, j^2=-p.$$

An endomorphism is an isogeny $\varphi: E \to E$.

End(E) is a ring. In characteristic p, it has dimension 2 or 4.

Supersingular curves $\Leftrightarrow \operatorname{End}(E)$ is a max. order in $\mathcal{B}(-q,-p)$.

$$\mathcal{B}(-q,-p)=\mathbb{Q}+i\mathbb{Q}+j\mathbb{Q}+k\mathbb{Q},\qquad i^2=-q, j^2=-p.$$

The problem of recovering End(E) from E is the fundamental problem behind isogeny-based cryptography.

p: prime char, $\mathcal{B}(-q,-p)$ where q > 0 depends only on p.

Supersingular elliptic curves over \mathbb{F}_{p^2}	Maximal Orders in $\mathcal{B}(-q,-p)$
<i>E</i> (up to Galois conjugacy)	$\mathcal{O}\cong End(E)$
lsogeny with $arphi: {\sf E} o {\sf E}_1$	ldeal I_{arphi} left \mathcal{O} -ideal
$Degree deg(\varphi)$	Norm $n(I_{\varphi})$

p : prime char, $\mathcal{B}(-q,-p)$ where q>0 depends only on p.

Supersingular elliptic curves over \mathbb{F}_{p^2}	Maximal Orders in $\mathcal{B}(-q,-p)$
<i>E</i> (up to Galois conjugacy)	$\mathcal{O}\cong End(E)$
lsogeny with $arphi: {\sf E} o {\sf E}_1$	ldeal I_{arphi} left $\mathcal O$ -ideal
$Degree deg(\varphi)$	Norm $n(I_{\varphi})$

In the quaternion world all relevant operations are efficient!

lsogeny representations

Crypto sizes: the degree might be too big! Solution when N is smooth: factor φ in isogenies of prime degree.

Crypto sizes: the degree might be too big! Solution when N is smooth: factor φ in isogenies of prime degree.

Not satisfactory in general \rightarrow abstraction of isogeny representation:

Representation xx: s_{xx}^{φ} for unique isog. $\varphi : E \to E'$ of deg. N is data with algorithm $\texttt{IsogEval}_{xx}$ to evaluate φ .

Crypto sizes: the degree might be too big! Solution when N is smooth: factor φ in isogenies of prime degree.

Not satisfactory in general \rightarrow abstraction of isogeny representation:

Representation xx: s_{xx}^{φ} for unique isog. $\varphi : E \to E'$ of deg. N is data with algorithm $\texttt{IsogEval}_{xx}$ to evaluate φ . **Efficient:** s_{xx}^{φ} has size polylog (pN), $\texttt{IsogEval}_{xx}$ runs in polylog $(p^k N)$ on input contained in $E[\mathbb{F}_p^k]$. 1. Poly: defining polynomials.

- 1. Poly: defining polynomials.
- 2. Ker: generator(s) of the kernel (points of the domain EC).

- 1. Poly: defining polynomials.
- 2. Ker: generator(s) of the kernel (points of the domain EC).
- 3. Id: ideal associated to φ under the Deuring correspondence. Efficient!

- 1. Poly: defining polynomials.
- 2. Ker: generator(s) of the kernel (points of the domain EC).
- 3. Id: ideal associated to φ under the Deuring correspondence. Efficient!
- 4. HD: $\varphi(P), \varphi(Q)$ for P, Q a basis of E[D] where D is smooth. Used to embed φ into a D-isogeny of higher dimension. Efficient!

The HD representation appeared with the attacks to break SIDH [CD22,MMPPW22,R22].

Isogeny representations: algorithmic strengths & weaknesses

- $N = \deg \varphi$,
- $N' = \max_{d|N} d$,
- $k = \max_{d|N, E[d] \subset E[\mathbb{F}_{p^k}]} k$

	Required	quired Compactness Com		Evaluation	Sampling
	Knowledge		Efficiency	Efficiency	Efficiency
Poly	Ø	poly (<i>N</i> ′)	poly (<i>N</i> ′)	poly (<i>N</i> ′)	poly (<i>N</i> ′)
Ker	Ø	poly(min(N, k))	poly (<i>N</i> ′)	poly (<i>N</i>)	poly(k log(N))
Id	End(<i>E</i>)	polylog (<i>N</i>)	polylog (N)	polylog (N)	polylog (<i>N</i>)
HD	Ø	polylog (N)	poly (<i>N</i> ′)	polylog (N)	poly (<i>N</i> ′)

Isogeny representations: algorithmic strengths & weaknesses

- $N = \deg \varphi$,
- $N' = \max_{d|N} d$,
- $k = \max_{d|N, E[d] \subset E[\mathbb{F}_{p^k}]} k$

	Required	quired Compactness Computation Evaluat		Evaluation	n Sampling	
	Knowledge		Efficiency	Efficiency	Efficiency	
Poly	Ø	poly (<i>N</i> ′)	poly (<i>N</i> ′)	poly (<i>N</i> ′)	poly (<i>N</i> ′)	
Ker	Ø	poly(min(N, k))	poly (N')	poly (<i>N</i>)	poly(k log(N))	
Id	End(E)	polylog (<i>N</i>)	polylog (N)	polylog (<i>N</i>)	polylog (<i>N</i>)	
HD	Ø	polylog (<i>N</i>)	poly (<i>N</i> ′)	polylog (N)	poly (<i>N</i> ′)	

Conclusion: everything is efficient when N is smooth, but all representations are not equivalent in the generic case.

Worst case (or best case for us): N is prime.

The construction

• Keys: hard to recover the secret key

• Keys: hard to recover the secret key

 $\rightarrow pk = E, sk = \operatorname{End}(E).$

• Keys: hard to recover the secret key

 $\rightarrow pk = E, sk = \operatorname{End}(E).$

• Input: easy to sample from the public key

• Keys: hard to recover the secret key

 $\rightarrow pk = E, sk = \operatorname{End}(E).$

• Input: easy to sample from the public key

$$\to P_x = H(E, x) \in E[N].$$

• Keys: hard to recover the secret key

 $\rightarrow pk = E, sk = \operatorname{End}(E).$

• Input: easy to sample from the public key

 $\rightarrow P_x = H(E, x) \in E[N].$

• Output: hard to compute without the secret key

• Keys: hard to recover the secret key

 $\rightarrow pk = E, sk = \operatorname{End}(E).$

• Input: easy to sample from the public key

 $\rightarrow P_x = H(E, x) \in E[N].$

Output: hard to compute without the secret key
 → ν = φ(E) with ker φ = ⟨P_x⟩, deg φ a big prime.

• Keys: hard to recover the secret key

 $\rightarrow pk = E, sk = \operatorname{End}(E).$

- Input: easy to sample from the public key $\rightarrow P_x = H(E, x) \in E[N].$
- Output: hard to compute without the secret key
 → ν = φ(E) with ker φ = ⟨P_x⟩, deg φ a big prime.
- Proof: easy to verify from the public key

• Keys: hard to recover the secret key

 $\rightarrow pk = E, sk = \operatorname{End}(E).$

- Input: easy to sample from the public key $\rightarrow P_x = H(E, x) \in E[N].$
- Output: hard to compute without the secret key
 → ν = φ(E) with ker φ = ⟨P_x⟩, deg φ a big prime.
- **Proof:** easy to verify from the public key

 \rightarrow HD representation of $\varphi.$

The Id representation will main tool behind the evaluation process of our VUF.

Use of the ideal representation to compute $s^{\varphi}_{\rm HD}$ (i.e. evaluate φ) from $I_{\times}.$

- Use of the ideal representation to compute $s^{\varphi}_{\rm HD}$ (i.e. evaluate φ) from $I_{\rm X}$.
- This is done in a single execution of the ideal-to-isogeny algorithm from SQIsign2D-West [BDDFLMPRW24].

N-FIXDIO_{xx} oracle: Input: $E, P \in E[N]$ Output: isogeny representation s_{xx}^{φ} for the *N*-isogeny $\varphi : E \to E/\langle P \rangle$

One-More Isogeny Problem (OMIP_{xx}) Given access to the N-FIXDIO_{xx} oracle on input E, compute the codomain of an isogeny not given as the output of N-FIXDIO_{xx}.

The OMIPxx is related to the complexity of IsogEvalker.

First application: VRF

	Public Key	Proof	Unrestricted	Uniqueness	Assumption	Security
	(bytes)	(bytes)	evaluation			eve
LB - VRF [EK+21]	3.3K	4.9K	×	Computational	MSIS/MLWE(Latt.)	128
SL - VRF [BD+22]	48	40 K	1	Computational	LowMC(Hash)	128
LaV [ESLR22]	8.81K	10.27 K	\checkmark	Computational	MSIS/MLWR(Latt.)	128
CAPYBARA [L23]	8.3K	39 K	\checkmark	Computational	DDH(lsog.)	< 128
TSUBAKI [L23]	5.3K	34 K	\checkmark	Computational	sDDH(lsog.)	< 128
DeuringVRF	192	256	✓	Unconditional	$OMIP_{dim 2}(lsog.)$	128

Table 1: Comparison of the sizes and security properties of severalpost-quantum VRF schemes

First application: VRF

	Public Key	Proof	Unrestricted	Uniqueness	Assumption	Security
	(bytes)	(bytes)	evaluation			level
LB - VRF [EK+21]	3.3K	4.9K	×	Computational	MSIS/MLWE(Latt.)	128
SL - VRF [BD+22]	48	40 K	1	Computational	LowMC(Hash)	128
LaV [ESLR22]	8.81K	10.27 K	\checkmark	Computational	MSIS/MLWR(Latt.)	128
CAPYBARA [L23]	8.3K	39 K	1	Computational	DDH(lsog.)	< 128
TSUBAKI [L23]	5.3K	34 K	\checkmark	Computational	sDDH(lsog.)	< 128
DeuringVRF	192	256	\checkmark	Unconditional	$OMIP_{dim 2}(lsog.)$	128

Table 1: Comparison of the sizes and security properties of severalpost-quantum VRF schemes

Proof of concept C implementation :

- 1. Verification: 18 ms
- 2. Signature : 160 ms

Hope of improvement: $\sim x3$

Comparison with SQlsign: performance and sizes are comparable (within a factor 2). More precisely:

- 1. Faster Signing
- 2. Slower Evaluation
- 3. Bigger Signature

Comparison with SQlsign: performance and sizes are comparable (within a factor 2). More precisely:

- 1. Faster Signing
- 2. Slower Evaluation
- 3. Bigger Signature

The main interest is that the principle is very different technique (and falls within the hash-and-sign paradigm). It might open new possibilities for isogeny-based cryptography.

Future work:

- Analysis of the OMIP (in particular in the quantum setting).
- More constructions from this framework?

Future work:

- Analysis of the OMIP (in particular in the quantum setting).
- More constructions from this framework?

Main Take-away: VUF/VRF might be the most promising application for isogeny-based cryptography.

```
https://eprint.iacr.org/2023/1251
```