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Summary

Main Contribution: A new post-quantum Veri�able Unpredictable

Function (VUF) and the resulting constructions :

1. The most compact post-quantum Veri�able Random Function

(VRF) scheme in the ROM with the fastest implementation of

a VRF scheme.

2. The �rst (hash-and-sign) isogeny-based signature scheme in

the standard model.
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On Veri�able Functions



Veri�able Functions

� KeyGen: params → pk, sk .

� Eval: sk, x → v , π.

� Verif: pk , x , v , π → b.

Basic Security Properties:

� Correctness.

� Uniqueness: there must be only one output that passes the

veri�cation.

Moreover, the function needs to be hard to evaluate without pk .

1. Unpredictability: output is hard to compute ⇒ VUF.

2. Pseudo-Randomness: output is indistinguishable from

random ⇒ VRF.
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Some remarks.

In the ROM : VUF ⇒ VRF

A VUF can either be seen as a:

1. Veri�able unpredictable function

2. Unique signature.

Signature schemes are usually not designed to be unique (especially

in the PQ setting):

1. All signature based on sigma-protocols are not suitable (this

rules out any SQIsign-based idea).

2. Lattices are inherently poorly adapted to uniqueness (due to

noise).
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Mathematical Background



Elliptic curve and isogenies

Elliptic Curve over Fpk :

y2 = x3 + ax + b, a, b ∈ Fpk

Isogeny: rational map between elliptic curves.

φ : E −→ E ′

(x , y) 7−→

(
g(x)

h(x)
, y

(
g(x)

h(x)

)′)

When separable, the degree is deg(φ) = #ker(φ) ≈ deg g , deg h.
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Endomorphisms, supersingular curves and quaternions

An endomorphism is an isogeny φ : E → E .

End(E ) is a ring. In characteristic p, it has dimension 2 or 4.

Supersingular curves ⇔ End(E ) is a max. order in B(−q,−p).

B(−q,−p) = Q+ iQ+ jQ+ kQ, i2 = −q, j2 = −p.

The problem of recovering End(E ) from E is the fundamental

problem behind isogeny-based cryptography.
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The Deuring Correspondence

p : prime char, B(−q,−p) where q > 0 depends only on p.

Supersingular elliptic curves over Fp2 Maximal Orders in B(−q,−p)

E (up to Galois conjugacy) O ∼= End(E )

Isogeny with φ : E → E1 Ideal Iφ left O-ideal

Degree deg(φ) Norm n(Iφ)

In the quaternion world all relevant operations are e�cient!
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Isogeny representations



Isogeny representations

What does it mean to �compute an isogeny�?

Most of the times: compute the polynomials de�ning it.

Crypto sizes: the degree might be too big!

Solution when N is smooth: factor φ in isogenies of prime degree.

Not satisfactory in general → abstraction of isogeny representation:

Representation xx: sφxx for unique isog. φ : E → E ′ of deg. N

is data with algorithm IsogEval
xx

to evaluate φ.

E�cient: sφxx has size polylog (pN),

IsogEval
xx

runs in polylog
(
pkN

)
on input contained

in E [Fk
p].
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Existing representations: an overview

1. Poly: de�ning polynomials.

2. Ker: generator(s) of the kernel (points of the domain EC).

3. Id: ideal associated to φ under the Deuring correspondence.

E�cient!

4. HD: φ(P), φ(Q) for P,Q a basis of E [D] where D is smooth.

Used to embed φ into a D-isogeny of higher dimension.

E�cient!

The HD representation appeared with the attacks to break SIDH

[CD22,MMPPW22,R22].
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Isogeny representations: algorithmic strengths & weaknesses

� N = degφ,

� N ′ = maxd |N d ,

� k = maxd |N, E [d ]⊂E [F
pk

] k

Required Compactness Computation Evaluation Sampling

Knowledge E�ciency E�ciency E�ciency

Poly ∅ poly (N ′) poly (N ′) poly (N ′) poly (N ′)

Ker ∅ poly (min(N, k)) poly (N ′) poly (N) poly (k log(N))

Id End(E ) polylog (N) polylog (N) polylog (N) polylog (N)

HD ∅ polylog (N) poly (N ′) polylog (N) poly (N ′)

Conclusion: everything is e�cient when N is smooth, but all

representations are not equivalent in the generic case.

Worst case (or best case for us): N is prime.
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The construction



VUF from isogeny representation: an overview

Building a VUF from isogeny representations of big prime degree:

� Keys: hard to recover the secret key

→ pk = E , sk = End(E ).

� Input: easy to sample from the public key

→ Px = H(E , x) ∈ E [N].

� Output: hard to compute without the secret key

→ v = φ(E ) with kerφ = ⟨Px⟩, degφ a big prime.

� Proof: easy to verify from the public key

→ HD representation of φ.

The Id representation will main tool behind the evaluation process

of our VUF.
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The main algorithmic challenges

Use of the ideal representation to compute sφ
HD

(i.e. evaluate φ)

from Ix .

This is done in a single execution of the ideal-to-isogeny algorithm

from SQIsign2D-West [BDDFLMPRW24].
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A new hard problem.

N-FIXDIOxx oracle:

Input: E ,P ∈ E [N]

Output: isogeny representation sφxx for the N-isogeny

φ : E → E/⟨P⟩

One-More Isogeny Problem (OMIPxx) Given access to the

N-FIXDIOxx oracle on input E , compute the codomain of an

isogeny not given as the output of N-FIXDIOxx.

The OMIPxx is related to the complexity of IsogEval
ker

.
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First application: VRF

Public Key Proof Unrestricted Uniqueness Assumption Security

(bytes) (bytes) evaluation level

LB - VRF [EK+21] 3.3K 4.9K ✗ Computational MSIS/MLWE(Latt.) 128

SL - VRF [BD+22] 48 40K ✓ Computational LowMC(Hash) 128

LaV [ESLR22] 8.81K 10.27K ✓ Computational MSIS/MLWR(Latt.) 128

CAPYBARA [L23] 8.3K 39K ✓ Computational DDH(Isog.) < 128

TSUBAKI [L23] 5.3K 34K ✓ Computational sDDH(Isog.) < 128

DeuringVRF 192 256 ✓ Unconditional OMIPdim 2(Isog.) 128

Table 1: Comparison of the sizes and security properties of several

post-quantum VRF schemes

Proof of concept C implementation :

1. Veri�cation: 18 ms

2. Signature : 160 ms

Hope of improvement: ∼x3
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Second Application : hash-and-sign signature

Comparison with SQIsign: performance and sizes are comparable

(within a factor 2). More precisely:

1. Faster Signing

2. Slower Evaluation

3. Bigger Signature

The main interest is that the principle is very di�erent technique

(and falls within the hash-and-sign paradigm). It might open new

possibilities for isogeny-based cryptography.
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Conclusion

Future work:

� Analysis of the OMIP (in particular in the quantum setting).

� More constructions from this framework?

Main Take-away: VUF/VRF might be the most promising

application for isogeny-based cryptography.

https://eprint.iacr.org/2023/1251

15

https://eprint.iacr.org/2023/1251


Conclusion

Future work:

� Analysis of the OMIP (in particular in the quantum setting).

� More constructions from this framework?

Main Take-away: VUF/VRF might be the most promising

application for isogeny-based cryptography.

https://eprint.iacr.org/2023/1251

15

https://eprint.iacr.org/2023/1251

	 On Verifiable Functions 
	Mathematical Background
	Isogeny representations
	The construction

