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Want to ShOW “knOwledgeu Of w s.t. (x, W) = R e.g. R := {(x,w) : SHA3(w) = x)

Today: we focus on

hash-based SNARKs

l.e. sound In the pure random oracle model.
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What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding
Can the proximity test directly

f(x) —y Reed—Solomon enforce the constraint?
Quotient f'(x) := 4

X —Z

proximity test for f

Yes! |IOPP for constrained codes

Embeds the constraint

fz) =yintof
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Rewrite RS co_d_es to be
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polynomial coi:teraci)nt multilinear polynomial evaluation
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RS[n, m, p] = CRS[n, m, p,0,0] We test proximity to CRS!
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i \
Rounds: O (m) e~ logm
N Query complexity:
Alphabet: I
A
Proof length: O(n/Zk) Gwie = O (Z - log m) = 0(4)
Verifier time: O (G - (2 + m)) 2> m

\_

J
CRS IOPP

Implementation available at

High soundness analogue of RS : :
PIOP compiler (w/o quotients) » WizardOfMenlo/whir



http://github.com/WizardOfMenlo/whir
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Mutual correlated agreement

Test a random linear combination

r « "

J* = Z’”ifi

21

if w.h.p. A(f*,6) < o:
Agreement: then A(f,, €¢) < o.

Correlated agreement: then f;, ..., /..
agree with € on the same “stripe”

Mutual correlated agreement: the stripe
in which fi, ..., f,, agree with & is the
same on which f* does:

“No new correlated domains appear”
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By SZlemma w.h.p.
no pair i, v with #(r) = V(1)

 Prover "chooses" which codeword ii it
"commits" to

Add to list of constraints to enforce!

26

AN(G, g, 0*)

—

By Johnson bound, this

IS small

5>I<




WHIR



WHIR */

27



WHIR */

27



WHIR

27



WHIR */

Domain shift

S ———
—

27



WHIR */

Domain shift

S ———
—

Batching

27




WHIR

Domain shift
—_—,
 —

Batching

n
Recurse g € CRS 5’ m — Kk,




Application: 2-I0P

High soundness compilation using constrained codes

28



Application: 2-I0P

High soundness compilation using constrained codes

4 O

2-lI0OP

28



Application: 2-I0P

High soundness compilation using constrained codes

4 O

2-lI0OP

28



Application: 2-I0P

High soundness compilation using constrained codes

4 O

>-IOP
P

— -
|

28



Application: 2-I0P

High soundness compilation using constrained codes

4 O

>-IOP
P

N E
' G

N -

28



Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

g 5_|OP A
p
] .
=
q
] .
_ y

Verifier can ask sumcheck queries
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whir (pcs) 9§
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding

Security level: 100 bits using ConjecturelList security and

initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_
Num_queries: 17, rate: 2"-5, pow_
Num_queries: 11, rate: 2"-8, pow_
Num_queries: 8, rate: 2"-11, pow_

final_queries: 6, final_rate: 2"-

00D commitment

00D sample

00D sample

qguery error: 85.0,
(x4) prox gaps: 99.
00D sample
guery error: 88.
(x4) prox gaps:
00D sample
guery error: 88.
(x4) prox gaps:
guery error: 84.

0000000000000 O

Prover time: 356.9ms
Proof size: 58.7 KiB
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factor: 4

bits: 18, ood_samples:
bits: 15, ood_samples:
bits: 12, ood_samples:
bits: 12, ood_samples:

query error: 82.0, combination:
(x4) prox gaps: 101.0, sumcheck:

combination:
@, sumcheck:

combination:
.0, sumcheck:

combination:
.0, sumcheck:

pow: 16.0

94.6, pow:

folding_pow:
folding_pow:
, folding_pow:
, folding_pow:
14, final_pow_bits: 16, final_folding_pow_bits: @

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0

18.0

100.0, pow: 0.0

pow:
pow:

pow:
pow:

pow:
pow:

15.0
2.0

12.0
4.0

19 bits of PoW
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Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

* Huge thanks to Remco Bloemen!!! i 609 3

Field: Goldilocks2 and MT: Blake3
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Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

* Huge thanks to Remco Bloemen!!! i 609 3

Field: Goldilocks2 and MT: Blake3
Number of variables: 2@, folding factor: 4
Security level: 100 bits using ConjecturelList security and 19 bits of PoW

® We Com pared to FRI, STIR and BaseFOId_ ﬁﬂi{;ﬂiﬁiﬁd12?“’??{2“?'3 pow_bits: 18, ood_samples: 2, folding_pow:
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Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

» Drop-in replacement of FRI and STIR (when used for CRS[[F, m, p,0,0])

« Same benefits as STIR over FRI, and faster prover time.

* Additionally, richer proximity tests means that:
 Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)
* Additionally, bivariate PCS (and anything in between)
e Can be used in compiler for 2-I0OP

* Further, super-fast verification (next)
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Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[LIITTTTTTITTT (o), (g 0p)

Batching

g.L—-TF
[IIIIIIITITI]  sumcheck claimon g: (W¥, o¥)

Many ways this can be done: we chose random linear combination.
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Review: FRI iteration

Soundness:

FiL—>F Suppose that ' € RS[n/2%, m — k, p].

D]]:l:l:l:l If fis o-far from RS[n, m, p],

Fold( f, @) must be o-far from
RS[n/2%, m — k, p]

Then, f" and Fold(f, a) differ on

Check that a O-fraction.

Fold(f, @)(z) = f'(z) at

Claimed to b .
St tpoints in sz Soundness error is (1 — 5)t

; /
same polynomial f

n
Recurse on f € RS ?’m — k, p]

To get soundness error ¢, < 27

_ | set§:=1—,/pandt:=
Disclaimer: in full FRI —log\/ﬁ

consistency checks are
correlated between rounds.
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< , I‘) < . l‘) l  Folding version: w.h.p. over a:
’ A(E, Fold(f, @), 8) = {Fold(u, @) : u € A(%,f,5)}
® * Alternatively, each term in the I.h.s can be “explained”

A(G, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
Stronger than what is required correlated agreement in unique decoding.

for STIR’s soundness
Recent results show it holds up to 1.5 Johnson for

35 general linear codes!



