Proximity testing for Reed–Solomon+

Gal Arnon

Alessandro Chiesa

Giacomo Fenzi

Eylon Yogev

ePrint 2024/1586

Instantiating random oracle gives amazing SNARKs:

Instantiating random oracle gives amazing SNARKs:

Transparent setup (choice of hash) ullet

Instantiating random oracle gives amazing SNARKs:

- Transparent setup (choice of hash) \bullet
- Highly efficient implementations (no public-key crypto) \bullet

Instantiating random oracle gives amazing SNARKs:

- Transparent setup (choice of hash)
- Highly efficient implementations (no public-key crypto)
- Plausibly post-quantum secure (secure in QROM) \bullet

Instantiating random oracle gives amazing SNARKs:

- Transparent setup (choice of hash)
- Highly efficient implementations (no public-key crypto)
- Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

Instantiating random oracle gives amazing SNARKs:

- Transparent setup (choice of hash)
- Highly efficient implementations (no public-key crypto)
- Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

BCS construction: Merkle Trees + FS

Proof length $I \approx O(n)$

Queries $q \approx O(\log n)$

Large, think 2^{24} Proof length $I \approx O(n)$

Queries $q \approx O(\log n)$ Small, think ~400

Proof length $I \approx O(n)$ Large, thir

Queries $q \approx O(\log n)$ Small, think ~400

$$k 2^{24}$$

Argument size $O(\lambda \cdot \mathbf{q} \cdot \log \mathbf{I})$

Proof length $I \approx O(n)$ Large, thir

Queries $q \approx O(\log n)$ Small, think ~400

$$k 2^{24}$$

Small, tens of KiB

Queries $q \approx O(\log n)$ Small, think ~400

Small, tens of KiB

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

Just like IOPs, but prover is forced to send polynomials $\mathbb{F}^{< d}[X]$.

E.g. Aurora, STARK PIOP etc.

IOP of Proximity to RS codes

IOP of Proximity to RS codes

 $\mathsf{RS}[n, m, \rho] :=$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^{m} \\ on a domain L \subseteq \mathbb{F} of size n. \rho := \frac{2^{m}}{n} \end{cases}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^m \\ on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^m \\ on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^m \\ on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n} \end{cases}$

IOP of Proximity to RS codes $RS[n, m, \rho] := \begin{cases} Evaluations of polynomials of degree < 2^m \\ on a domain <math>L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2^m}{n}$

IOP of Proximity to RS codes $\mathsf{RS}[n, m, \rho] := \langle$ Rate of the code

Evaluations of polynomials of degree 2^m on a domain $L \subseteq \mathbb{F}$ of size $n. \rho :=$ n

- If $f \in \mathsf{RS}[n, m, \rho]$, V accepts.
- If *f* is δ -far from $\text{RS}[n, m, \rho]$, **V** accepts w.p. $\varepsilon_{\text{RBR}} \leq 2^{-\lambda}$

Convenience

IOP of Proximity to RS codes $\mathsf{RS}[n, m, \rho] := \langle$ Rate of the code

Evaluations of polynomials of degree 2^m on a domain $L \subseteq \mathbb{F}$ of size $n. \rho :=$ n

- If $f \in \mathsf{RS}[n, m, \rho]$, V accepts.
- If *f* is δ -far from $\text{RS}[n, m, \rho]$, **V** accepts w.p. $\varepsilon_{\text{RBR}} \leq 2^{-\lambda}$

Goal: minimize queries to *f* and other proof oracles.

Convenience

IOP of Proximity to RS codes $\mathsf{RS}[n, m, \rho] := \langle$ Rate of the code

Evaluations of polynomials of degree $< 2^m$ on a domain $L \subseteq \mathbb{F}$ of size $n. \rho := \frac{2}{m}$ n

- If $f \in \mathsf{RS}[n, m, \rho]$, V accepts.
- If *f* is δ -far from $\text{RS}[n, m, \rho]$, **V** accepts w.p. $\varepsilon_{\text{RBR}} \leq 2^{-\lambda}$

Round by round, required by BCS transform.

Convenience

Goal: minimize queries to *f* and other proof oracles.

What we are running:

Reed-Solomon Proximity Test on virtual function: $f'(x) := \frac{f(x) - y}{x - z}$

What we are running:

Reed-Solomon Proximity Test on virtual function: f(x) - yf'(x) := $\overline{X} - \overline{Z}$

What we really want to show:

What we are running:

Reed-Solomon Proximity Test on virtual function: f(x) - yf'(x) := $\overline{X} - \overline{Z}$

Break it down as:

Test for constrained encoding

What we really want to show:

What we are running:

Reed-Solomon Proximity Test on virtual function: f(x) - yf'(x) := $\overline{X} - \overline{Z}$

Break it down as:

Test for constrained encoding f(x) - yQuotient f'(x) := $\overline{X-Z}$

What we really want to show:

What we are running:

Break it down as:

Test for constrained encoding f(x) - yQuotient f'(x) := $\overline{X} - \overline{Z}$ **Embeds the constraint** $\hat{f}(z) = y$ into f'

What we really want to show:

What we are running:

Break it down as:

What we really want to show:

Constrained RS tests

What we are running:

Break it down as:

What we really want to show:

I have a polynomial \hat{f} and a commitment to (an encoding of it) f such that $\hat{f}(z) = y$

> Can the proximity test **directly** enforce the constraint?

Constrained RS tests

What we are running:

Break it down as:

What we really want to show:

I have a polynomial \hat{f} and a commitment to (an encoding of it) f such that $\hat{f}(z) = y$

> Can the proximity test **directly** enforce the constraint?

Yes! IOPP for constrained codes

$\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$

$\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$

 $\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$ $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

$\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$

 $CRS[n, m, \rho, \hat{w}, \sigma] :=$

- $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

$\mathsf{RS}[n, m, \rho] := \left\{ \begin{array}{l} \text{Evaluations of univariate} \\ \hat{f} \in \mathbb{F}^{<2^m}[X] \text{ on } L \end{array} \right\}$

Constraint polynomial

 $CRS[n, m, \rho, \hat{w}, \sigma] :=$

- $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

- $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

- $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$

$$\mathsf{RS}[n,m,\rho] : \sum_{b \in \{0,1\}^m} \hat{w}(\hat{f}(b),b) = \sigma$$

 $RS[n, m, \rho] = CRS[n, m, \rho, 0, 0]$

- $= \begin{cases} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{cases}$

$$\mathsf{RS}[n,m,\rho] : \sum_{b \in \{0,1\}^m} \hat{w}(\hat{f}(b),b) = \sigma$$

 $RS[n, m, \rho] = CRS[n, m, \rho, 0, 0]$

about multilinear polynomials: $\operatorname{coeff}(\hat{p}) = \operatorname{coeff}(\hat{q})$ implies that $\hat{p}(z) = \hat{q}(z, z^2, \dots, z^{2^{m-1}})$ $= \left\{ \begin{array}{l} \text{Evaluations of multilinear} \\ \hat{f} \in \mathbb{F}^{\leq 1}[X_1, \dots, X_m] \text{ on } L \end{array} \right\}$ If $\hat{w} = Z \cdot eq(\mathbf{X}, \mathbf{r})$ we recover multilinear polynomial evaluation

 $RS[n, m, \rho] = CRS[n, m, \rho, 0, 0]$

We test **proximity** to CRS!

Rounds: O(m)Alphabet: \mathbb{F}^{2^k} Proof length: $O(n/2^k)$ Verifier time: $O(q_{WHIR} \cdot (2^k + m))$

Rounds: O(m)Alphabet: \mathbb{F}^{2^k} Proof length: $O(n/2^k)$ Verifier time: $O\left(q_{\text{WHIR}} \cdot (2^k + m)\right)$

Rounds: O(m)Alphabet: \mathbb{F}^{2^k} Proof length: $O(n/2^k)$ Verifier time: $O(q_{WHIR} \cdot (2^k + m))$

Rounds: O(m)Alphabet: \mathbb{F}^{2^k} Proof length: $O(n/2^k)$ Verifier time: $O(q_{WHIR} \cdot (2^k + m))$

Rounds: O(m)**Alphabet:** \mathbb{F}^{2^k} **Proof length:** $O(n/2^k)$ Verifier time: $O\left(q_{\text{WHIR}} \cdot (2^k + m)\right)$

Rounds: O(m)**Alphabet:** \mathbb{F}^{2^k} **Proof length:** $O(n/2^k)$ Verifier time: $O\left(q_{\text{WHIR}} \cdot (2^k + m)\right)$

Rounds: O(m)**Alphabet:** \mathbb{F}^{2^k} **Proof length:** $O(n/2^k)$ Verifier time: $O\left(q_{\text{WHIR}} \cdot (2^k + m)\right)$

Rounds: O(m)**Alphabet:** \mathbb{F}^{2^k} **Proof length:** $O(n/2^k)$ Verifier time: $O\left(q_{\text{WHIR}} \cdot (2^k + m)\right)$

Rounds: O(m)**Alphabet:** \mathbb{F}^{2^k} **Proof length:** $O(n/2^k)$ Verifier time: $O(q_{WHIR} \cdot (2^k + m))$

Comparison with prior work

	Queries	Verifier Time	Alphabet
BaseFold	$q_{\rm BF} = O(\lambda \cdot m)$	$O(\mathbf{q}_{BF})$	₣2
FRI	$q_{\rm FRI} = O\left(\frac{\lambda}{k} \cdot m\right)$	$O(\mathbf{q}_{FRI} \cdot 2^k)$	\mathbb{F}^{2^k}
STIR	$q_{\rm STIR} = O\left(\frac{\lambda}{k} \cdot \log m\right)$	$O(\mathbf{q}_{STIR} \cdot 2^k + \lambda^2 \cdot 2^k)$	\mathbb{F}^{2^k}
WHIR	$q_{\rm WHIR} = O\left(\frac{\lambda}{k} \cdot \log m\right)$	$O(\mathbf{q}_{WHIR} \cdot (2^k + m))$	\mathbb{F}^{2^k}

Comparison with prior work

	Querie	S	Verifier Ti	Alphabet	
BaseFold	$q_{\scriptscriptstyle BF} = O(\lambda \cdot m)$		$O(\mathbf{q}_{BF})$		₽2
FRI	$q_{\rm FRI} = O\left(\frac{\lambda}{k}\right)$	• m)	$O(\mathbf{q}_{FRI} \cdot 2^k)$		\mathbb{F}^{2^k}
STIR	$q_{\rm STIR} = O\left(\frac{\lambda}{k}\right)$	$\cdot \log m$	$O(\mathbf{q}_{stir} \cdot 2^k +$	$-\lambda^2 \cdot 2^k$)	\mathbb{F}^{2^k}
WHIR	$q_{\rm WHIR} = O\left(\frac{\lambda}{k} \cdot \log m\right)$		$O(q_{\text{whir}} \cdot (2^{2}))$	(k + m))	\mathbb{F}^{2^k}
	When k $q_{\rm WHIR}$	$\approx \log m$ $= O(\lambda)$	When $k \approx \log m$ $O(q_{\text{WHIR}} \cdot \Sigma)$		
	ΟΡΤΙ	IMAL	OPTIMAL		

Comparison with prior work

	Queries	Verifier Time	Alphabet
BaseFold	$q_{\rm BF} = O(\lambda \cdot m)$	$O(q_{BF})$	F ²
FRI	$q_{\rm FRI} = O\left(\frac{\lambda}{k} \cdot m\right)$	$O(\mathbf{q}_{FRI}\cdot 2^k)$	\mathbb{F}^{2^k}
STIR	$q_{\rm STIR} = O\left(\frac{\lambda}{k} \cdot \log m\right)$	$O(q_{\text{STIR}} \cdot 2^k + \lambda^2 \cdot 2^k)$	\mathbb{F}^{2^k}
WHIR	$q_{\rm WHIR} = O\left(\frac{\lambda}{k} \cdot \log m\right)$	$O(\mathbf{q}_{WHIR} \cdot (2^k + m))$	\mathbb{F}^{2^k}
	When $k \approx \log m$ $q_{\text{WHIR}} = O(\lambda)$	When $k \approx \log m$ $O(q_{\text{WHIR}} \cdot \Sigma)$	hen $k \approx \log m$ $\Sigma = \mathbb{F}^m$
	OPTIMAL	OPTIMAL 0	pen question

Comparison with FRI and STIR

128-bits security level.

 $\lambda = 106 + 22$ bits of PoW + "list-decoding" assumptions.

500

Size (KiB) 400 300 200

100

 2^{12} 2^{10} Time (s) 2^{8} 2^6 2^{4} 2^2 2^{0} Note: prover time graph is now outdated due to new optimizations discovered

 2^{22}

 2^{24}

Degree

 2^{20}

 2^{18}

 2^{26}

Rate of the code $\rho = 1/2$ Verifier hash complexity Argument size 10000 8000 Hashes 6000 4000 2000 2^{28} 2^{26} 2^{30} 2^{22} 2^{24} 2^{26} 2^{28} 2^{20} 2^{20} 2^{22} 2^{24} 2^{18} 2^{18} Degree Degree Prover time Verifier time 6 Time (ms) 2

FRI, STIR, WHIR

 2^{26}

 2^{28}

 2^{30}

 2^{18}

 2^{20}

 2^{22}

 2^{24}

Degree

Comparison with FRI and STIR

128-bits security level.

 $\lambda = 106 + 22$ bits of PoW + "list-decoding" assumptions.

2^24 coeffs rate = 1/4	FRI	RI WHIR	
Size (KiB)	177	110	Size (K Size (K
Verifier time	2.4ms	700µs	100

 2^{12} 2^{10} Time (s) 2^{8} 2^6 2^{4} 2^2 2^0 Note: prover time graph is now outdated due to new optimizations discovered

 2^{22}

 2^{24}

Degree

 2^{20}

 2^{18}

 2^{26}

Rate of the code $\rho = 1/2$ Verifier hash complexity Argument size 10000 8000 Hashes 6000 4000 2000 2^{28} 2^{26} 2^{30} 2^{22} 2^{24} 2^{26} 2^{28} 2^{20} 2^{20} 2^{24} 2^{18} 2^{18} 2^{22} Degree Degree Prover time Verifier time 6 Time (ms) 7 $\frac{2}{3}$ 2

FRI, STIR, WHIR

 2^{26}

 2^{28}

 2^{30}

 2^{18}

 2^{20}

 2^{22}

 2^{24}

Degree

Comparison with FRI and STIR

128-bits security level.

 $\lambda = 106 + 22$ bits of PoW + "list-decoding" assumptions.

2^24 coeffs rate = 1/4	FRI	WHIR	
Size (KiB)	177	110	→ 300 × 300 ×
Verifier time	2.4ms	700µs	$100 - 2^{18}$
2^30 coeffs rate = 1/2	FRI	WHIR	$\begin{array}{c} 2^{12} \\ 2^{10} \\ 2^{8} \end{array}$
2^30 coeffs rate = 1/2 Size (KiB)	FRI 494	WHIR 187	$ \begin{array}{c} 2^{12} \\ 2^{10} \\ \hline & 2^{8} \\ \hline & 2^{6} \\ \hline & 2^{4} \\ & 2^{2} \\ \end{array} $

Note: prover time graph is now outdated due to new optimizations discovered

Rate of the code $\rho = 1/2$ Verifier hash complexity Argument size 10000 8000 Hashes 6000 4000 2000 2^{26} 2^{28} 2^{30} 2^{22} 2^{24} 2^{24} 2^{26} 2^{28} 2^{20} 2^{20} 2^{18} 2^{22} 2^{18} Degree Degree Prover time Verifier time 6

FRI, STIR, WHIR

 2^{26}

 2^{28}

 2^{30}

 2^{20}

 2^{22}

 2^{24}

Degree

 2^{24}

Degree

 2^{26}

 2^{22}

 2^{20}

 2^{18}

• The WHIR verifier typically runs in a few hundred MICRO-seconds.

- The WHIR verifier typically runs in a few hundred MICRO-seconds.
- Other verifiers require several MILLI-seconds (and more).

- The WHIR verifier typically runs in a few hundred MICRO-seconds.
- Other verifiers require several MILLI-seconds (and more).
- While maintaining state-of-the-art prover time & argument size

- The WHIR verifier typically runs in a few hundred MICRO-seconds.
- Other verifiers require several MILLI-seconds (and more).
- While maintaining state-of-the-art prover time & argument size

Verifier time (ms)	Brakedown	Ligero	Greyhound	Hyrax	PST	KZG	WHIR[1/2]	WHIR[1/
$\lambda = 100$	3500	733	_	100	7.81	2.42	0.61	0.29
$\lambda = 128$	3680	750	130	151	9.92	3.66	1.4	0.6

- The WHIR verifier typically runs in a few hundred MICRO-seconds.
- Other verifiers require several MILLI-seconds (and more).
- While maintaining state-of-the-art prover time & argument size

Verifier time (ms)	Brakedown	Ligero	Greyhound	Hyrax	PST	KZG	WHIR[1/2]	WHIR[1/
$\lambda = 100$	3500	733	_	100	7.81	2.42	0.61	0.29
$\lambda = 128$	3680	750	130	151	9.92	3.66	1.4	0.6
	-	•				N N	/HIR[$ ho$] denote /HIR with rate	es ρ

Super fast verifier

- The WHIR verifier typically runs in a few hundred MICRO-seconds.
- Other verifiers require several MILLI-seconds (and more).
- While maintaining state-of-the-art prover time & argument size

						Schemes with trusted setup using pairings!		
Verifier time (ms)	Brakedown	Ligero	Greyhound	Hyrax	PST	KZG	WHIR[1/2]	WHIR[1/
$\lambda = 100$	3500	733	_	100	7.81	2.42	0.61	0.29
$\lambda = 128$	3680	750	130	151	9.92	3.66	1.4	0.6
						N N	HIR[$ ho$] denote HIR with rate	es ρ

Implementation available @ <u>WizardOfMenIo/whir</u>

Implementation available @ <u>WizardOfMenIo/whir</u>

World client-side prover @ worldfnd/ProveKit

Implementation available @ <u>WizardOfMenIo/whir</u>

World client-side prover @ worldfnd/ProveKit

To be deployed to 26M+ users!

Implementation available @ WizardOfMenIo/whir

World client-side prover @ worldfnd/ProveKit

> To be deployed to 26M+ users!

Pierre On the gas efficiency of the WHIR polynomial commitment scheme

Joint post with @WizardOfMenIo

and MIT licensed 19 prototype EVM verifier for the WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious postquantum PCS candidate for teams using or looking to leverage STARKs in production.

Solidity verifier implementation @ privacy-scaling-explorations/sol-whir

1 🖉 Dec 2024

Implementation available @ WizardOfMenIo/whir

World client-side prover @ worldfnd/ProveKit

> To be deployed to 26M+ users!

Pierre On the gas efficiency of the WHIR polynomial commitment scheme

Joint post with @WizardOfMenlo

WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious postquantum PCS candidate for teams using or looking to leverage STARKs in production.

Solidity verifier implementation @ privacy-scaling-explorations/sol-whir

1 🖉 Dec 2024

d 19 prototype EVM verifier for the

Implementation available @ WizardOfMenIo/whir

World client-side prover @ worldfnd/ProveKit

> To be deployed to 26M+ users!

Pierre On the gas efficiency of the WHIR polynomial commitment scheme

Joint post with @WizardOfMenIo

WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious postquantum PCS candidate for teams using or looking to leverage STARKs in production.

Solidity verifier implementation @ privacy-scaling-explorations/sol-whir

Ethereum pq transition

1 🖉 Dec 2024

d 19 prototype EVM verifier for the

Implementation available @ WizardOfMenIo/whir

World client-side prover @ worldfnd/ProveKit

> To be deployed to 26M+ users!

Pierre On the gas efficiency of the WHIR polynomial commitment scheme

Joint post with @WizardOfMenIo

WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious postquantum PCS candidate for teams using or looking to leverage STARKs in production.

Solidity verifier implementation @ privacy-scaling-explorations/sol-whir

Ethereum pq transition

1 🖉 Dec 2024

d 19 prototype EVM verifier for the

Implementation available @ WizardOfMenIo/whir

World client-side prover @ worldfnd/ProveKit

> To be deployed to 26M+ users!

On the gas efficiency of the WHIR polynomial commitment scheme

Joint post with @WizardOfMenlo

WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious postquantum PCS candidate for teams using or looking to leverage STARKs in production.

Solidity verifier implementation @ privacy-scaling-explorations/sol-whir

Plonky3 implementation @ tcoratger/whir-p3

Ethereum pq transition

1 🖉 Dec 2024

Implementation available @ WizardOfMenIo/whir

World client-side prover @ worldfnd/ProveKit

> To be deployed to 26M+ users!

A hash-based SNARK with lightweight proofs, powered by the Whir Polynomial Commitment Scheme

Specifications

Hash-based SNARK based on WHIR @ TomWambsgans/Whirlaway

On the gas efficiency of the WHIR polynomial commitment scheme

Joint post with @WizardOfMenlo

WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious postquantum PCS candidate for teams using or looking to leverage STARKs in production.

Solidity verifier implementation @ privacy-scaling-explorations/sol-whir

Plonky3

Plonky3 implementation

@ tcoratger/whir-p3

Ethereum pq transition

Whirlaway 🧺

 Arithmetization: AIR (Algebraic Intermediate Representation) with preprocessed columns Security level: 128 bits (without conjectures), presumably post-quantum (hash-based protocol) Ingredients: WHIR + Ring-Switching + Sumcheck + Univariate Skip

1 🖉 Dec 2024

Implementation available @ WizardOfMenIo/whir

World client-side prover @ worldfnd/ProveKit

> To be deployed to 26M+ users!

A hash-based SNARK with lightweight proofs, powered by the Whir Polynomial Commitment Scheme

Specifications

On the gas efficiency of the WHIR polynomial commitment scheme

Joint post with @WizardOfMenlo

WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious postquantum PCS candidate for teams using or looking to leverage STARKs in production.

Solidity verifier implementation @ privacy-scaling-explorations/sol-whir

Plonky3

Plonky3 implementation @ tcoratger/whir-p3

Ethereum pq transition

Whirlaway 🧺

 Arithmetization: AIR (Algebraic Intermediate Representation) with preprocessed columns Security level: 128 bits (without conjectures), presumably post-quantum (hash-based protocol) Ingredients: WHIR + Ring-Switching + Sumcheck + Univariate Skip

Hash-based SNARK with CUDA backend! based on WHIR @ TomWambsgans/Whirlaway

1 🖉 Dec 2024

Implementation available @ WizardOfMenIo/whir

World client-side prover @ worldfnd/ProveKit

> To be deployed to 26M+ users!

Specifications

Pierre On the gas efficiency of the WHIR polynomial commitment scheme

Joint post with @WizardOfMenIo

WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious postquantum PCS candidate for teams using or looking to leverage STARKs in production.

Solidity verifier implementation @ privacy-scaling-explorations/sol-whir

Conclusion

WHIR Stanew IOPP for CRS codes.

WHIR Stanew IOPP for CRS codes.

Query complexity:

$$O\left(\frac{\lambda}{k}\cdot\log m\right)$$

Verifier complexity:

$$O(q_{\scriptscriptstyle \mathsf{WHIR}}\cdot(2^k+m))$$

WHIR Stanew IOPP for CRS codes.

• State-of-the-art prover time, argument size and hash complexity

Query complexity:

$$O\left(\frac{\lambda}{k}\cdot\log m\right)$$

Verifier complexity:

$$O(q_{\scriptscriptstyle \mathsf{WHIR}}\cdot(2^k+m))$$

WHIR Stanew IOPP for CRS codes.

- State-of-the-art prover time, argument size and hash complexity
- Fastest verification of any PCS (including trusted setups!)

Query complexity:

$$O\left(\frac{\lambda}{k}\cdot\log m\right)$$

Verifier complexity:

$$O(q_{\scriptscriptstyle \mathsf{WHIR}}\cdot(2^k+m))$$

ent size and hash complexity Iding trusted setups!)

WHIR Stanew IOPP for CRS codes.

- State-of-the-art prover time, argument size and hash complexity
- Fastest verification of any PCS (including trusted setups!)
- Rapid practical adoption

Query complexity:

$$O\left(\frac{\lambda}{k}\cdot\log m\right)$$

Verifier complexity:

$$O(q_{\scriptscriptstyle \mathsf{WHIR}}\cdot(2^k+m))$$

ent size and hash complexity Iding trusted setups!)

WHIR S: a new IOPP for CRS codes.

- State-of-the-art prover time, argument size and hash complexity
- **Fastest** verification of any PCS (including trusted setups!)
- **Rapid** practical adoption
- Enables high-soundness compilation for Σ-IOP

Query complexity:

$$O\left(\frac{\lambda}{k}\cdot\log m\right)$$

Verifier complexity:

$$O(q_{\scriptscriptstyle \mathsf{WHIR}}\cdot(2^k+m))$$

WHIR S: a new IOPP for CRS codes.

- State-of-the-art prover time, argument size and hash complexity
- **Fastest** verification of any PCS (including trusted setups!)
- **Rapid** practical adoption
- Enables high-soundness compilation for Σ-IOP

Query complexity:

$$O\left(\frac{\lambda}{k}\cdot\log m\right)$$

Verifier complexity:

$$O(q_{\scriptscriptstyle \mathsf{WHIR}}\cdot(2^k+m))$$

Open question: Can argument size be improved at the same prover cost?

How? Inspiration from FFTs, for k = 1:

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Can extend to every k that is a power of two.

How? Inspiration from FFTs, for k = 1:

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Can extend to every k that is a power of two.

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

How? Inspiration from FFTs, for k = 1:

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Can extend to every k that is a power of two.

Properties:

Local: compute Fold(f, α)(z) at any point $z \in L^{2^k}$ with 2^k queries to f.

 $\delta \in \left(0, 1 - \sqrt{\rho}\right)$

Distance preservation: if f is δ -far from $RS[n, m, \rho]$, then w.h.p. $Fold(f, \alpha)$ remains also δ -far from RS[$n/2^k, m-k, \rho$]

How? Inspiration from FFTs, for k = 1:

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Can extend to every k that is a power of two.

Properties:

Local: compute Fold(f, α)(z) at any point $z \in L^{2^k}$ with 2^k queries to f.

Distance preservation: if f is δ -far from $RS[n, m, \rho]$, then w.h.p. $Fold(f, \alpha)$ remains also δ -far from RS[$n/2^k, m-k, \rho$]

$$\mathsf{Fold}(f, \alpha) := f_{\mathsf{odd}} + \alpha \cdot f_{\mathsf{even}}$$

Test a random linear combination

Test a random linear combination

 J_1

Test a random linear combination

Test a random linear combination

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Correlated agreement: then f_1, \ldots, f_m agree with \mathscr{C} on the same "stripe"

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Correlated agreement: then f_1, \ldots, f_m agree with \mathscr{C} on the same "stripe"

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Correlated agreement: then f_1, \ldots, f_m agree with \mathscr{C} on the same "stripe"

Test a random linear combination

if w.h.p. $\Delta(f^*, \mathscr{C}) \leq \delta$:

Agreement: then $\Delta(f_i, \mathscr{C}) \leq \delta$.

Correlated agreement: then f_1, \ldots, f_m agree with \mathscr{C} on the same "stripe"

Mutual correlated agreement: the stripe in which f_1, \ldots, f_m agree with \mathscr{C} is the same on which f^* does:

"No new correlated domains appear"

Implied by mutual correlated agreement

Implied by mutual correlated agreement

 $f_1, \dots, f_m \colon L \to \mathbb{F}$

Implied by mutual correlated agreement

Implied by mutual correlated agreement

Implied by mutual correlated agreement

Implied by mutual correlated agreement

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C},f,\delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

w.h.p. over **r**: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$

Lemma

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C},f,\delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Lemma w.h.p. over **r**: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$

Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

w.h.p. over **r**: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$

Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.

We show correlated agreement implies mutual correlated agreement in *unique decoding*.

Lemma

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C},f,\delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

w.h.p. over **r**: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$

Recent results show that mutual correlated agreement holds up to 1.5 Johnson for general linear codes!

We show correlated agreement implies mutual correlated agreement in *unique decoding*.

Lemma

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X,\mathbf{b}), X,\mathbf{b})$$
P

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X,\mathbf{b}), X, \mathbf{b})$$
P

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X,\mathbf{b}), X,\mathbf{b})$$
P

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma$$
 then:

•
$$h(0) + h(1) = \sigma$$
,

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

• $\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = h(\alpha)$

• $\widehat{\mathsf{Fold}(f,\alpha)} = \widehat{f}(\alpha,\cdot)$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

• $\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = h(\alpha)$

• $\widehat{\mathsf{Fold}(f,\alpha)} = \widehat{f}(\alpha,\cdot)$

Interleave sumcheck with FRI folding, similar to BaseFold, Hyperplonk, Gemini

Soundness: by mutual correlated agreement, w.h.p. if $\Delta(f, CRS[n, m, \rho, \hat{w}, \sigma]) > \delta$ then $\Delta(Fold(f, \alpha), CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \hat{h}(\alpha)]) > \delta$

Reduce $CRS[n, m, \rho, \hat{w}, \sigma]$ **to** $CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}]$

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

• $\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = h(\alpha)$

• $\widehat{\mathsf{Fold}(f,\alpha)} = \widehat{f}(\alpha,\cdot)$

Interleave sumcheck with FRI folding, similar to BaseFold, Hyperplonk, Gemini

Soundness: by mutual correlated agreement, w.h.p. if $\Delta(f, CRS[n, m, \rho, \hat{w}, \sigma]) > \delta$ then $\Delta(Fold(f, \alpha), CRS[n/2, m - 1, \rho, \hat{w}_{\alpha}, \hat{h}(\alpha)]) > \delta$

 $\hat{w}_{\alpha}(Z, \mathbf{X}) = \hat{w}(Z, \alpha, \mathbf{X})$

Reduce CRS[$n, m, \rho, \hat{w}, \sigma$] to CRS[$n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}$]

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

 $\sum W(f(\alpha, \mathbf{D}), \alpha, \mathbf{D}) = h(\alpha)$

• $\operatorname{Fold}(f, \alpha) = \hat{f}(\alpha, \cdot)$

Interleave sumcheck with FRI folding, similar to BaseFold, Hyperplonk, Gemini

Soundness: by mutual correlated agreement, w.h.p. if $\Delta(f, CRS[n, m, \rho, \hat{w}, \sigma]) > \delta$ then $\Delta(\mathsf{Fold}(f,\alpha),\mathsf{CRS}[n/2,m-1,\rho,\hat{w}_{\alpha},\hat{h}(\alpha)]) > \delta$

 $\hat{w}_{\alpha}(Z, \mathbf{X}) = \hat{w}(Z, \alpha, \mathbf{X})$

Reduce CRS[$n, m, \rho, \hat{w}, \sigma$] to CRS[$n/2, m - 1, \rho, \hat{w}_{\alpha}, \sigma_{\alpha}$]

$$\hat{h}(X) := \sum_{\mathbf{b} \in \{0,1\}^{m-1}} \hat{w}(\hat{f}(X, \mathbf{b}), X, \mathbf{b})$$
P
Completeness:
$$\sum_{\mathbf{b}} \hat{w}(f(\mathbf{b}), \mathbf{b}) = \sigma \text{ then:}$$

$$h(0) + h(1) = \sigma,$$

$$\sum_{\mathbf{b}} \hat{w}(f(\alpha, \mathbf{b}), \alpha, \mathbf{b}) = \hat{h}(\alpha)$$

 $\sum w(J(\alpha, \mathbf{D}), \alpha, \mathbf{D}) = h(\alpha)$

• $\operatorname{Fold}(\widehat{f, \alpha}) = \widehat{f}(\alpha, \cdot)$

Interleave sumcheck with FRI folding, similar to BaseFold, Hyperplonk, Gemini

In the full protocol, we fold by 2-by-2 k times. Can also fold by 2^k at a time (nice for first round!)

Soundness: by mutual correlated agreement, w.h.p. if $\Delta(f, CRS[n, m, \rho, \hat{w}, \sigma]) > \delta$ then $\Delta(\mathsf{Fold}(f,\alpha),\mathsf{CRS}[n/2,m-1,\rho,\hat{w}_{\alpha},\hat{h}(\alpha)]) > \delta$

 $\hat{w}_{\alpha}(Z, \mathbf{X}) = \hat{w}(Z, \alpha, \mathbf{X})$

P

 $\mathsf{Fold}(f, \alpha_1, \dots, \alpha_k)$

P

g

Claimed to be same polynomial

 $Fold(f, \alpha_1, ..., \alpha_k)$

P

8

Claimed to be same polynomial

 $Fold(f, \alpha_1, ..., \alpha_k)$

P

8

Claimed to be same polynomial

 $Fold(f, \alpha_1, ..., \alpha_k)$

P

8

Claimed to be same polynomial

 $\mathsf{Fold}(f, \alpha_1, \dots, \alpha_k)$

P

8

Claimed to be same polynomial

 $\mathsf{Fold}(f, \alpha_1, \ldots, \alpha_k)$

P

8

Claimed to be same polynomial

Similar structure to STIR! Multilinear structure forbids using quotients: we need new ideas to domain shift!

 $\mathsf{Fold}(f, \alpha_1, \ldots, \alpha_k)$

P

8

Claimed to be same polynomial

Similar structure to STIR! Multilinear structure forbids using quotients: we need new ideas to domain shift!

 $\mathsf{Fold}(f, \alpha_1, \ldots, \alpha_k)$

P

8

Claimed to be same polynomial

Claim on $f:(\hat{w},\sigma)$

Claim on $f:(\hat{w},\sigma)$

Claim on $f:(\hat{w},\sigma)$

Output claims on *g*: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

Domain shifting $f: L \to \mathbb{F}$ Claim on $f: (\hat{w}, \sigma)$

f and *g* claimed to be evaluations of same polynomial. Want to output **claims** on *g*. **Goal:** If f is $\left(1 - \sqrt{\rho}\right)$ -far from CRS[$|L|, m, \rho, \hat{w}, \sigma$], w.h.p. *g* is $\left(1 - \sqrt{\rho'}\right)$ -far form least one $i \in [\ell]$

Output claims on *g*: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

], w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Domain shifting $f: L \to \mathbb{F}$ Claim on $f:(\hat{w},\sigma)$

f and g claimed to be evaluations of same polynomial. Want to output claims on g. **Goal:** If *f* is $(1 - \sqrt{\rho})$ -far from CRS[|*L*|, *m*, ρ , \hat{w} , σ] least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g.

Output claims on *g*: $(\hat{w}_1, \sigma_1), \ldots, (\hat{w}_\ell, \sigma_\ell)$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Domain shifting $f: L \to \mathbb{F}$ Claim on $f:(\hat{w},\sigma)$

f and g claimed to be evaluations of same polynomial. Want to output **claims** on g. **Goal:** If *f* is $(1 - \sqrt{\rho})$ -far from CRS[|*L*|, *m*, ρ , \hat{w} , σ] least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g.

Then, if \hat{p} satisfies the (\hat{w}, σ) -constraint f must be be $\left(1 - \sqrt{\rho}\right)$ -far from it.

Output claims on g: $(\hat{w}_1, \sigma_1), \ldots, (\hat{w}_\ell, \sigma_\ell)$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Claim on $f:(\hat{w},\sigma)$

f and *g* claimed to be evaluations of same polynomial. Want to output **claims** on *g*. **Goal:** If f is $\left(1 - \sqrt{\rho}\right)$ -far from CRS[$|L|, m, \rho, \hat{w}, \sigma$], w.h.p. *g* is $\left(1 - \sqrt{\rho'}\right)$ -far form the least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g.

Then, if \hat{p} satisfies the (\hat{w}, σ) -constraint f must be be $\left(1 - \sqrt{\rho}\right)$ -far from it.

Output claims on g: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Claim on $f:(\hat{w},\sigma)$

f and g claimed to be evaluations of same polynomial. Want to output claims on g. **Goal:** If *f* is $(1 - \sqrt{\rho})$ -far from CRS[|*L*|, *m*, ρ , \hat{w} , σ] least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g. Then, if \hat{p} satisfies the (\hat{w}, σ) -constraint f must be be $\left(1 - \sqrt{\rho}\right)$ -far from it. **New constraints:** (i) original constraint (\hat{w}, σ) (ii) $\hat{p}(z) = y$ for some random point z.

Output claims on *g*: $(\hat{w}_1, \sigma_1), \ldots, (\hat{w}_\ell, \sigma_\ell)$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

Claim on $f:(\hat{w},\sigma)$

f and g claimed to be evaluations of same polynomial. Want to output claims on g. **Goal:** If *f* is $(1 - \sqrt{\rho})$ -far from CRS[|*L*|, *m*, ρ , \hat{w} , σ] least one $i \in [\ell]$

Assume there is unique polynomial \hat{p} that is $\left(1 - \sqrt{\rho'}\right)$ -close to g. Then, if \hat{p} satisfies the (\hat{w}, σ) -constraint f must be be $\left(1 - \sqrt{\rho}\right)$ -far from it. **New constraints:** (i) original constraint (\hat{w}, σ) (ii) $\hat{p}(z) = y$ for some random point z. So, except with probability $\sqrt{\rho}$, g is $(1 - \sqrt{\rho'})$ -far from CRS[$|L^*|, m, \rho', (\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$]. Can amplify to $\sqrt{\rho}^t$

Output claims on *g*: $(\hat{w}_1, \sigma_1), \ldots, (\hat{w}_\ell, \sigma_\ell)$

|, w.h.p. g is
$$\left(1 - \sqrt{\rho'}\right)$$
-far from CRS[|L*|, $m, \rho', \hat{w}_i, \sigma_i$]

- By SZ lemma w.h.p. no pair \hat{u}, \hat{v} with $\hat{u}(\mathbf{r}) = \hat{v}(\mathbf{r})$
- Prover "chooses" which codeword \hat{u} it "commits" to

- By SZ lemma w.h.p. no pair \hat{u}, \hat{v} with $\hat{u}(\mathbf{r}) = \hat{v}(\mathbf{r})$
- Prover "chooses" which codeword \hat{u} it "commits" to

- By SZ lemma w.h.p. no pair \hat{u}, \hat{v} with $\hat{u}(\mathbf{r}) = \hat{v}(\mathbf{r})$
- Prover "chooses" which codeword \hat{u} it "commits" to

Add to list of constraints to enforce!

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Generalizes univariate and

Verifier can ask sumcheck queries

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Generalizes univariate and

Verifier can ask **sumcheck queries**

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Generalizes univariate and

Verifier can ask **sumcheck queries**

i.e. send \hat{w} and receive $\sum \hat{w}(\hat{f}(\mathbf{b}), \mathbf{b})$ b

Generalizes univariate and

efficient arithmetizations?

Comparison with BaseFold

Prover time

Comparison with BaseFold

Prover time

Remark: BaseFold implementation is not fully optimised

Implementation


```
Whir (PCS) 🍸
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2^-2, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2^-5, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2^-8, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2^-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
_____
Round by round soundness analysis:
 _____
167.0 bits -- OOD commitment
102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- OOD sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
183.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

Implementation

Rust k implementation, available at <u>WizardOfMenlo/whir</u>


```
Whir (PCS) 🛐
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2^-2, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2^-5, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2<sup>-8</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2^-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
 _____
Round by round soundness analysis:
 _____
167.0 bits -- OOD commitment
102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- OOD sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
183.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

Implementation

- Rust see implementation, available at <u>WizardOfMenlo/whir</u>
- <u>Arkworks</u> as backend, (extension of) Goldilocks for benchmarks


```
Whir (PCS) 🌖
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2^-2, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2^-5, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2<sup>-8</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2^-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
_____
Round by round soundness analysis:
 -----
167.0 bits -- OOD commitment
102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- OOD sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
183.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```
Implementation

- Rust see implementation, available at <u>WizardOfMenlo/whir</u>
- Arkworks as backend, (extension of) Goldilocks for benchmarks
 - Huge thanks to Remco Bloemen!!!


```
Whir (PCS) 툇
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2<sup>-2</sup>, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2<sup>-5</sup>, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2<sup>-8</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2<sup>-11</sup>, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
 -----
Round by round soundness analysis:
 -----
167.0 bits -- OOD commitment
102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- 00D sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
 179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
183.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

Implementation

- Rust see implementation, available at <u>WizardOfMenlo/whir</u>
- <u>Arkworks</u> as backend, (extension of) Goldilocks for benchmarks
 - Huge thanks to Remco Bloemen!!!
- We compared to FRI, STIR and BaseFold.


```
Whir (PCS) 🌖
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding factor: 4
Security level: 100 bits using ConjectureList security and 19 bits of PoW
initial_folding_pow_bits: 0
Num_queries: 41, rate: 2<sup>-2</sup>, pow_bits: 18, ood_samples: 2, folding_pow: 0
Num_queries: 17, rate: 2<sup>-5</sup>, pow_bits: 15, ood_samples: 2, folding_pow: 2
Num_queries: 11, rate: 2^-8, pow_bits: 12, ood_samples: 2, folding_pow: 4
Num_queries: 8, rate: 2^-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2^-14, final_pow_bits: 16, final_folding_pow_bits: 0
 Round by round soundness analysis:
 167.0 bits -- OOD commitment
 102.0 bits -- (x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
171.0 bits -- OOD sample
100.0 bits -- query error: 82.0, combination: 94.6, pow: 18.0
100.0 bits -- (x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
175.0 bits -- OOD sample
100.0 bits -- query error: 85.0, combination: 93.8, pow: 15.0
100.0 bits -- (x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
 179.0 bits -- OOD sample
100.0 bits -- query error: 88.0, combination: 92.3, pow: 12.0
100.0 bits -- (x4) prox gaps: 97.0, sumcheck: 96.0, pow: 4.0
 183.0 bits -- OOD sample
 100.0 bits -- query error: 88.0, combination: 90.7, pow: 12.0
100.0 bits -- (x4) prox gaps: 95.0, sumcheck: 94.0, pow: 6.0
100.0 bits -- query error: 84.0, pow: 16.0
Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8µs
Average hashes: 1.1k
```

FRI: $O\left(\frac{\lambda}{k} \cdot m\right)$

FRI: $O\left(\frac{\lambda}{k} \cdot m\right)$ **Comparison to STIR and FRI STIR & WHIR** $O\left(\frac{\lambda}{k} \cdot \log m\right)$

Drop-in replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and **faster** prover time.

FRI: $O\left(\frac{\lambda}{k} \cdot m\right)$

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and **faster** prover time.
- Additionally, richer proximity tests means that:

FRI: $O\left(\frac{\lambda}{k} \cdot m\right)$

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and **faster** prover time.
- Additionally, richer proximity tests means that:
 - Can be used as a **multilinear** PCS (instead of BaseFold, FRI-Binius, etc)

FRI:
$$O\left(\frac{\lambda}{k} \cdot m\right)$$

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and **faster** prover time.
- Additionally, richer proximity tests means that:
 - Can be used as a **multilinear** PCS (instead of BaseFold, FRI-Binius, etc)
 - Additionally, bivariate PCS (and anything in between)

FRI:
$$O\left(\frac{\lambda}{k} \cdot m\right)$$

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and **faster** prover time.
- Additionally, richer proximity tests means that:
 - Can be used as a **multilinear** PCS (instead of BaseFold, FRI-Binius, etc)
 - Additionally, **bivariate** PCS (and anything in between)
 - Can be used in compiler for Σ-IOP

FRI:
$$O\left(\frac{\lambda}{k} \cdot m\right)$$

- **Drop-in** replacement of FRI and STIR (when used for CRS[F, $m, \rho, 0, 0$])
- **Same** benefits as STIR over FRI, and **faster** prover time.
- Additionally, richer proximity tests means that:
 - Can be used as a **multilinear** PCS (instead of BaseFold, FRI-Binius, etc)
 - Additionally, **bivariate** PCS (and anything in between)
 - Can be used in compiler for Σ-IOP
- **Further**, super-fast verification (next)

FRI:
$$O\left(\frac{\lambda}{k} \cdot m\right)$$

Sumcheck claims on g: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

Sumcheck claims on g: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

Batching

Sumcheck claims on g: $(\hat{w}_1, \sigma_1), \dots, (\hat{w}_{\ell}, \sigma_{\ell})$

Batching

Sumcheck claim on $g:(\hat{w}^*, \sigma^*)$

Many ways this can be done: we chose random linear combination.

V

Р

 $\alpha \leftarrow \mathbb{F}$

 $\alpha \leftarrow \mathbb{F}$

Review: FRI iteration $f: L \to \mathbb{F}$

 $\alpha \leftarrow \mathbb{F}$

Claimed to be

same polynomial

f'

Recurse on
$$f' \in \mathsf{RS} \left[\frac{n}{2^k}, m-k, \rho \right]$$

$\alpha \leftarrow \mathbb{F}$

Disclaimer: in full FRI consistency checks are correlated between rounds.

$\alpha \leftarrow \mathbb{F}$

Disclaimer: in full FRI consistency checks are correlated between rounds.

Soundness:

Suppose that $f' \in \mathsf{RS}[n/2^k, m - k, \rho]$.

If *f* is δ -far from RS[*n*, *m*, ρ],

Fold(f, α) must be δ -far from $\mathsf{RS}[n/2^k, m-k, \rho]$

Disclaimer: in full FRI consistency checks are correlated between rounds.

Soundness:

Suppose that $f' \in \mathsf{RS}[n/2^k, m - k, \rho]$.

If *f* is δ -far from RS[*n*, *m*, ρ],

Fold(f, α) must be δ -far from RS[$n/2^k, m-k, \rho$]

Then, f' and Fold (f, α) differ on a δ -fraction.

Soundness error is $(1 - \delta)^t$

2].

Disclaimer: in full FRI consistency checks are correlated between rounds.

Soundness:

Suppose that $f' \in \mathsf{RS}[n/2^k, m - k, \rho]$.

If *f* is δ -far from RS[*n*, *m*, ρ],

Fold(f, α) must be δ -far from $\mathsf{RS}[n/2^k, m-k, \rho]$

Then, f' and Fold (f, α) differ on a δ -fraction.

Soundness error is $(1 - \delta)^t$

To get soundness error $\varepsilon_{\text{RBR}} \leq 2^{-\lambda}$: set $\delta := 1 - \sqrt{\rho}$ and $t := -\frac{1}{10}$ $-\log \sqrt{\rho}$

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C},f,\delta)$ is the list of codewords of ${\mathscr C}$ that are δ -close to f

Implied by mutual correlated agreement

 $f_1, \dots, f_m \colon L \to \mathbb{F}$

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of ${\mathscr C}$ that are δ -close to f

Implied by mutual correlated agreement

 $f_1, \dots, f_m \colon L \to \mathbb{F}$

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations commute (if • mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations commute (if • mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations **commute** (if • mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations **commute** (if mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations **commute** (if lacksquaremutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations commute (if mutual correlated agreement holds).

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

Taking lists and (random) combinations commute (if ulletmutual correlated agreement holds).

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \left\{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \right\}$

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \left\{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \right\}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C}, \mathsf{Fold}(f, \alpha), \delta) = \big\{\mathsf{Fold}(u, \alpha) : u \in \Lambda(\mathscr{C}, f, \delta)\big\}$

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C}, \mathsf{Fold}(f, \alpha), \delta) = \big\{ \mathsf{Fold}(u, \alpha) : u \in \Lambda(\mathscr{C}, f, \delta) \big\}$
- Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C},\mathsf{Fold}(f,\alpha),\delta) = \big\{\mathsf{Fold}(u,\alpha): u \in \Lambda(\mathscr{C},f,\delta)\big\}$
- Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.
- We show correlated agreement implies mutual correlated agreement in *unique decoding*.

Implied by mutual correlated agreement

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C},\mathsf{Fold}(f,\alpha),\delta) = \big\{\mathsf{Fold}(u,\alpha): u \in \Lambda(\mathscr{C},f,\delta)\big\}$
- Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.
- We show correlated agreement implies mutual correlated agreement in *unique decoding*.

Implied by mutual correlated agreement

 $\Lambda(\mathscr{C}, f, \delta)$ is the list of codewords of $\mathscr C$ that are δ -close to f

- Taking lists and (random) combinations commute (if mutual correlated agreement holds).
- Random linear combination version: w.h.p. over r: $\Lambda(\mathscr{C}, \langle \mathbf{f}, \mathbf{r} \rangle, \delta) = \{ \langle \mathbf{u}, \mathbf{r} \rangle : \mathbf{u} \in \Lambda(\mathscr{C}^m, \mathbf{f}, \delta) \}$
- Folding version: w.h.p. over α : $\Lambda(\mathscr{C},\mathsf{Fold}(f,\alpha),\delta) = \big\{\mathsf{Fold}(u,\alpha): u \in \Lambda(\mathscr{C},f,\delta)\big\}$
- Alternatively, each term in the l.h.s can be "explained" by terms in the r.h.s.
- We show correlated agreement implies mutual correlated agreement in *unique decoding*.

Recent results show it holds up to 1.5 Johnson for general linear codes!

