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Today: we focus on  

hash-based SNARKs 

i.e. sound in the pure random oracle model.
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Large, think 224
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In this talk, we focus on the IOP!
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BCS construction: 
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x − z
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Rewrite RS codes to be 
about multilinear 

polynomials: 
 

implies that 
𝖼𝗈𝖾𝖿𝖿( ̂p) = 𝖼𝗈𝖾𝖿𝖿( ̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)



Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate 
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear 
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=
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3500 733 - 100 7.81 2.42 0.61 0.29

3680 750 130 151 9.92 3.66 1.4 0.6

λ = 100

λ = 128

WHIR[ ] denotes 
WHIR with rate 

ρ
ρ

Schemes with trusted 
setup using pairings!
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r ← 𝔽m

if w.h.p. :Δ( f*, 𝒞) ≤ δ

Agreement: then .Δ( fi, 𝒞) ≤ δ

Correlated agreement: then  
agree with  on the same “stripe”

f1, …, fm
𝒞

Mutual correlated agreement: the stripe 
in which  agree with  is the 
same on which  does: 
 
“No new correlated domains appear”

f1, …, fm 𝒞
f*
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ĥ(X) := ∑

b∈{0,1}m−1
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ĥ(X) := ∑

b∈{0,1}m−1
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Claim on : f (ŵ, σ) Output claims on :g
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i ∈ [ℓ]

Assume there is unique polynomial  that is -close to .̂p (1 − ρ′￼) g

f : L → 𝔽 g : L* → 𝔽

25

OOD subprotocol (next)
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(ŵ1, σ1), …, (ŵℓ, σℓ)
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P Vg : L* → 𝔽

g
r ← 𝔽m

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

• By SZ lemma w.h.p. 

no pair  with 


• Prover "chooses" which codeword  it 
"commits" to

̂u, ̂v ̂u(r) = ̂v(r)

̂u

Add to list of constraints to enforce!
26

By Johnson bound, this 
is small
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ĥi



WHIR 🌪

27

g

Domain shift

Batching

OOD
r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽( f, α1, …, αk)

ĥi
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Q: Can we use this to do more 
efficient arithmetizations?
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Remark: BaseFold 
implementation is not 
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Implementation

31



Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir 

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs


Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir 

• Arkworks as backend, (extension of) Goldilocks for benchmarks

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs


Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir 

• Arkworks as backend, (extension of) Goldilocks for benchmarks

• Huge thanks to Remco Bloemen!!!

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs


Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir 

• Arkworks as backend, (extension of) Goldilocks for benchmarks

• Huge thanks to Remco Bloemen!!!

• We compared to FRI, STIR and BaseFold.
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• Drop-in replacement of FRI and STIR (when used for )𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and faster prover time.

• Additionally, richer proximity tests means that:

• Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

• Additionally, bivariate PCS (and anything in between)

• Can be used in compiler for Σ-IOP
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Batching
Pick your favourite sumcheck batching

33

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching

g : L → 𝔽
Sumcheck claim on : g (ŵ*, σ*)

Many ways this can be done: we chose random linear combination.
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• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽( f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained" 
by terms in the r.h.s.

• We show correlated agreement implies mutual 
correlated agreement in unique decoding.
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Stronger than what is required 
for STIR’s soundness

Recent results show it holds up to 1.5 Johnson for 
general linear codes!


