
WHIR 🌪
Proximity testing for Reed–Solomon+

1

Giacomo FenziGal Arnon

Alessandro Chiesa Eylon Yogev

ePrint 2024/1586

https://eprint.iacr.org/2024/1586

Motivation

SNARKs
Succinct Non-interactive Arguments of Knowledge

3

SNARKs
Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of s.t. w (x, w) ∈ R

3

SNARKs
Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

3

SNARKs
Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

P V

(x, w) ∈ R

x

3

SNARKs
Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

πP V

(x, w) ∈ R

x

3

SNARKs
Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

3

SNARKs
Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

3

Today: we focus on

hash-based SNARKs

SNARKs
Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of s.t. w (x, w) ∈ R e.g. R := {(x, w) : 𝖲𝖧𝖠𝟥(w) = x}

π
0/1

P V

(x, w) ∈ R

x

f

3

Today: we focus on

hash-based SNARKs

i.e. sound in the pure random oracle model.

Hash-based SNARKs
In practice

4

Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

4

Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

4

Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

4

Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

4

Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

4

Hash-based SNARKs
In practice
Instantiating random oracle gives amazing SNARKs:

• Transparent setup (choice of hash)

• Highly efficient implementations (no public-key crypto)

• Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

4

Constructing SNARKs
[BCS16] Construction

5

Constructing SNARKs
[BCS16] Construction

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

Constructing SNARKs
[BCS16] Construction

P V

IOP

5

BCS construction:
Merkle Trees + FS

Constructing SNARKs
[BCS16] Construction

P V

IOP

P Vπ
0/1

(x, w) ∈ R

x

f

SNARK

5

BCS construction:
Merkle Trees + FS

Constructing SNARKs
[BCS16] Construction

P V

IOP

P Vπ
0/1

(x, w) ∈ R

x

f

SNARK

Proof length

Queries

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
5

BCS construction:
Merkle Trees + FS

Constructing SNARKs
[BCS16] Construction

P V

IOP

P Vπ
0/1

(x, w) ∈ R

x

f

SNARK

Proof length

Queries

𝗅 ≈ O(n)

𝗊 ≈ O(log n)

Large, think 224

Small, think ~400

5

BCS construction:
Merkle Trees + FS

Constructing SNARKs
[BCS16] Construction

P V

IOP

P Vπ
0/1

(x, w) ∈ R

x

f

SNARK

Proof length

Queries

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

5

BCS construction:
Merkle Trees + FS

Constructing SNARKs
[BCS16] Construction

P V

IOP

P Vπ
0/1

(x, w) ∈ R

x

f

SNARK

Proof length

Queries

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

5

Small, tens of KiB

BCS construction:
Merkle Trees + FS

Constructing SNARKs
[BCS16] Construction

P V

IOP

P Vπ
0/1

(x, w) ∈ R

x

f

SNARK

Proof length

Queries

𝗅 ≈ O(n)

𝗊 ≈ O(log n)
Argument size O(λ ⋅ 𝗊 ⋅ log 𝗅)

Large, think 224

Small, think ~400

In this talk, we focus on the IOP!

5

Small, tens of KiB

BCS construction:
Merkle Trees + FS

Constructing IOPs
Traditionally

6

Constructing IOPs
Traditionally

PIOP

6

Constructing IOPs
Traditionally

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

P V

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽
y ∈ 𝔽

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽
y ∈ 𝔽

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

6

̂q

̂p

Constructing IOPs
Traditionally

𝖯𝖯𝖨𝖮𝖯 𝖵𝖯𝖨𝖮𝖯

PIOP

Just like IOPs, but prover is forced
to send polynomials .

E.g. Aurora, STARK PIOP etc.

𝔽<d[X]

𝖯𝖯𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵𝖯𝖨𝖮𝖯z ∈ 𝔽
y ∈ 𝔽

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity
test to check claims on encoded oracles.

The IOP inherits asymptotics
almost entirely from the

proximity test6

IOP of Proximity to RS codes

7

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=

7

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

7

Convenience

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the

code

Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

7

Convenience

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the

code

Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }
IOPP for RS

7

Convenience

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the

code

Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS

7

Convenience

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the

code

Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS

7

Convenience

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the

code

Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS
f : L → 𝔽

7

Convenience

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the

code

Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS • If , accepts.

• If is -far from ,
accepts w.p.

f ∈ 𝖱𝖲[n, m, ρ] V

f δ 𝖱𝖲[n, m, ρ] V
ε𝖱𝖡𝖱 ≤ 2−λ

f : L → 𝔽

7

Convenience

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the

code

Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS • If , accepts.

• If is -far from ,
accepts w.p.

f ∈ 𝖱𝖲[n, m, ρ] V

f δ 𝖱𝖲[n, m, ρ] V
ε𝖱𝖡𝖱 ≤ 2−λ

Goal: minimize queries to and other
proof oracles.

f

f : L → 𝔽

7

Convenience

IOP of Proximity to RS codes

𝖱𝖲[n, m, ρ] :=
Rate of the

code

Evaluations of polynomials of degree

on a domain of size .

< 2m

L ⊆ 𝔽 n ρ :=
2m

n{ }

P V

IOPP for RS • If , accepts.

• If is -far from ,
accepts w.p.

f ∈ 𝖱𝖲[n, m, ρ] V

f δ 𝖱𝖲[n, m, ρ] V
ε𝖱𝖡𝖱 ≤ 2−λ

Round by
round,

required by
BCS

transform.

Goal: minimize queries to and other
proof oracles.

f

f : L → 𝔽

7

Convenience

Constrained RS tests

8

Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

What we are running:

Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial and a commitment to (an
encoding of it) such that

̂f
f

̂f(z) = y

Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial and a commitment to (an
encoding of it) such that

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial and a commitment to (an
encoding of it) such that

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′￼(x) :=
f(x) − y

x − z

Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial and a commitment to (an
encoding of it) such that

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′￼(x) :=
f(x) − y

x − z

Embeds the constraint
 into ̂f(z) = y f′￼

Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial and a commitment to (an
encoding of it) such that

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′￼(x) :=
f(x) − y

x − z
Reed—Solomon

proximity test for f′￼
+

Embeds the constraint
 into ̂f(z) = y f′￼

Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial and a commitment to (an
encoding of it) such that

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′￼(x) :=
f(x) − y

x − z
Reed—Solomon

proximity test for f′￼
+

Can the proximity test directly
enforce the constraint?

Embeds the constraint
 into ̂f(z) = y f′￼

Constrained RS tests

8

Reed-Solomon Proximity Test on virtual function:

f′￼(x) :=
f(x) − y

x − z

What we are running: What we really want to show:

I have a polynomial and a commitment to (an
encoding of it) such that

̂f
f

̂f(z) = y

Break it down as:

Test for constrained encoding

Quotient f′￼(x) :=
f(x) − y

x − z
Reed—Solomon

proximity test for f′￼
+

Can the proximity test directly
enforce the constraint?

Yes! IOPP for constrained codes
Embeds the constraint

 into ̂f(z) = y f′￼

Constrained RS codes

9

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint
polynomial

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint
polynomial Value of

constraint

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

{ }f ∈ 𝖱𝖲[n, m, ρ] : ∑
b∈{0,1}m

ŵ(̂f(b), b) = σ𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint
polynomial Value of

constraint

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

{ }f ∈ 𝖱𝖲[n, m, ρ] : ∑
b∈{0,1}m

ŵ(̂f(b), b) = σ𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint
polynomial Value of

constraint

𝖱𝖲[n, m, ρ] = 𝖢𝖱𝖲[n, m, ρ,0,0]

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

{ }f ∈ 𝖱𝖲[n, m, ρ] : ∑
b∈{0,1}m

ŵ(̂f(b), b) = σ𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint
polynomial Value of

constraint
If we recover

multilinear polynomial evaluation
ŵ = Z ⋅ 𝖾𝗊(X, r)

𝖱𝖲[n, m, ρ] = 𝖢𝖱𝖲[n, m, ρ,0,0]

Constrained RS codes

𝖱𝖲[n, m, ρ] := Evaluations of univariate
 on ̂f ∈ 𝔽<2m[X] L{ }

9

= Evaluations of multilinear
 on ̂f ∈ 𝔽≤1[X1, …, Xm] L{ }

{ }f ∈ 𝖱𝖲[n, m, ρ] : ∑
b∈{0,1}m

ŵ(̂f(b), b) = σ𝖢𝖱𝖲[n, m, ρ, ŵ, σ] :=

Rewrite RS codes to be
about multilinear

polynomials:

implies that
𝖼𝗈𝖾𝖿𝖿(̂p) = 𝖼𝗈𝖾𝖿𝖿(̂q)

̂p(z) = ̂q(z, z2, …, z2m−1)

Constraint
polynomial Value of

constraint
If we recover

multilinear polynomial evaluation
ŵ = Z ⋅ 𝖾𝗊(X, r)

𝖱𝖲[n, m, ρ] = 𝖢𝖱𝖲[n, m, ρ,0,0] We test proximity to !𝖢𝖱𝖲

Our results

WHIR 🌪
A constrained Reed-Solomon proximity test

11

 is a folding
parameter

k > 1

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

11

 is a folding
parameter

k > 1

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity:

11

 is a folding
parameter

k > 1

q𝖶𝖧𝖨𝖱 =

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity:

λ ≫ m

11

 is a folding
parameter

k > 1

q𝖶𝖧𝖨𝖱 =

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity:

λ ≫ m

11

 is a folding
parameter

k > 1

O (λ
k

⋅ log m) =q𝖶𝖧𝖨𝖱 =

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity:

λ ≫ m

11

k ≈ log m

 is a folding
parameter

k > 1

O (λ
k

⋅ log m) =q𝖶𝖧𝖨𝖱 =

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity:

λ ≫ m

11

k ≈ log m

 is a folding
parameter

k > 1

O(λ)O (λ
k

⋅ log m) =q𝖶𝖧𝖨𝖱 =

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity:

λ ≫ m

11

k ≈ log m

 is a folding
parameter

k > 1

Σ-IOP CRS IOPP
(WHIR 🌪) IOP+ =

O(λ)O (λ
k

⋅ log m) =q𝖶𝖧𝖨𝖱 =

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity:

λ ≫ m

11

k ≈ log m

 is a folding
parameter

k > 1

Σ-IOP CRS IOPP
(WHIR 🌪) IOP+ =

High soundness analogue of RS
PIOP compiler (w/o quotients)

O(λ)O (λ
k

⋅ log m) =q𝖶𝖧𝖨𝖱 =

WHIR 🌪
A constrained Reed-Solomon proximity test

Rounds:

Alphabet:

Proof length:

Verifier time:

O (m)

𝔽2k

O(n/2k)

O (q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Query complexity:

λ ≫ m

11

k ≈ log m

 is a folding
parameter

k > 1

Σ-IOP CRS IOPP
(WHIR 🌪) IOP+ =

High soundness analogue of RS
PIOP compiler (w/o quotients)

Implementation available at
WizardOfMenlo/whir

O(λ)O (λ
k

⋅ log m) =q𝖶𝖧𝖨𝖱 =

http://github.com/WizardOfMenlo/whir

Comparison with prior work

Queries Verifier Time Alphabet

BaseFold

FRI

STIR

WHIR

q𝖡𝖥 = O(λ ⋅ m)

q𝖥𝖱𝖨 = O (λ
k

⋅ m)
q𝖲𝖳𝖨𝖱 = O (λ

k
⋅ log m)

q𝖶𝖧𝖨𝖱 = O (λ
k

⋅ log m)

O(q𝖡𝖥)

O(q𝖥𝖱𝖨 ⋅ 2k)

O(q𝖲𝖳𝖨𝖱 ⋅ 2k+λ2 ⋅ 2k)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

𝔽2

𝔽2k

𝔽2k

𝔽2k

12

Comparison with prior work

Queries Verifier Time Alphabet

BaseFold

FRI

STIR

WHIR

q𝖡𝖥 = O(λ ⋅ m)

q𝖥𝖱𝖨 = O (λ
k

⋅ m)
q𝖲𝖳𝖨𝖱 = O (λ

k
⋅ log m)

q𝖶𝖧𝖨𝖱 = O (λ
k

⋅ log m)

O(q𝖡𝖥)

O(q𝖥𝖱𝖨 ⋅ 2k)

O(q𝖲𝖳𝖨𝖱 ⋅ 2k+λ2 ⋅ 2k)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

𝔽2

𝔽2k

𝔽2k

𝔽2k

12

When

OPTIMAL

k ≈ log m
q𝖶𝖧𝖨𝖱 = O(λ)

When

OPTIMAL

k ≈ log m
O(q𝖶𝖧𝖨𝖱 ⋅ |Σ |)

Comparison with prior work

Queries Verifier Time Alphabet

BaseFold

FRI

STIR

WHIR

q𝖡𝖥 = O(λ ⋅ m)

q𝖥𝖱𝖨 = O (λ
k

⋅ m)
q𝖲𝖳𝖨𝖱 = O (λ

k
⋅ log m)

q𝖶𝖧𝖨𝖱 = O (λ
k

⋅ log m)

O(q𝖡𝖥)

O(q𝖥𝖱𝖨 ⋅ 2k)

O(q𝖲𝖳𝖨𝖱 ⋅ 2k+λ2 ⋅ 2k)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

𝔽2

𝔽2k

𝔽2k

𝔽2k

12

When

OPTIMAL

k ≈ log m
q𝖶𝖧𝖨𝖱 = O(λ)

When

OPTIMAL

k ≈ log m
O(q𝖶𝖧𝖨𝖱 ⋅ |Σ |)

When

Improving is an
open question

k ≈ log m
Σ = 𝔽m

Comparison with FRI and STIR

13

128-bits security level.
 bits of PoW + “list-decoding” assumptions.λ = 106 + 22

Note: prover time graph is now outdated
due to new optimizations discovered

218 220 222 224 226 228 230

Degree

100

200

300

400

500

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

20

22

24

26

28

210

212

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

1

2

3

4

5

6

T
im

e
(m

s)

Verifier time

Rate of the code ρ = 1/2

FRI, STIR, WHIR

Comparison with FRI and STIR

2^24 coeffs
rate = 1/4 FRI WHIR

Size (KiB) 177 110

Verifier time 2.4ms 700μs

13

128-bits security level.
 bits of PoW + “list-decoding” assumptions.λ = 106 + 22

Note: prover time graph is now outdated
due to new optimizations discovered

218 220 222 224 226 228 230

Degree

100

200

300

400

500

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

20

22

24

26

28

210

212

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

1

2

3

4

5

6

T
im

e
(m

s)

Verifier time

Rate of the code ρ = 1/2

FRI, STIR, WHIR

Comparison with FRI and STIR

2^24 coeffs
rate = 1/4 FRI WHIR

Size (KiB) 177 110

Verifier time 2.4ms 700μs

2^30 coeffs
rate = 1/2 FRI WHIR

Size (KiB) 494 187

Verifier time 4.4ms 1.3ms

2^24 coeffs
Rate = 1/4

13

128-bits security level.
 bits of PoW + “list-decoding” assumptions.λ = 106 + 22

Note: prover time graph is now outdated
due to new optimizations discovered

218 220 222 224 226 228 230

Degree

100

200

300

400

500

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

20

22

24

26

28

210

212

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

1

2

3

4

5

6

T
im

e
(m

s)

Verifier time

Rate of the code ρ = 1/2

FRI, STIR, WHIR

Super fast verifier

14

Super fast verifier
• The WHIR verifier typically runs in a few hundred MICRO-seconds.

14

Super fast verifier
• The WHIR verifier typically runs in a few hundred MICRO-seconds.

• Other verifiers require several MILLI-seconds (and more).

14

Super fast verifier
• The WHIR verifier typically runs in a few hundred MICRO-seconds.

• Other verifiers require several MILLI-seconds (and more).

• While maintaining state-of-the-art prover time & argument size

14

Super fast verifier
• The WHIR verifier typically runs in a few hundred MICRO-seconds.

• Other verifiers require several MILLI-seconds (and more).

• While maintaining state-of-the-art prover time & argument size

14

Verifier time
(ms) Brakedown Ligero Greyhound Hyrax PST KZG WHIR[1/2] WHIR[1/16]

3500 733 - 100 7.81 2.42 0.61 0.29

3680 750 130 151 9.92 3.66 1.4 0.6

λ = 100

λ = 128

Super fast verifier
• The WHIR verifier typically runs in a few hundred MICRO-seconds.

• Other verifiers require several MILLI-seconds (and more).

• While maintaining state-of-the-art prover time & argument size

14

Verifier time
(ms) Brakedown Ligero Greyhound Hyrax PST KZG WHIR[1/2] WHIR[1/16]

3500 733 - 100 7.81 2.42 0.61 0.29

3680 750 130 151 9.92 3.66 1.4 0.6

λ = 100

λ = 128

WHIR[] denotes
WHIR with rate

ρ
ρ

Super fast verifier
• The WHIR verifier typically runs in a few hundred MICRO-seconds.

• Other verifiers require several MILLI-seconds (and more).

• While maintaining state-of-the-art prover time & argument size

14

Verifier time
(ms) Brakedown Ligero Greyhound Hyrax PST KZG WHIR[1/2] WHIR[1/16]

3500 733 - 100 7.81 2.42 0.61 0.29

3680 750 130 151 9.92 3.66 1.4 0.6

λ = 100

λ = 128

WHIR[] denotes
WHIR with rate

ρ
ρ

Schemes with trusted
setup using pairings!

Practical adoption

Practical adoption

Implementation available

@ WizardOfMenlo/whir

http://github.com/WizardOfMenlo/whir

Practical adoption

Implementation available

@ WizardOfMenlo/whir

World client-side prover

@ worldfnd/ProveKit

http://github.com/WizardOfMenlo/whir
https://github.com/worldfnd/ProveKit

Practical adoption

Implementation available

@ WizardOfMenlo/whir

World client-side prover

@ worldfnd/ProveKit

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/worldfnd/ProveKit

Practical adoption

Implementation available

@ WizardOfMenlo/whir

Solidity verifier implementation

@ privacy-scaling-explorations/sol-whir

World client-side prover

@ worldfnd/ProveKit

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit

Practical adoption

Implementation available

@ WizardOfMenlo/whir

Solidity verifier implementation

@ privacy-scaling-explorations/sol-whir

~1M gas for verification,
competitive with pre-quantum

alternativesWorld client-side prover

@ worldfnd/ProveKit

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit

Practical adoption

Implementation available

@ WizardOfMenlo/whir

Ethereum pq transition

Solidity verifier implementation

@ privacy-scaling-explorations/sol-whir

~1M gas for verification,
competitive with pre-quantum

alternativesWorld client-side prover

@ worldfnd/ProveKit

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit

Practical adoption

Implementation available

@ WizardOfMenlo/whir

Ethereum pq transition

Solidity verifier implementation

@ privacy-scaling-explorations/sol-whir

~1M gas for verification,
competitive with pre-quantum

alternatives

WHIR here

World client-side prover

@ worldfnd/ProveKit

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit

Practical adoption

Implementation available

@ WizardOfMenlo/whir

Ethereum pq transition

Solidity verifier implementation

@ privacy-scaling-explorations/sol-whir

~1M gas for verification,
competitive with pre-quantum

alternatives

WHIR here

World client-side prover

@ worldfnd/ProveKit

Plonky3 implementation

@ tcoratger/whir-p3

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit
https://github.com/tcoratger/whir-p3

Practical adoption

Implementation available

@ WizardOfMenlo/whir

Ethereum pq transition

Solidity verifier implementation

@ privacy-scaling-explorations/sol-whir

~1M gas for verification,
competitive with pre-quantum

alternatives

WHIR here

World client-side prover

@ worldfnd/ProveKit

Plonky3 implementation

@ tcoratger/whir-p3

Hash-based SNARK

based on WHIR

@ TomWambsgans/Whirlaway

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit
https://github.com/tcoratger/whir-p3
https://github.com/TomWambsgans/Whirlaway

Practical adoption

Implementation available

@ WizardOfMenlo/whir

Ethereum pq transition

Solidity verifier implementation

@ privacy-scaling-explorations/sol-whir

~1M gas for verification,
competitive with pre-quantum

alternatives

WHIR here

World client-side prover

@ worldfnd/ProveKit

Plonky3 implementation

@ tcoratger/whir-p3

Hash-based SNARK

based on WHIR

@ TomWambsgans/Whirlaway

with CUDA backend!

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit
https://github.com/tcoratger/whir-p3
https://github.com/TomWambsgans/Whirlaway

Practical adoption

Implementation available

@ WizardOfMenlo/whir

Ethereum pq transition

Solidity verifier implementation

@ privacy-scaling-explorations/sol-whir

~1M gas for verification,
competitive with pre-quantum

alternatives

WHIR here

World client-side prover

@ worldfnd/ProveKit

Plonky3 implementation

@ tcoratger/whir-p3

Hash-based SNARK

based on WHIR

@ TomWambsgans/Whirlaway

Formal verification effort

with CUDA backend!

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit
https://github.com/tcoratger/whir-p3
https://github.com/TomWambsgans/Whirlaway

Conclusion

Summary

Summary

WHIR 🌪: a new IOPP for CRS codes.

Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity:

Verifier complexity:

O (λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity:

Verifier complexity:

O (λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art prover time, argument size and hash complexity

Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity:

Verifier complexity:

O (λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art prover time, argument size and hash complexity
• Fastest verification of any PCS (including trusted setups!)

Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity:

Verifier complexity:

O (λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art prover time, argument size and hash complexity
• Fastest verification of any PCS (including trusted setups!)
• Rapid practical adoption

Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity:

Verifier complexity:

O (λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art prover time, argument size and hash complexity
• Fastest verification of any PCS (including trusted setups!)
• Rapid practical adoption
• Enables high-soundness compilation for Σ-IOP

Σ-IOP CRS IOPP
(WHIR 🌪) IOP+ =

Summary

WHIR 🌪: a new IOPP for CRS codes.

Query complexity:

Verifier complexity:

O (λ
k

⋅ log m)

O(q𝖶𝖧𝖨𝖱 ⋅ (2k + m))

• State-of-the-art prover time, argument size and hash complexity
• Fastest verification of any PCS (including trusted setups!)
• Rapid practical adoption
• Enables high-soundness compilation for Σ-IOP

Σ-IOP CRS IOPP
(WHIR 🌪) IOP+ = Open question:

Can argument size be improved at the
same prover cost?

Extra slides

Techniques

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

Unchanged!(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V

Unchanged!(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

Unchanged!(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

𝖥𝗈𝗅𝖽(f, α)

Unchanged!(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

A virtual function 𝖥𝗈𝗅𝖽(f, α)

Unchanged!(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for :

Can extend to every that is a power of two.

k = 1

𝖥𝗈𝗅𝖽(f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

A virtual function 𝖥𝗈𝗅𝖽(f, α)

Unchanged!(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for :

Can extend to every that is a power of two.

k = 1

𝖥𝗈𝗅𝖽(f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽(f, α)

Unchanged!(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for :

Can extend to every that is a power of two.

k = 1

𝖥𝗈𝗅𝖽(f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽(f, α)

Unchanged!

Local: compute at any
point with queries to .

𝖥𝗈𝗅𝖽(f, α)(z)
z ∈ L2k 2k f(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for :

Can extend to every that is a power of two.

k = 1

𝖥𝗈𝗅𝖽(f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽(f, α)

Unchanged!

Local: compute at any
point with queries to .

𝖥𝗈𝗅𝖽(f, α)(z)
z ∈ L2k 2k f

Distance preservation: if is -far from
, then w.h.p. remains

also -far from

f δ
𝖱𝖲[n, m, ρ] 𝖥𝗈𝗅𝖽(f, α)

δ 𝖱𝖲[n/2k, m − k, ρ]

δ ∈ (0,1 − ρ)

(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for :

Can extend to every that is a power of two.

k = 1

𝖥𝗈𝗅𝖽(f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽(f, α)

Unchanged!

Local: compute at any
point with queries to .

𝖥𝗈𝗅𝖽(f, α)(z)
z ∈ L2k 2k f

Distance preservation: if is -far from
, then w.h.p. remains

also -far from

f δ
𝖱𝖲[n, m, ρ] 𝖥𝗈𝗅𝖽(f, α)

δ 𝖱𝖲[n/2k, m − k, ρ]

δ ∈ (0,1 − ρ)

Unless w.p. , the

fraction of “corrupted” entries does
not decrease.

≈
𝗉𝗈𝗅𝗒(n,2m)

|𝔽 |

(Think)k = 4

Reduce to 𝖱𝖲[n, m, ρ] 𝖱𝖲[n/2k, m − k, ρ]
FRI & STIR Folding

20

f : L → 𝔽

P V α ← 𝔽α

How? Inspiration from FFTs, for :

Can extend to every that is a power of two.

k = 1

𝖥𝗈𝗅𝖽(f, α) := f𝗈𝖽𝖽 + α ⋅ f𝖾𝗏𝖾𝗇

k

Properties:

A virtual function 𝖥𝗈𝗅𝖽(f, α)

Unchanged!

Local: compute at any
point with queries to .

𝖥𝗈𝗅𝖽(f, α)(z)
z ∈ L2k 2k f

Distance preservation: if is -far from
, then w.h.p. remains

also -far from

f δ
𝖱𝖲[n, m, ρ] 𝖥𝗈𝗅𝖽(f, α)

δ 𝖱𝖲[n/2k, m − k, ρ]

δ ∈ (0,1 − ρ)

Unless w.p. , the

fraction of “corrupted” entries does
not decrease.

≈
𝗉𝗈𝗅𝗒(n,2m)

|𝔽 |

(Think)k = 4

Test a random linear combination
Mutual correlated agreement

21

Test a random linear combination
Mutual correlated agreement

21

f1

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ(f*, 𝒞) ≤ δ

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ(f*, 𝒞) ≤ δ

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ(f*, 𝒞) ≤ δ

Agreement: then .Δ(fi, 𝒞) ≤ δ

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ(f*, 𝒞) ≤ δ

Agreement: then .Δ(fi, 𝒞) ≤ δ

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ(f*, 𝒞) ≤ δ

Agreement: then .Δ(fi, 𝒞) ≤ δ

Correlated agreement: then
agree with on the same “stripe”

f1, …, fm
𝒞

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ(f*, 𝒞) ≤ δ

Agreement: then .Δ(fi, 𝒞) ≤ δ

Correlated agreement: then
agree with on the same “stripe”

f1, …, fm
𝒞

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ(f*, 𝒞) ≤ δ

Agreement: then .Δ(fi, 𝒞) ≤ δ

Correlated agreement: then
agree with on the same “stripe”

f1, …, fm
𝒞

Test a random linear combination
Mutual correlated agreement

21

f1

…

fm

⟹

f* := ∑
i

ri fi

r ← 𝔽m

if w.h.p. :Δ(f*, 𝒞) ≤ δ

Agreement: then .Δ(fi, 𝒞) ≤ δ

Correlated agreement: then
agree with on the same “stripe”

f1, …, fm
𝒞

Mutual correlated agreement: the stripe
in which agree with is the
same on which does: 
 
“No new correlated domains appear”

f1, …, fm 𝒞
f*

Implied by mutual correlated agreement
Folding and lists commute

22

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽

⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required
for STIR’s soundness

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required
for STIR’s soundness

w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

Lemma

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required
for STIR’s soundness

w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

Lemma

w.h.p. over :r
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

Lemma

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required
for STIR’s soundness

w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

Lemma

w.h.p. over :r
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

Lemma

Alternatively, each term in the l.h.s can be
“explained" by terms in the r.h.s.

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required
for STIR’s soundness

w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

Lemma

w.h.p. over :r
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

Lemma

Alternatively, each term in the l.h.s can be
“explained" by terms in the r.h.s.

We show correlated agreement implies mutual
correlated agreement in unique decoding.

Implied by mutual correlated agreement
Folding and lists commute

22

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required
for STIR’s soundness

w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

Lemma

w.h.p. over :r
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

Lemma

Alternatively, each term in the l.h.s can be
“explained" by terms in the r.h.s.

We show correlated agreement implies mutual
correlated agreement in unique decoding.

Recent results show that mutual correlated agreement
holds up to 1.5 Johnson for general linear codes!

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P V

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P V

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽(f, α)

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Completeness: then:∑
b

ŵ(f(b), b) = σ

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽(f, α)

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Completeness: then:∑
b

ŵ(f(b), b) = σ

• , h(0) + h(1) = σ

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽(f, α)

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Completeness: then:∑
b

ŵ(f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ(f(α, b), α, b) = ĥ(α)

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽(f, α)

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Completeness: then:∑
b

ŵ(f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ(f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽(f, α) = ̂f(α, ⋅)

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

𝖥𝗈𝗅𝖽(f, α)

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Completeness: then:∑
b

ŵ(f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ(f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽(f, α) = ̂f(α, ⋅)

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

Soundness: by mutual correlated agreement,
w.h.p. if then Δ(f, 𝖢𝖱𝖲[n, m, ρ, ŵ, σ]) > δ
Δ(𝖥𝗈𝗅𝖽(f, α), 𝖢𝖱𝖲[n/2,m − 1,ρ, ŵα, ĥ(α)]) > δ

𝖥𝗈𝗅𝖽(f, α)

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Completeness: then:∑
b

ŵ(f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ(f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽(f, α) = ̂f(α, ⋅)

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

Soundness: by mutual correlated agreement,
w.h.p. if then Δ(f, 𝖢𝖱𝖲[n, m, ρ, ŵ, σ]) > δ
Δ(𝖥𝗈𝗅𝖽(f, α), 𝖢𝖱𝖲[n/2,m − 1,ρ, ŵα, ĥ(α)]) > δ

ŵα(Z, X) = ŵ(Z, α, X)

𝖥𝗈𝗅𝖽(f, α)

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Completeness: then:∑
b

ŵ(f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ(f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽(f, α) = ̂f(α, ⋅)

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

Soundness: by mutual correlated agreement,
w.h.p. if then Δ(f, 𝖢𝖱𝖲[n, m, ρ, ŵ, σ]) > δ
Δ(𝖥𝗈𝗅𝖽(f, α), 𝖢𝖱𝖲[n/2,m − 1,ρ, ŵα, ĥ(α)]) > δ

Unchanged!ŵα(Z, X) = ŵ(Z, α, X)

𝖥𝗈𝗅𝖽(f, α)

Reduce to 𝖢𝖱𝖲[n, m, ρ, ŵ, σ] 𝖢𝖱𝖲[n/2,m − 1, ρ, ŵα, σα]

WHIR Folding

23

f : L → 𝔽

P Vα

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

Completeness: then:∑
b

ŵ(f(b), b) = σ

• , h(0) + h(1) = σ

• ∑
b

ŵ(f(α, b), α, b) = ĥ(α)

• ̂𝖥𝗈𝗅𝖽(f, α) = ̂f(α, ⋅)

ĥ
ĥ(X) := ∑

b∈{0,1}m−1

ŵ(̂f(X, b), X, b)

h(0) + h(1) =? σ

Soundness: by mutual correlated agreement,
w.h.p. if then Δ(f, 𝖢𝖱𝖲[n, m, ρ, ŵ, σ]) > δ
Δ(𝖥𝗈𝗅𝖽(f, α), 𝖢𝖱𝖲[n/2,m − 1,ρ, ŵα, ĥ(α)]) > δ

Unchanged!ŵα(Z, X) = ŵ(Z, α, X)

In the full protocol, we
fold by 2-by-2 times.
Can also fold by at a

time (nice for first round!)

k
2k

𝖥𝗈𝗅𝖽(f, α)

WHIR iteration

24

WHIR iteration

24

P V

f : L → 𝔽

WHIR iteration

24

P V

f : L → 𝔽

α1, …, αk ← 𝔽αi

ĥi

WHIR iteration

24

P V

f : L → 𝔽

α1, …, αk ← 𝔽αi

ĥi

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

g

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

g is over a domain of
size

g
n
2

≥
n
2k

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be
same polynomial

 is over a domain of
size

g
n
2

≥
n
2k

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be
same polynomial

 is over a domain of
size

g
n
2

≥
n
2k

Domain shift

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be
same polynomial

 is over a domain of
size

g
n
2

≥
n
2k

Makes queries to t f

Domain shift

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be
same polynomial

 is over a domain of
size

g
n
2

≥
n
2k

Makes queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be
same polynomial

 is over a domain of
size

g
n
2

≥
n
2k

Makes queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Batching

(w*, σ*)

Folding times by k 2

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be
same polynomial

 is over a domain of
size

g
n
2

≥
n
2k

Makes queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Batching

(w*, σ*)

Folding times by k 2

Recurse g ∈ 𝖢𝖱𝖲 [n
2

, m − k, ρ′￼:= 21−k ⋅ ρ, ŵ*, σ*] As in STIR, rate
improves!

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be
same polynomial

 is over a domain of
size

g
n
2

≥
n
2k

Makes queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Batching

(w*, σ*)

Folding times by k 2

Recurse g ∈ 𝖢𝖱𝖲 [n
2

, m − k, ρ′￼:= 21−k ⋅ ρ, ŵ*, σ*] As in STIR, rate
improves!

Similar structure to STIR!
Multilinear structure

forbids using quotients:
we need new ideas to

domain shift!

WHIR iteration

24

P V

f : L → 𝔽

𝖥𝗈𝗅𝖽(f, α1, …, αk)

α1, …, αk ← 𝔽αi

ĥi

gClaimed to be
same polynomial

 is over a domain of
size

g
n
2

≥
n
2k

Makes queries to t f

(ŵ1, σ1), …, (ŵℓ, σℓ)Returns a list of claims on g

Domain shift

Batching

(w*, σ*)

Folding times by k 2

Recurse g ∈ 𝖢𝖱𝖲 [n
2

, m − k, ρ′￼:= 21−k ⋅ ρ, ŵ*, σ*] As in STIR, rate
improves!

Similar structure to STIR!
Multilinear structure

forbids using quotients:
we need new ideas to

domain shift!

Not shown

Domain shifting

25

Domain shifting
f : L → 𝔽

25

Claim on : f (ŵ, σ)

Domain shifting
f : L → 𝔽 g : L* → 𝔽

25

Claim on : f (ŵ, σ)

Domain shifting
f : L → 𝔽 g : L* → 𝔽

25

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Domain shifting

 and claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If is -far from , w.h.p. is -far from for at

least one

f (1 − ρ) 𝖢𝖱𝖲[|L | , m, ρ, ŵ, σ] g (1 − ρ′￼) 𝖢𝖱𝖲[|L* | , m, ρ′￼, ŵi, σi]

i ∈ [ℓ]

f : L → 𝔽 g : L* → 𝔽

25

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Domain shifting

 and claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If is -far from , w.h.p. is -far from for at

least one

f (1 − ρ) 𝖢𝖱𝖲[|L | , m, ρ, ŵ, σ] g (1 − ρ′￼) 𝖢𝖱𝖲[|L* | , m, ρ′￼, ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial that is -close to .̂p (1 − ρ′￼) g

f : L → 𝔽 g : L* → 𝔽

25

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Domain shifting

 and claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If is -far from , w.h.p. is -far from for at

least one

f (1 − ρ) 𝖢𝖱𝖲[|L | , m, ρ, ŵ, σ] g (1 − ρ′￼) 𝖢𝖱𝖲[|L* | , m, ρ′￼, ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial that is -close to .̂p (1 − ρ′￼) g

Then, if satisfies the -constraint must be be -far from it.̂p (ŵ, σ) f (1 − ρ)

f : L → 𝔽 g : L* → 𝔽

25

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Domain shifting

 and claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If is -far from , w.h.p. is -far from for at

least one

f (1 − ρ) 𝖢𝖱𝖲[|L | , m, ρ, ŵ, σ] g (1 − ρ′￼) 𝖢𝖱𝖲[|L* | , m, ρ′￼, ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial that is -close to .̂p (1 − ρ′￼) g

Then, if satisfies the -constraint must be be -far from it.̂p (ŵ, σ) f (1 − ρ)

f : L → 𝔽 g : L* → 𝔽
y

z

25

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Domain shifting

 and claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If is -far from , w.h.p. is -far from for at

least one

f (1 − ρ) 𝖢𝖱𝖲[|L | , m, ρ, ŵ, σ] g (1 − ρ′￼) 𝖢𝖱𝖲[|L* | , m, ρ′￼, ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial that is -close to .̂p (1 − ρ′￼) g

Then, if satisfies the -constraint must be be -far from it.̂p (ŵ, σ) f (1 − ρ)
New constraints: (i) original constraint (ii) for some random point . (ŵ, σ) ̂p(z) = y z

f : L → 𝔽 g : L* → 𝔽
y

z

25

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Just an evaluation constraint which we
know how to handle!

Domain shifting

 and claimed to be evaluations of same polynomial. Want to output claims on .f g g

Goal: If is -far from , w.h.p. is -far from for at

least one

f (1 − ρ) 𝖢𝖱𝖲[|L | , m, ρ, ŵ, σ] g (1 − ρ′￼) 𝖢𝖱𝖲[|L* | , m, ρ′￼, ŵi, σi]

i ∈ [ℓ]

Assume there is unique polynomial that is -close to .̂p (1 − ρ′￼) g

Then, if satisfies the -constraint must be be -far from it.̂p (ŵ, σ) f (1 − ρ)
New constraints: (i) original constraint (ii) for some random point . (ŵ, σ) ̂p(z) = y z

So, except with probability , is -far from .ρ g (1 − ρ′￼) 𝖢𝖱𝖲[|L* | , m, ρ′￼, (ŵ1, σ1), …, (ŵℓ, σℓ)]

f : L → 𝔽 g : L* → 𝔽
y

z

25

OOD subprotocol (next)

Claim on : f (ŵ, σ) Output claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Just an evaluation constraint which we
know how to handle!

Can amplify to ρt

Out Of Domain
Subprotocol to force unique

26

Out Of Domain
Subprotocol to force unique

P V

26

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

26

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g

26

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

26

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

26

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

26

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

26

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
δ*

Λ(𝒞, g, δ*)

26

By Johnson bound, this
is small

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
r ← 𝔽m

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

26

By Johnson bound, this
is small

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
r ← 𝔽m

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

• By SZ lemma w.h.p.

no pair with

• Prover "chooses" which codeword it
"commits" to

̂u, ̂v ̂u(r) = ̂v(r)

̂u

26

By Johnson bound, this
is small

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
r ← 𝔽m

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

• By SZ lemma w.h.p.

no pair with

• Prover "chooses" which codeword it
"commits" to

̂u, ̂v ̂u(r) = ̂v(r)

̂u

26

By Johnson bound, this
is small

Out Of Domain
Subprotocol to force unique

P Vg : L* → 𝔽

g
r ← 𝔽m

β ∈ 𝔽 δ*

Λ(𝒞, g, δ*)

• By SZ lemma w.h.p.

no pair with

• Prover "chooses" which codeword it
"commits" to

̂u, ̂v ̂u(r) = ̂v(r)

̂u

Add to list of constraints to enforce!
26

By Johnson bound, this
is small

WHIR 🌪

27

WHIR 🌪

27

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽(f, α1, …, αk)

ĥi

WHIR 🌪

27

g

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽(f, α1, …, αk)

ĥi

WHIR 🌪

27

g
OOD

r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽(f, α1, …, αk)

ĥi

WHIR 🌪

27

g

Domain shift

OOD
r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽(f, α1, …, αk)

ĥi

WHIR 🌪

27

g

Domain shift

Batching

OOD
r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽(f, α1, …, αk)

ĥi

WHIR 🌪

27

g

Domain shift

Recurse g ∈ 𝖢𝖱𝖲 [n
2

, m − k, ρ′￼:= 21−k ⋅ ρ, ŵ*, σ*]

Batching

OOD
r
β

f : L → 𝔽

P V α1, …, αk ← 𝔽αi

𝖥𝗈𝗅𝖽(f, α1, …, αk)

ĥi

Application: Σ-IOP
High soundness compilation using constrained codes

28

Application: Σ-IOP
High soundness compilation using constrained codes

Σ-IOP

28

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

28

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

28

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

28

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)
28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)
28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)
28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)
28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)
28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)

P V

28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V

28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵Σ𝖨𝖮𝖯ŵ

28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵Σ𝖨𝖮𝖯ŵ
y ∈ 𝔽

28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵Σ𝖨𝖮𝖯ŵ
y ∈ 𝔽

Constrained (batched) Reed—Solomon proximity
test on f

28

Generalizes univariate and
multilinear PIOPs at no extra cost!

̂q

̂p

Application: Σ-IOP
High soundness compilation using constrained codes

𝖯Σ𝖨𝖮𝖯 𝖵Σ𝖨𝖮𝖯

Σ-IOP

Verifier can ask sumcheck queries

i.e. send and receive ŵ ∑
b

ŵ(̂f(b), b)

𝖯Σ𝖨𝖮𝖯

̂p

P V
f : L → 𝔽

𝖵Σ𝖨𝖮𝖯ŵ
y ∈ 𝔽

Constrained (batched) Reed—Solomon proximity
test on f

28

Generalizes univariate and
multilinear PIOPs at no extra cost!

Q: Can we use this to do more
efficient arithmetizations?

Extra slides

Comparison with BaseFold

30

BaseFold: ⤫

WHIR-UD: ▲

WHIR-CB: ▲

Comparison with BaseFold

30

BaseFold: ⤫

WHIR-UD: ▲

WHIR-CB: ▲

Remark: BaseFold
implementation is not

fully optimised

Implementation

31

Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir

• Arkworks as backend, (extension of) Goldilocks for benchmarks

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir

• Arkworks as backend, (extension of) Goldilocks for benchmarks

• Huge thanks to Remco Bloemen!!!

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation
• Rust 🦀 implementation, available at WizardOfMenlo/whir

• Arkworks as backend, (extension of) Goldilocks for benchmarks

• Huge thanks to Remco Bloemen!!!

• We compared to FRI, STIR and BaseFold.

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Comparison to STIR and FRI

32

Comparison to STIR and FRI O (λ
k

⋅ m)
O (λ

k
⋅ log m)

FRI:

STIR & WHIR

32

Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for)𝖢𝖱𝖲[𝔽, m, ρ,0,0]

O (λ
k

⋅ m)
O (λ

k
⋅ log m)

FRI:

STIR & WHIR

32

Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for)𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and faster prover time.

O (λ
k

⋅ m)
O (λ

k
⋅ log m)

FRI:

STIR & WHIR

32

Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for)𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and faster prover time.

• Additionally, richer proximity tests means that:

O (λ
k

⋅ m)
O (λ

k
⋅ log m)

FRI:

STIR & WHIR

32

Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for)𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and faster prover time.

• Additionally, richer proximity tests means that:

• Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

O (λ
k

⋅ m)
O (λ

k
⋅ log m)

FRI:

STIR & WHIR

32

Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for)𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and faster prover time.

• Additionally, richer proximity tests means that:

• Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

• Additionally, bivariate PCS (and anything in between)

O (λ
k

⋅ m)
O (λ

k
⋅ log m)

FRI:

STIR & WHIR

32

Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for)𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and faster prover time.

• Additionally, richer proximity tests means that:

• Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

• Additionally, bivariate PCS (and anything in between)

• Can be used in compiler for Σ-IOP

O (λ
k

⋅ m)
O (λ

k
⋅ log m)

FRI:

STIR & WHIR

32

Comparison to STIR and FRI

• Drop-in replacement of FRI and STIR (when used for)𝖢𝖱𝖲[𝔽, m, ρ,0,0]

• Same benefits as STIR over FRI, and faster prover time.

• Additionally, richer proximity tests means that:

• Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

• Additionally, bivariate PCS (and anything in between)

• Can be used in compiler for Σ-IOP

• Further, super-fast verification (next)

O (λ
k

⋅ m)
O (λ

k
⋅ log m)

FRI:

STIR & WHIR

32

Batching
Pick your favourite sumcheck batching

33

Batching
Pick your favourite sumcheck batching

33

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching
Pick your favourite sumcheck batching

33

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching

Batching
Pick your favourite sumcheck batching

33

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching

g : L → 𝔽
Sumcheck claim on : g (ŵ*, σ*)

Batching
Pick your favourite sumcheck batching

33

g : L → 𝔽 Sumcheck claims on :g
(ŵ1, σ1), …, (ŵℓ, σℓ)

Batching

g : L → 𝔽
Sumcheck claim on : g (ŵ*, σ*)

Many ways this can be done: we chose random linear combination.

Review: FRI iteration

34

Review: FRI iteration

34

f : L → 𝔽

P V

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

f′￼

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

f′￼

Claimed to be
same polynomial

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

f′￼

Claimed to be
same polynomial

Check that
 at

 points in
𝖥𝗈𝗅𝖽(f, α)(z) = f′￼(z)

t L2k

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

f′￼

Claimed to be
same polynomial

Check that
 at

 points in
𝖥𝗈𝗅𝖽(f, α)(z) = f′￼(z)

t L2k

Recurse on f′￼∈ 𝖱𝖲 [n
2k

, m − k, ρ]

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

f′￼

Claimed to be
same polynomial

Check that
 at

 points in
𝖥𝗈𝗅𝖽(f, α)(z) = f′￼(z)

t L2k

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

Recurse on f′￼∈ 𝖱𝖲 [n
2k

, m − k, ρ]

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

f′￼

Claimed to be
same polynomial

Check that
 at

 points in
𝖥𝗈𝗅𝖽(f, α)(z) = f′￼(z)

t L2k

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

Recurse on f′￼∈ 𝖱𝖲 [n
2k

, m − k, ρ]

Suppose that .

If is -far from ,

 must be -far from

f′￼ ∈ 𝖱𝖲[n/2k, m − k, ρ]

f δ 𝖱𝖲[n, m, ρ]

𝖥𝗈𝗅𝖽(f, α) δ
𝖱𝖲[n/2k, m − k, ρ]

Soundness:

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

f′￼

Claimed to be
same polynomial

Check that
 at

 points in
𝖥𝗈𝗅𝖽(f, α)(z) = f′￼(z)

t L2k

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

Recurse on f′￼∈ 𝖱𝖲 [n
2k

, m − k, ρ]

Then, and differ on
a -fraction.

Soundness error is

f′￼ 𝖥𝗈𝗅𝖽(f, α)
δ

(1 − δ)t

Suppose that .

If is -far from ,

 must be -far from

f′￼ ∈ 𝖱𝖲[n/2k, m − k, ρ]

f δ 𝖱𝖲[n, m, ρ]

𝖥𝗈𝗅𝖽(f, α) δ
𝖱𝖲[n/2k, m − k, ρ]

Soundness:

𝖥𝗈𝗅𝖽(f, α)

Review: FRI iteration

34

f : L → 𝔽

P V α ← 𝔽α

f′￼

Claimed to be
same polynomial

Check that
 at

 points in
𝖥𝗈𝗅𝖽(f, α)(z) = f′￼(z)

t L2k

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

Recurse on f′￼∈ 𝖱𝖲 [n
2k

, m − k, ρ]

Then, and differ on
a -fraction.

Soundness error is

f′￼ 𝖥𝗈𝗅𝖽(f, α)
δ

(1 − δ)t

Suppose that .

If is -far from ,

 must be -far from

f′￼ ∈ 𝖱𝖲[n/2k, m − k, ρ]

f δ 𝖱𝖲[n, m, ρ]

𝖥𝗈𝗅𝖽(f, α) δ
𝖱𝖲[n/2k, m − k, ρ]

Soundness:

To get soundness error :

set and

ε𝖱𝖡𝖱 ≤ 2−λ

δ := 1 − ρ t :=
λ

−log ρ

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained"
by terms in the r.h.s.

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained"
by terms in the r.h.s.

• We show correlated agreement implies mutual
correlated agreement in unique decoding.

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained"
by terms in the r.h.s.

• We show correlated agreement implies mutual
correlated agreement in unique decoding.

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required
for STIR’s soundness

Implied by mutual correlated agreement
List-RLC lemma and List-Fold

35

f1, …, fm : L → 𝔽 Λ(𝒞m, ⋅ ,δ)

Λ(𝒞, ⋅ ,δ)

⟨ ⋅ , r⟩ ⟨ ⋅ , r⟩

• Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

• Random linear combination version: w.h.p. over :r
Λ(𝒞, ⟨f, r⟩, δ) = {⟨u, r⟩ : u ∈ Λ(𝒞m, f, δ)}

• Folding version: w.h.p. over :α
Λ(𝒞, 𝖥𝗈𝗅𝖽(f, α), δ) = {𝖥𝗈𝗅𝖽(u, α) : u ∈ Λ(𝒞, f, δ)}

• Alternatively, each term in the l.h.s can be “explained"
by terms in the r.h.s.

• We show correlated agreement implies mutual
correlated agreement in unique decoding.

 is the list of
codewords of that are -close

to

Λ(𝒞, f, δ)
𝒞 δ

f

Stronger than what is required
for STIR’s soundness

Recent results show it holds up to 1.5 Johnson for
general linear codes!

