WHIR !

Proximity testing for Reed-Solomon+

Gal Arnon Giacomo Fenzi
A ePrint 2024/1586
e |=P|'L E'— 'E
Alessandro Chiesa Eylon Yogev \?

EI "k

N

=PrL

https://eprint.iacr.org/2024/1586

Motivation

SNARKSs

Succinct Non-interactive Arguments of Knowledge

SNARKSs

Succinct Non-interactive Arguments of Knowledge

Want to show “knowledge” of w s.t. (x,w) € R

SNARKSs

Succinct Non-interactive Arguments of Knowledge

Want to ShOW “knOwledgeu Of w s.t. (x, W) = R e.g. R := {(x,w) : SHA3(w) = x)

SNARKSs

Succinct Non-interactive Arguments of Knowledge

Want to ShOW “knOwledgeu Of w s.t. (x, W) = R e.g. R := {(x,w) : SHA3(w) = x)

SNARKSs

Succinct Non-interactive Arguments of Knowledge

Want to ShOW “knOwledgeu Of w s.t. (x, W) = R e.g. R := {(x,w) : SHA3(w) = x)

SNARKSs

Succinct Non-interactive Arguments of Knowledge

Want to ShOW “knOwledgeu Of w s.t. (x, W) = R e.g. R := {(x,w) : SHA3(w) = x)

SNARKSs

Succinct Non-interactive Arguments of Knowledge

Want to ShOW “knOwledgeu Of w s.t. (x, W) = R e.g. R := {(x,w) : SHA3(w) = x)

Today: we focus on

hash-based SNARKs

SNARKSs

Succinct Non-interactive Arguments of Knowledge

Want to ShOW “knOwledgeu Of w s.t. (x, W) = R e.g. R := {(x,w) : SHA3(w) = x)

Today: we focus on

hash-based SNARKs

l.e. sound In the pure random oracle model.

Hash-based SNARKs

In practice

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:

 Transparent setup (choice of hash)

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:
 Transparent setup (choice of hash)

* Highly efficient implementations (no public-key crypto)

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:
 Transparent setup (choice of hash)
* Highly efficient implementations (no public-key crypto)

* Plausibly post-quantum secure (secure in QROM)

Hash-based SNARKs

In practice

Instantiating random oracle gives amazing SNARKSs:

 Transparent setup (choice of hash)

* Highly efficient implementations (no public-key crypto)
* Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

riash-based SNARKs Lol L. @

In practice _

Instantiating random oracle gives amazing SNARKS: oo | (cem|

* Transparent setup (choice of hash) - " (| /
'/\ O . /QE(. 0

* Highly efficient implementations (no public-key crypto)
* Plausibly post-quantum secure (secure in QROM)

Used to secure billions of dollars in real-world blockchains:

€» STARKWARE S pol Ilrreducible
polygon
4 zkSync dYdY/

PR > Succinct

m Matter l
NN, ZERO And many more...

4

Constructing SNARKSs

IBCS16] Construction

Constructing SNARKSs

IBCS16] Construction
g OP A

Constructing SNARKSs

IBCS16] Construction

g OP A

Constructing SNARKSs

IBCS16] Construction
g OP A

N -

Constructing SNARKSs

IBCS16] Construction
g OP A

N -

Constructing SNARKSs

IBCS16] Construction
g OP A

N -
|_>

- B

Constructing SNARKSs

IBCS16] Construction

g OP A

rlbrrrl

Constructing SNARKSs

IBCS16] Construction

g OP A

rlbrrrl

Constructing SNARKSs

IBCS16] Construction
g OP A

H
TLl'ITT

Constructing SNARKSs

IBCS16] Construction
g OP A

H
TLl'ITT

Constructing SNARKSs

IBCS16] Construction
g OP A
N -

-
-

_)

Constructing SNARKSs

IBCS16] Construction
g OP A
N -

-
-

_)

Constructing SNARKSs

IBCS16] Construction

-

IOP

M

~

-
-

J

BCS construction:
Merkle Trees + FS

>

Constructing SNARKSs

IBCS16] Construction
g OP A
N -

BCS construction:

I_’ Merkle Trees + FS
\'
- . *
|_>

_ J

Constructing SNARKSs

IBCS16] Construction

g OP

M

~

-
-

J

Proof length | & O(n)

Queries g ~ O(log n)

BCS construction:
Merkle Trees + FS

>

Constructing SNARKSs

IBCS16] Construction
g OP A
N -

BCS construction:

I_’ Merkle Trees + FS
\'
- . *
|_>

N y
Proof length | & O(n)
Queries q ~ O(log n)

Constructing SNARKSs

IBCS16] Constru

ction

g OP

M

~

N

-0
Vv
-

|_>

J

BCS construction:
Merkle Trees + FS

>

Proof length | ~ O(n)
Queries q ~ O(log n)

log 1)

Argument size O(4 - q -

Constructing SNARKSs

IBCS16] Construction

g OP

M

~

-
-

J

BCS construction:
Merkle Trees + FS

>

Proof length | ~ O(n)
Queries q ~ O(log n)

Argument size O(A - q - log 1)

Small, tens of KiB

In this talk, we focus on the IOP!

Constructing SNARKSs

IBCS16] Construction
g OP A
N -

BCS construction:

I_’ Merkle Trees + FS
\'
- . *
|_>

N y
Proof length | & O(n)
Queries q ~ O(log n)

Argument size O(A - q - log 1)

Small, tens of KiB

Constructing IOPs

Traditionally

Constructing IOPs

Traditionally
-

PIOP A

Constructing IOPs

Traditionally
g PIOP A
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
-

PIOP A

_ J

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
g PIOP A
p
— -
@
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
g PIOP A
p
— -
@
q
— -
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
g PIOP A
p
— -
- R
q
— -
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally
g PIOP A
p
B &
PPIOP) -~ VPIOP
q
— -
_ Y,

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Constructing IOPs

Traditionally

PIOP A

N -

P
.

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A

p
N -

|_>

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A

p
o -
- *

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

p
o -
- *

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

P p
- »
- *

_)

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

fiL—->TF

- p» = -
- *

_)

p

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

fiL—->TF

p
E > 4| |_>
ZE I
| * <

_ J

p

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as

COnStrUCting |JOPs “redundant” encoding. Use a proximity

Traditionally test to check claims on encoded oracles.

PIOP A p ‘ v

P p
.:I_’ > 4| |_,
zeF
- * <
y € I

_ J

Just like IOPs, but prover is forced
to send polynomials F<¢[X]. k) K)

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity

Constructing IOPs

Traditionally test to check claims on encoded oracles.
g PIOP h b ‘ v
p fiL—TF
o - . — -
A VPIOP >
y € I
- J Reed-Solomon Proximity Test on virtual function:
|) = J(x) =y
Just like IOPs, but prover is forced Jx) = Y — 2

to send polynomials F<¢[X].

E.g. Aurora, STARK PIOP etc.

Strategy: use Reed-Solomon codes as
“redundant” encoding. Use a proximity

Constructing IOPs

Traditionally test to check claims on encoded oracles.
g PIOP h b ‘ v
p fiL—TF
o - . — -
A VPIOP >
y € I
- J Reed-Solomon Proximity Test on virtual function:
) = Jx) —y
Just like IOPs, but prover is forced Jx) = X — 7

to send polynomials F<¢[X].

The IOP inherits asymptotics

E.g. Aurora, STARK PIOP etc. almost entirely from the

6 proximity test

|IOP of Proximity to RS codes

|IOP of Proximity to RS codes

RS|n, m, p| .=

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

|JOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the
code

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the
code

IOPP for RS

|JOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the
code

IOPP for RS

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degrezem< 2

n

RS|n, m, p| .=

on adomain L C [Fof size n. p :=

Rate of the
code

IOPP for RS

ﬂ{[ﬂjjjj}

-

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degree < 2™

RSIn,m, p] - onadomain L C Fofsizen. p .= —
Rate of the &
code
IOPP for RS
f:L—->TF
[ITTTTIT]

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degree < 2™

. S
RS[n, m,p] ' on adomain L C [Fof size n. p := —
Rate of the n
code
IOPP for RS : |ff e RS[n, m, p], V accepits.
fiL—F » If fis o-far from RS[n, m, p], V
[TTTTTTT] accepts w.p. €., < 27

{[Djjjj}
-

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degree < 2™

RS|n,m, p| := 2™
Sln,m, p] on adomain L C Fofsizen. p := —
Rate of the "
code
IOPP for RS » If f € RS[n,m, p], V accepts.
f:L—>F e If fis o-far from RS[n, m, p], V
EEEEEEEE accepts w.p. €., < 27
\'}
| IIIIITTF .
« Goal: minimize queries to f and other

<

|IOP of Proximity to RS codes Convenience

Evaluations of polynomials of degree < 2™

RS|n, m, p] = _ 2"
(1, m, p] on adomain L C Fofsizen. p := —
Rate of the &
code
'OPP for RS » If f € RS[n,m, p], V accepts. —
round,
f:L—>TF e If fis o-far from RS[n,m,p|, V REMIECEN
) BCS
D]]]]]:l . accepts W.P. 8RBR S 2 transform.
\"
1Tk
« Goal: minimize queries to f and other

SEERENNEN proof oracles
<

Constrained RS tests

Constrained RS tests

What we are running:

Reed-Solomon Proximity Test on virtual function:

Jx) —y

S () =

X —Z

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding

Jx) —y

X —Z

Quotient f'(x) :=

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

Va\

(x) :=
T f@) =y

X —Z

Break it down as:

Test for constrained encoding

Quotient f(x) := 12—

X —Z

Embeds the constraint

fz) =yintof

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding

Jx) —y

Reed —
Quotient f/(x) := eed—Solomon

X—7 proximity test for f’

Embeds the constraint

f(z) = yintof’

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding
Can the proximity test directly

f(x) —y Reed—Solomon enforce the constraint?
Quotient f'(x) := 4

X —Z

proximity test for f

Embeds the constraint

fz) =yintof

Constrained RS tests

What we are running: What we really want to show:

Reed-Solomon Proximity Test on virtual function: | have a polynomial f and a commitment to (an

Jx) —y

encoding of it) f such that

(x) := A
T f@) =y

X —Z

Break it down as:

Test for constrained encoding
Can the proximity test directly

f(x) —y Reed—Solomon enforce the constraint?
Quotient f'(x) := 4

X —Z

proximity test for f

Yes! |IOPP for constrained codes

Embeds the constraint

fz) =yintof

Constrained RS codes

Constrained RS codes

RS[1. m. p] = { vaalu_atzi:ns of univariate }
felF~[X]onL

Constrained RS codes

RS|n, m, p| .= {

Evaluations of univariate

fel

—<2"[X]on L

}

Rewrite RS codes to be
about multilinear
polynomials:

coeff(p) = coeff(g)
iImplies that

p(2) =4z, 2% ..., 22")

Constrained RS codes
Rewrite RS co-d-es to be
{ Evaluations of univariate } ab:c:’;rr:lourlr’::!:\::ar

f" = [:<2m[X] on I coeff(p) = coeff(g)

iImplies that

e
Evaluations of multilinear P =4z .. 2")
FeFs'X,...X,JonL

RS|n, m, p] :

Constrained RS codes

RS|n, m, p] :

CRS[n,m, p,w, o] :

{
{

Evaluations of univariate }
feF?[X]onL

Evaluations of multilinear
feFEX,,....X,]onL

}

Rewrite RS codes to be
about multilinear
polynomials:

coeff(p) = coeff(g)
iImplies that

p(2) =4z, 2% ..., 22")

Constrained RS codes

RS|n, m, p] :

Constraint
polynomial

CRS[n,m, p,w, o] :

{
{

Evaluations of univariate }
feF?[X]onL

Evaluations of multilinear
feFEX,,....X,]onL

}

Rewrite RS codes to be
about multilinear
polynomials:

coeff(p) = coeff(g)
iImplies that

p(2) =4z, 2% ..., 22")

Constrained RS codes

RS|n, m, p] :

{
{

Value of
constraint

Constraint
polynomial

CRS[n,m, p,w, o] :=

Evaluations of univariate }
feF?[X]onL

Evaluations of multilinear
feFEX,,....X,]onL

}

Rewrite RS codes to be
about multilinear
polynomials:

coeff(p) = coeff(g)
iImplies that

p(2) =4z, 2% ..., 22")

Constrained RS codes
Rewrite RS co-d-es to be
{ Evaluations of univariate } ab:c:’;rr:lourlr’::!:\::ar

f" = [:<2m[X] on I coeff(p) = coeff(g)

iImplies that

e
Evaluations of multilinear P =4z .. 2")
FeFs'X,...X,JonL

RS[n, m, p] :

Constraint

polynomial Value of

constraint

CRS[n,m,p,w, o] := { feRS[n,m,p] :) W(f(b),b)=a}

be{0,1}™

Constrained RS codes
Rewrite RS co_d_es to be
{ Evaluations of univariate } ab:c:;:our::::ar

J’C‘ = [:<2m[X] on [coeff(p) = coeff(g)

iImplies that

e
Evaluations of multilinear P =4z .. 2")
FeFs'X,...X,JonL

RS|n, m, p] :

Constrai_nt Value of
polynomial constraint
CRS[n, m, p, W, o] 1= { fE RS|n, m,P] : Z w(f(b),b) = o }
be{0,1}™

RS[n, m, p] = CRS[n, m, p,0,0]

Constrained RS codes
Rewrite RS co_d_es to be
{ Evaluations of univariate } ab:c:;:our::::ar

J’C‘ = [:<2m[X] on [coeff(p) = coeff(g)

iImplies that

e
Evaluations of multilinear P =4z .. 2")
FeFs'X,...X,JonL

RS|n, m, p] :

Constraint

: Value of If w =7 - eq(X, r) we recover
polynomial coi:teraci)nt multilinear polynomial evaluation
CRS[n,m, p,w, o] := { feRS[n,m,p] :), »b.b=o0 }
be{0,1}"

RS[n, m, p] = CRS[n, m, p,0,0]

Constrained RS codes
Rewrite RS co_d_es to be
{ Evaluations of univariate } ab:c:;:our::::ar

J’C‘ = [:<2m[X] on [coeff(p) = coeff(g)

iImplies that

e
Evaluations of multilinear P =4z .. 2")
FeFs'X,...X,JonL

RS|n, m, p] :

Constraint

: Value of If w =7 - eq(X, r) we recover
polynomial coi:teraci)nt multilinear polynomial evaluation
CRS[n,m, p,w, o] := { feRS[n,m,p] :), »b.b=o0 }
be{0,1}"

RS[n, m, p] = CRS[n, m, p,0,0] We test proximity to CRS!

Our results

k > 1 is a folding

WHIR

A constrained Reed-Solomon proximity test

4)

11

k > 1 is a folding

WHIR

A constrained Reed-Solomon proximity test

4)

Rounds: O (m)

Alphabet: L-zk
Proof length: O(n/2%)

Verifier time: O (g, - (2 + m))

. _J

11

WHIR *J

A constrained Reed-Solomon proximity test

k > 1 is a folding

parameter

s

&

Rounds: O (m)

Alphabet: L-zk
Proof length: O(n/2%)

Verifier time: O (g, - (2 + m))

Query complexity:

QWHIR

11

WHIR

A constrained Reed-Solomon proximity test

k > 1 is a folding

parameter

s

&

Rounds: O (m)

Alphabet: L-zk
Proof length: O(n/2%)

Verifier time: O (g, - (2 + m))

Query complexity:

QWHIR

A>m

11

k > 1 is a folding

WHIR ‘? parameter
A constrained Reed-Solomon proximity test

Rounds: O (m)

>k Query complexity:
Alphabet: I
A
Proof Iength: 0(”/2k) Qwhir = O (Z) log m) —
Verifier time: O (g, - (2 + m)) >

- J

11

k > 1 is a folding

WHIR ‘? parameter
A constrained Reed-Solomon proximity test
, \
Rounds: O (m) k ~ log m
ok Query complexity:
Alphabet: I
A
Proof length: O(n/2%) Gz = O (Z - log m) =
Verifier time: O (G - (2 + m)) 2> m

. _J

11

k > 1 is a folding

WHIR ‘? parameter
A constrained Reed-Solomon proximity test
, \
Rounds: O (m) k ~ log m
ok Query complexity:
Alphabet: I
A
Proof length: O(n/2%) Gz = O (Z - log m) = 0(4)
Verifier time: O (G - (2 + m)) 2> m

. _J

11

k > 1 is a folding

WHIR ‘xi parameter
A constrained Reed-Solomon proximity test
, \
Rounds: O (m) | k ~ log m
ok Query complexity:
Alphabet: I
A
Proof length: O(n/2%) Gz = O (Z - log m) = 0(4)
Verifier time: O (G - (2 + m)) 2> m
S-IOP + CRS IOPP — IOP

(WHIR)

11

k > 1 is a folding

WHIR

A constrained Reed-Solomon proximity test

(\

Rounds: O (m) e~ logm
N Query complexity:
Alphabet: I
A
Proof length: O(n/Zk) Gwie = O (Z - log m) = 0(4)
Verifier time: O (G - (2 + m)) 2> m
5-I0P + ?Vsﬁl:f 5:; = IOP

High soundness analogue of RS
PIOP compiler (w/o quotients) 11

k > 1 is a folding

WH I R i i parameter

A constrained Reed-Solomon proximity test

i \
Rounds: O (m) e~ logm
N Query complexity:
Alphabet: I
A
Proof length: O(n/Zk) Gwie = O (Z - log m) = 0(4)
Verifier time: O (G - (2 + m)) 2> m

_

J
CRS IOPP

Implementation available at

High soundness analogue of RS : :
PIOP compiler (w/o quotients) » WizardOfMenlo/whir

http://github.com/WizardOfMenlo/whir

Comparison with prior work

Queries Verifier Time Alphabet
BaseFold U = O(A - m) O(QBF) F
A k
FRI Aert = 0 (; ' m) O(QFRI ' 2k) F
A ki 12 A~k Ok
STIR g = O P log m O(Gsrs * 25+ A7 - 27) F
A ')
WHIR G = O (; - logm O(Gyre + (25 4+ m)) 2

12

Comparison with prior work

Queries Verifier Time Alphabet
BaseFold 9o = O(A - m) O(q,.) F
A . i
FRI Aert = 0 ; L O(QFRI - 2"%) F
A ki 12 A~k Ok
STIR g = O P log m O(Gsrs * 25+ A7 - 27) F
p) y
WHIR G = O Z - logm O(Gyre + (25 4+ m)) F
When k =~ logm When k =~ logm
Gwrir = O(4) O(Gwhir * [Z])
OPTIMAL OPTIMAL

Comparison with prior work

Queries Verifier Time Alphabet
BaseFold 9o = O(A - m) O(q,.) F
A . i
FRI Arr1 = 0 ; tm O(QFRI - 2"%) F
A ki 12~k 2k
STIR g = O P log m O(Gsrs * 25+ A7 - 27) F
& O 2K 2t
WHIR qdwhir — 0, ; ‘ lOg m (QWHIR ' (T m)) -
When k =~ logm When k =~ logm When k ~ log m
qwhir = O(4) O(qwhir * 1 Z1) X =[F"
Improving is an
OPTIMAL OPTIMAL open question

Comparison with FRI and STIR

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

Y

KiB

N—"

Size

Time (s)

Argument size

500
400 -
300 -
o ‘h-___q‘r-—-—H‘r———-1‘r--I’.=====a.F====;.u
100 = T T T T T T
218 220 222 224 226 228 230
Degree
Prover time
LN I I I I I I
218 220 222 224 226 228 230
Degree
13

Hashes

Note: prover time graph is now outdated
due to new optimizations discovered

Rate of the code p = 1/2

Verifier hash complexity

10000 -
8000 -
6000 -
4000 -
2000 - MKH
T T T T T T T
218 220 222 224 226 228 230
Degree
Verifier time
6 -
SN
B,
O
= 3 -
= o
]. = W
LN I I I I I I
218 220 222 224 226 228 230
Degree

FRI, STIR, WHIR

Comparison with FRI and STIR

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

2124 coeffs
rate = 1/4 FRI WHIR
Size (KiB) 177 110
Verifier time 2.4ms /00ps

Argument size

218 220 222 224 226 228 230
Degree
Prover time
LN I I I I I I
218 220 222 224 226 228 230

Degree

Note: prover time graph is now outdated
due to new optimizations discovered

Rate of the code p = 1/2

Verifier hash complexity

10000 -+
3000 -

6000 -

4000 -

Hashes

| | | | | | |
218 220 222 224 226 228 230

Degree

Verifier time

6 -
w0]
E 4
<D
= 3 -
S
1_W
LN 1 1 1 1 1 1

218 220 222 224 226 228 230

Degree

13 FRI, STIR, WHIR

Comparison with FRI and STIR

128-bits security level.

A = 106 + 22 bits of PoW + “list-decoding” assumptions.

Size (KiB) 177 110
Verifier time 2.4ms /00ps
“ater2 | WHIR

Size (KiB) 494 187
Verifier time 4.4ms 1.3ms

Argument size

| | | | | | |
218 220 222 224 226 228 230

Degree

Prover time

LN I I I I I I
218 220 222 224 226 228 230

Degree

Hashes

Note: prover time graph is now outdated
due to new optimizations discovered

Rate of the code p = 1/2

Verifier hash complexity

10000 -+
3000 -

6000 -

4000 -

| | | | | | |
218 220 222 224 226 228 230

Degree

Verifier time

1] ok

LN I I I I I I
218 220 222 224 226 228 230

Degree

13 FRI, STIR, WHIR

Super fast verifier

Super fast verifier

 The WHIR verifier typically runs in a few hundred MICRO-seconds.

14

Super fast verifier

 The WHIR verifier typically runs in a few hundred MICRO-seconds.

* Other verifiers require several MILLI-seconds (and more).

14

Super fast verifier

 The WHIR verifier typically runs in a few hundred MICRO-seconds.

* Other verifiers require several MILLI-seconds (and more).

 While maintaining state-of-the-art prover time & argument size

14

Super fast verifier

 The WHIR verifier typically runs in a few hundred MICRO-seconds.

* Other verifiers require several MILLI-seconds (and more).

 While maintaining state-of-the-art prover time & argument size

Verifier time

(ms) Brakedown Ligero Greyhound Hyrax PST KZG WHIR[1/2] | WHIR[1/16]
A =100 3500 733 100 7.81 2.42 0.61 0.29
A =128 3680 750 130 151 0.92 3.66 1.4 0.6

14

Super fast verifier

 The WHIR verifier typically runs in a few hundred MICRO-seconds.

* Other verifiers require several MILLI-seconds (and more).

 While maintaining state-of-the-art prover time & argument size

Verifier time

(ms) Brakedown Ligero Greyhound Hyrax PST KZG WHIR[1/2] | WHIR[1/16]
A =100 3500 733 - 100 7.81 2.42 0.61 0.29
A =128 3680 750 130 151 0.92 3.66 1.4 0.6

14

WHIR][p] denotes
WHIR with rate p

Super fast verifier

 The WHIR verifier typically runs in a few hundred MICRO-seconds.

* Other verifiers require several MILLI-seconds (and more).

 While maintaining state-of-the-art prover time & argument size

Verifier time

Schemes with trusted

setup using pairings!

(ms) Brakedown Ligero Greyhound Hyrax PST KZG WHIR[1/2] | WHIR[1/16]
A =100 3500 733 - 100 7.81 2.42 0.61 0.29
A =128 3680 750 130 151 0.92 3.66 1.4 0.6

14

WHIR][p] denotes
WHIR with rate p

Practical adoption

Practical adoption

% 2]

Implementation available
@ WizardOfMenlo/whir

http://github.com/WizardOfMenlo/whir

Practical adoption

% 2]

Implementation available
@ WizardOfMenlo/whir

World client-side prover
@ worldfnd/ProveKit

http://github.com/WizardOfMenlo/whir
https://github.com/worldfnd/ProveKit

Practical adoption

% 2]

Implementation available
@ WizardOfMenlo/whir

World client-side prover
@ worldfnd/ProveKit

To be deployed to
26M+ users!

http://github.com/WizardOfMenlo/whir
https://github.com/worldfnd/ProveKit

Practical adoption

% 2]

Implementation available
@ WizardOfMenlo/whir

Pierre

On the gas efficiency of the WHIR polynomial commitment
scheme

Joint post with @WizardOfMenlo

TLDR; We developed an open-sourced and MIT license d prototype EVM verifier for the
WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables

|] []
and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter
_—
I I V setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious post-

@ worldfnd/ProveKit e
Solidity verifier implementation

To be deployed to @ privacy-scaling-explorations/sol-whir
26M+ users! ' '

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit

Practical adoption

% 2]

Implementation available
@ WizardOfMenlo/whir

Pierre

On the gas efficiency of the WHIR polynomial commitment
scheme

Joint post with @WizardOfMenlo ~ 1 M g aS fo r Ve rifi Cati 0 n y

TLDR; We developed an open-sourced and MIT license d prototype EVM verifier for the

. . WHIR .polynomial. comm'ifme.nt scheme (PCS). For a m'ultivariate polynom.ial of 22 variables C O m p et i t i Ve W it h p re = q u a nt u m
WO rl d C I I e n 't — S I d e p r O V e r and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter
setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious post- g
alternatives

@ worldfnd/ProveKit e
Solidity verifier implementation

To be deployed to @ privacy-scaling-explorations/sol-whir
26M+ users! ' '

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit

Ethereum pq transition

Practical adoption

accelerationism

W
zkVM formal #»

R

Winternitz-XMSS
optimisations

Implementation available
@ WizardOfMenlo/whir

Pierre 14" Dec 2024

On the gas efficiency of the WHIR polynomial commitment
scheme

Joint post with @WizardOfMenlo ~ 1 M g as fo r Ve rifi Cati 0 n y

TLDR; We developed an open-sourced and MIT licensed 19 prototype EVM verifier for the

. . WHIR 18 .polynomial. comm'ifme.nt scheme (PCS). For a m'ultivariate polynomial of 22 variables C o m p e‘t i t ive W it h p r'e — q u a nt u m
WO rl d C I I e n 't — S I d e p r O V e r and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter
setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious post- -
alternatives

@ worldfnd/ProveKit e o
Solidity verifier implementation

To be deployed to @ privacy-scaling-explorations/sol-whir
26M+ users! ' '

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit

Ethereum pq transition

Practical adoption

accelerationism

W
zkVM formal »

R

Winternitz-XMSS
optimisations

Poseidon2
(Poseidon variant)

WHIR here

Implementation available
@ WizardOfMenlo/whir

Pierre 14" Dec 2024

On the gas efficiency of the WHIR polynomial commitment
scheme

Joint post with @WizardOfMenlo ~ 1 M g aS fo r Ve rifi Cati 0 n y

TLDR; We developed an open-sourced and MIT licensed 19 prototype EVM verifier for the

. . WHIR 18 .polynomial. comm'ifme.nt scheme (PCS). For a m'ultivariate polynomial of 22 variables C o m p e‘t i t ive W it h p r'e — q u a nt u m
WO rl d C I I e n 't — S I d e p r O V e r and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter
setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious post- -
alternatives

@ worldfnd/ProveKit e o
Solidity verifier implementation

To be deployed to @ privacy-scaling-explorations/sol-whir
26M+ users! ' '

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit

powerep Y ¢J2 polygon

Practical adoption Plonky3 _ereu P e

accelerationism

Plonky3 implementation
@ tcoratger/whir-p3 <—

Poseidon2
(Poseidon variant)

WHIR here

Implementation available
@ WizardOfMenlo/whir

Pierre 14" Dec 2024

On the gas efficiency of the WHIR polynomial commitment
scheme

Joint post with @WizardOfMenlo ~1 M gas for Verification,

TLDR; We developed an open-sourced and MIT licensed 19 prototype EVM verifier for the

. . WHIR 18 .polynomial. comrn'ifme.nt scheme (PCS). For a m'ultivariate polynom.ial of 22 variables C o m p e‘t i t ive W it h p r'e — q u a nt u m
WO rl d C I I e n 't — S I d e p r O V e r and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter
setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious post- -
alternatives

@ worldfnd/ProveKit e
Solidity verifier implementation

To be deployed to @ privacy-scaling-explorations/sol-whir
26M+ users! ' '

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit
https://github.com/tcoratger/whir-p3

Ethereum pq transition
ky3

pq cryptography

Practical adoption Plon

powerep Y ¢J2 polygon

accelerationism

Plonky3 implementation
@ tcoratger/whir-p3 «—— [S0 %

\
Poseidon2 Wlntemnz-based WHIR mnnrna recusuon
(Poseidon variant) (small pgSNARKs) zkVM
. WHIR here
Whirlaway
A hash-based SNARK with lightweight proofs, powered by the Polynomial Commitment Scheme.

Specifications

- - e Arithmetization: AIR (Algebraic Intermediate Representation) with preprocessed columns
I m p I e m e ntat I O n aval I a b I e e Security level: 128 bits (without conjectures), presumably post-quantum (hash-based protocol)
. . e Ingredients: WHIR + Ring-Switching + Sumcheck + Univariate Skip
@ WizardOfMenlo/whir
Hash-based SNARK

based on WHIR
@ TomWambsgans/Whirlaway

Pierre 14" Dec 2024

On the gas efficiency of the WHIR polynomial commitment

scheme

Joint post with @WizardOfMenlo ~ 1 M g aS fo r- Ve rifi Cati 0 n

TLDR; We developed an open-sourced and MIT licensed 19 prototype EVM verifier for the . n - ?

WHIR 18 polynomial commitment scheme (PCS). For a multivariate po Iy omial of 22 variables Competltlve Wlth pre_q uantum

World client-side prover T T alternatives
@ worldfnd/ProveKit .- e .
Solidity verifier |mplementat|on

To be deployed to @ privacy-scaling-explorations/sol-whir
26M+ users! ' '

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit
https://github.com/tcoratger/whir-p3
https://github.com/TomWambsgans/Whirlaway

Ethereum pq transition
ky3

Pq cryptography

Practical adoption Plon

powerep Y ¢J2 polygon

accelerationism

Plonky3 implementation
@ tcoratger/whir-p3 «—— 7 S0

. e > . §
, WHIR here
Whirlaway
A hash-based SNARK with lightweight proofs, powered by the Whir Polynomial Commitment Scheme.

R

Specifications

- - e Arithmetization: AIR (Algebraic Intermediate Representation) with preprocessed columns
I m p I e m e ntat I O n aval I a b I e e Security level: 128 bits (without conjectures), presumably post-quantum (hash-based protocol)
. . e Ingredients: WHIR + Ring-Switching + Sumcheck + Univariate Skip
@ WizardOfMenlo/whir
Hash-based SNARK ik GUBA backend!

based on WHIR
@ TomWambsgans/Whirlaway

Pierre 14° Dec 2024

On the gas efficiency of the WHIR polynomial commitment
scheme

Joint post with @WizardOfMenlo ~ 1 M g aS fo r Ve rifi Cati 0 n y

TLDR; We developed an open-sourced and MIT licensed 19 prototype EVM verifier for the

. . WHIR 18 .polynomial. comm'ifme.nt scheme (PCS). For a m'ultivariate polynomial of 22 variables C o m p et i t i Ve W it h p re — q u a nt u m
WO rl d C I I e n 't — S I d e p r O V e r and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter
setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious post- g
alternatives

@ worldfnd/ProveKit e
Solidity verifier implementation

To be deployed to @ privacy-scaling-explorations/sol-whir
26M+ users! ' '

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit
https://github.com/tcoratger/whir-p3
https://github.com/TomWambsgans/Whirlaway

Practical adoption

% 2]

Implementation available
@ WizardOfMenlo/whir

World client-side prover
@ worldfnd/ProveKit

To be deployed to
26M+ users!

Plonky3

powerep Y ¢J2 polygon

Plonky3 implementation
@ tcoratger/whir-p3 <—

Whirlaway

A hash-based SNARK with lightweight proofs, powered by the Polynomial Commitment Scheme.

Specifications

e Arithmetization: AIR (Algebraic Intermediate Representation) with preprocessed columns
e Security level: 128 bits (without conjectures), presumably post-quantum (hash-based protocol)
¢ Ingredients: WHIR + Ring-Switching + Sumcheck + Univariate Skip

Hash-based SNARK it GUDA backend!
based on WHIR
@ TomWambsgans/Whirlaway

Pierre 14° Dec 2024

On the gas efficiency of the WHIR polynomial commitment
scheme

Joint post with @WizardOfMenlo

~1M gas for verification,
competitive with pre-quantum
alternatives

TLDR; We developed an open-sourced and MIT licensed 19 prototype EVM verifier for the
WHIR 18 polynomial commitment scheme (PCS). For a multivariate polynomial of 22 variables
and 100 bits of security, verification costs are 1.9m gas. With a more aggressive parameter
setting, we reach even lower costs, below the 1.5m gas mark. This makes WHIR a serious post-
quantum PCS candidate for teams using or looking to leverage STARKSs in production.

Solidity verifier implementation
@ privacy-scaling-explorations/sol-whir

Ethereum pq transition

Pq cryptography

accelerationism

R

Winternitz-XMSS
optimisations

Winternitz-based

WHIR here

Formal Verification

Progress 10%
-

Mathematically prove the security properties of cryptographic
proof systems like FRI, STIR, and WHIR using the Lean 4
framework, creating structured blueprints that map out
theorem dependencies to verify that the zkEVM
implementations are correct.

Key Milestones

® zkEVM formal verification project initiation
Lean 4 framework implementation

FRI proof system specification
STIR proof system specification

WHIR proof system specification

Formal verification effort

http://github.com/WizardOfMenlo/whir
https://github.com/privacy-scaling-explorations/sol-whir
https://github.com/worldfnd/ProveKit
https://github.com/tcoratger/whir-p3
https://github.com/TomWambsgans/Whirlaway

Conclusion

Query complexity:

0, / 1
—_— O m
r g

Verifier complexity:

O(QWHIR) (2k + m))

EI- -E

e
Aoz

IEI

Summary

&

WHIR " ': a new IOPP for CRS codes.

_J

e
» State-of-the-art prover time, argument size and hash complexity E

Query complexity:

o (4
_.Om
r g

Verifier complexity:

O(QWHIR ' (zk + m))

Summary

&

WHIR " ': a new IOPP for CRS codes.

_J

=
« State-of-the-art prover time, argument size and hash complexity E

* Fastest verification of any PCS (including trusted setups!)

Query complexity:

o (4
_.Om
r g

Verifier complexity:

O(QWHIR ' (zk + m))

Summary

&

WHIR " ': a new IOPP for CRS codes.

_J

* Fastest verification of any PCS (including trusted setups!)

* Rapid practical adoption

Query complexity:

o (4
_.Om
r g

Verifier complexity:

O(QWHIR) (zk T m))

Summary

WHIR " ': a new IOPP for CRS codes.

_J

* Fastest verification of any PCS (including trusted setups!)
* Rapid practical adoption
* Enables high-soundness compilation for Z-10P

CRS IOPP

>OP + wHIR)

|IOP

Query complexity:

o (4
_.Om
r g

Verifier complexity:

O(QWHIR) (zk T m))

Su m m a ry Query complexity:

- 0, <% - log m)
WHIR " ': a new IOPP for CRS codes. | Verifiercomplexity

O(QWHIR) (zk T m))

_J

* Fastest verification of any PCS (including trusted setups!)
* Rapid practical adoption

* Enables high-soundness compilation for Z-10P

CRS IOPP IOP Open question:
(WHIR) Can argument size be improved at the
same prover cost?

S-IOP 4+

Extra slides

Techniques

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

Unchanged!

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

f’ L N |]: Unchanged!
[T

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

f’ L N |]: Unchanged!
[T

- R——

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl
f: L — |]: Unchanged!

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

WL Fold(f,)

20

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl
f: L — |]: Unchanged!

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

A virtual function r.’ FOId(]C, a)

20

FRI & STIR Folding

Reduce RS|[#n, m, p] to RS|n/ 2K m —k, i]
(Think k = 4) fL—> -

Hl § NN
- R,

_>.IZIZIZI' Fold(f, a)

20

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl
f: L — [F Unchanged!

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

A virtual function r.' FOId(]C, a)

How? Inspiration from FFTs, for k = 1:

Fold(f,a) =f ,+a-f, .
Can extend to every k that is a power of two.

20

Properties:

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl
f: L — [F Unchanged!

A virtual function

How? Inspiration from FFTs, for k = 1:

Fold(f.a) :=f ,+a-f..

Can extend to every k that is a power of two.

20

Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

Unchanged!

f:L—->TF

A virtual function

How? Inspiration from FFTs, for k = 1:

Fold(f.a) :=f ,+a-f..

Can extend to every k that is a power of two.

20

Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

Distance preservation: if f is o-far from
RS[n, m, p], then w.h.p. Fold(f, &) remains
also o-far from RS[n/2%, m — k, p]

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

Unchanged!

f:L—->TF

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

A virtual function

How? Inspiration from FFTs, for k = 1:

Fold(f.a) :=f ,+a-f..

Can extend to every k that is a power of two.

20

Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

Distance preservation: if f is o-far from
RS[n, m, p], then w.h.p. Fold(f, &) remains
also o-far from RS[n/2%, m — k, p]

oly(n,2™
poly(n), the
| [F]

Unless w.p. ~

fraction of “corrupted” entries does
not decrease.

FRI & STIR Folding

Reduce RS|n, m, p] to RS[n/ 2K m —k, Pl

f:L—->TF

Q
Q
Q
g
Q
Q
Q
Q
Q
Q
Q

A virtual function

How? Inspiration from FFTs, for k = 1:

Fold(f.a) :=f ,+a-f..

Can extend to every k that is a power of two.

Unchanged!

20

Properties:

Local: compute Fold(f, @)(z) at any
point z € L* with 2% queries to f

Distance preservation: if f is o-far from
RS[n, m, p], then w.h.p. Fold(f, &) remains
also o-far from RS[n/2%, m — k, p]

oly(n,2™
poly(n), the
| [F]

Unless w.p. ~

fraction of “corrupted” entries does
not decrease.

Proximity Gaps for Reed—Solomon Codes

Eli Ben-Sasson* Dan Carmon* Yuval Ishaif Swastik Kopparty *
Shubhangi Saraf®

July 3, 2021

Mutual correlated agreement

Test a random linear combination

Mutual correlated agreement

Test a random linear combination

Mutual correlated agreement

Test a random linear combination

Mutual correlated agreement

Test a random linear combination

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,, €¢) < o.

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,,) < 0.

r « "

fi i fri= ik

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,,) < 0.

Correlated agreement: then f,, ..., f,,
r « [agree with 6 on the same “stripe”

fi i fri= ik

21

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,, €¢) < o.

Correlated agreement: then f,, ..., f,,
r « " agree with € on the same “stripe”

fi i fri= ik

21

Mutual correlated agreement

Test a random linear combination
if w.h.p. A(f*,6) < o:

Agreement: then A(f,, €¢) < o.

Correlated agreement: then f,, ..., f,,
r « " agree with € on the same “stripe”

fi i fri= ik

21

Mutual correlated agreement

Test a random linear combination

r « "

J* = Z’”ifi

21

if w.h.p. A(f*,6) < o:
Agreement: then A(f,, €¢) < o.

Correlated agreement: then f;, ..., /..
agree with € on the same “stripe”

Mutual correlated agreement: the stripe
in which fi, ..., f,, agree with & is the
same on which f* does:

“No new correlated domains appear”

Folding and lists commute MOS0 o e ot o

codewords of & that are o-close

Implied by mutual correlated agreement to f

22

Folding and lists commute

Implied by mutual correlated agreement

22

A(G, 1, 0) is the list of

codewords of & that are o-close

to f

Folding and lists commute MOS0 o e ot o

codewords of & that are o-close

Implied by mutual correlated agreement to f

22

Folding and lists commute (O S0 o e o o

codewords of & that are o-close

Implied by mutual correlated agreement to f

A(E, - ,0)

22

Folding and lists commute (O S0 o e o o

codewords of & that are o-close

Implied by mutual correlated agreement to f

A(E, - ,0)

22

Folding and lists commute (O S0 o e o o

codewords of & that are o-close

Implied by mutual correlated agreement to f

i L=F A 5

A(E, - ,0)

22

Folding and lists commute (O S0 o e o o

codewords of € that are o-close
Implied by mutual correlated agreement to f

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

22

Folding and lists commute (O S0 o e o o

codewords of & that are o-close

Implied by mutual correlated agreement to f

i L=F A 5

A(E, - ,0)

22

Folding and lists commute MOS0 o e ot o

codewords of & that are o-close

Implied by mutual correlated agreement to f

fi,...,fm: LH J_ A(%m9.95)

A(E, - ,0)

Stronger than what is required
for STIR’s soundness

22

Folding and lists commute MOS0 o e ot o

codewords of & that are o-close

Implied by mutual correlated agreement to f
)
[Lemma J
w.h.p. over r:
Jvoooosdms L= B A @m L 5) A, (£,1),8) = {(u,r) 1 u € A", 1,5))
|
< 2 r) < o r> l

@

A(E, - ,0)

Stronger than what is required
for STIR’s soundness

22

Folding and lists commute (O S0 o e o o

codewords of & that are o-close

Implied by mutual correlated agreement to f
N
(Lemma J
w.h.p. over r:
JiooosSms L= F A(G™, - ,5) A@B, (f,r),5) = {(u,r) : u e A(E".1,5)}
|
[Lemma j
< " I’) < B l’) l w.h.p. over r;
A(®, Fold(f, @), 5) = {Fold(u, @) : u € A(€,f,5)}
@

A(E, - ,0)

Stronger than what is required
for STIR’s soundness

22

Folding and lists commute (O S0 o e o o

codewords of & that are o-close

Implied by mutual correlated agreement to f
)
(Lemma J
w.h.p. over r:
Jvootmt L= B A m L 5) A, (£,1),8) = {(u,r) : u € A(B"1,5))
@

)

[Lemma J

< " I’) < B l’) l w.h.p. over r;
A(®, Fold(f, @), 5) = {Fold(u, @) : u € A(€,f,5)}

A(G, - ,0) Alternatively, each term in the I.h.s can be
“explained” by terms in the r.h.s.

Stronger than what is required
for STIR’s soundness

22

Folding and lists commute (O S0 o e o o

codewords of & that are o-close

Implied by mutual correlated agreement to f
)
(Lemma J
w.h.p. over r:
Jvootmt L= B A m L 5) A, (£,1),8) = {(u,r) : u € A(B"1,5))
@

)

[Lemma J

< " I’) < B l’) l w.h.p. over r;
A(®, Fold(f, @), 5) = {Fold(u, @) : u € A(€,f,5)}

A(G, - ,0) Alternatively, each term in the I.h.s can be
“explained” by terms in the r.h.s.

Stronger than what is required | |
for STIR’s soundness We show correlated agreement implies mutual

correlated agreement in unique decoding.

22

Folding and lists commute MOS0 o e ot o

codewords of € that are o-close

Implied by mutual correlated agreement to f
)
[Lemma J
w.h.p. over r:
Jvootmt L= B A m L 5) A, (£,1),8) = {(u,r) : u € A(B"1,5))
|
\
[Lemma J

< " I’) < B l‘) l w.h.p. over r;
A(®, Fold(f, @), 5) = {Fold(u, @) : u € A(€,f,5)}

A(E, - ,0)

Recent results show that mutual correlated agreement
holds up to 1.5 Johnson for general linear codes!

Stronger than what is required | |
for STIR’s soundness We show correlated agreement implies mutual

correlated agreement in unique decoding.

22

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
Hl B EER

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
Hl B EER

hX):=) W(fX.b),X,b) p

be{0,1}"!
—_—mmm—
ﬂ

h(0) + h(1) =, o

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—-TF
hX):=) W(fX.b),X,b) A
be{0,1}! h
- J
4—

h(0) + h(1) =, o

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
aX):=) WJX.bLXb) 4
be{0,1}"! h

h(0) + h(1) =, o

J
L
J
J
)
)

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
MX)=) WFXbLXb) s
be (0,1} h

h(0) + h(1) =, o

J
L
J
J
)
)

Completeness: Z w(f(b),b) = o then: . . 1 Fold(f, a)
b

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—-TF
hX):=) W(fX.b),X,b) A
be{0,1}""! h
;O +h(1) =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b

« h(0)+ h(l) = o,

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—-TF
hX):=) W(fX.b),X,b) A
be{0,1}""! h
;O +h(1) =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b

« h(0)+ h(l) = o,
. D W(f(a,b),a.b) = h(a)
b

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—-TF
hX):=) W(fX.b),X,b) A
be{0,1}""! h
;O +h(1) =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b

« h(0)+ h(l) = o,
. D W(f(a,b),a.b) = h(a)
b

. Fold(f, a) = fla, -)

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
hOO = Y WfbLXb) A
be{0,1}"! h

h(0) + h(1) =, o

J
L
J
J
)
)

Completeness: Z w(f(b),b) = o then: . : 1 Fold(f, o)
b
Soundness: by mutual correlated agreement,
* hO)+h(1) =0, wh.p. it A(f, CRS[n, m, p, W, 6]) > & then
. Z vAv(f(a, b), a, b) — iz(a) A(F0|d(f, a), CRS[Ifl/z,m — l,p, vAva, h(a)]) > 0
b

. Fold(f, a) = fla, -)

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
il B EER
i)=Y WAXbLXbD) 2
be{0,1}"!
S O+ k(1) =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b
Soundness: by mutual correlated agreement,
+ 1(0) + (1) = o, w.h.p. if ACf,CRS[n, m, p, W, 5]) > & then
. Z vAv(f(a, b), a, b) — iz(a) A(F0|d(f, a), CRS[Ifl/z,m — l,p, vAva, h(a)]) > 0
b

W (Z,X) = W(Z, a,X)

. Fold(f, a) = fla, -)

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
h(X) := Z W(f(X,b), X, b) A
be{0,1}"! h
;O +h() =0
Completeness: Z w(f(b),b) = o then: . Wi Fold(f, o)
b
Soundness: by mutual correlated agreement,
* hO)+h(1) =0, wh.p. it A(f,CRS[n, m, p, W, 6]) > 6 then
. Z W(f(a,b), a, b) = iz(a) A(Fold(f, o), CRS[n/2,m — 1,p, vAva, h(a)]) > o
b W (Z,X) = W(Z, a,X) Unchanged!

. Fold(f, a) = fla, -)

23

Interleave sumcheck with FRI folding,
similar to BaseFold, Hyperplonk, Gemini

WHIR Folding

Reduce CRS[n, m,p,w, o] to CRS[n/2.m -1, p,w 0]

f:L—>TF
D]E:l In the full protocol, we

hX) =), W{X.b)LXDb) p fold by 2-by-2 k times.

be{0,1}~ ——» Can also fold by 2X at a
a V time (nice for first round!)
h(0) + h(1) =, o
Completeness: Z w(f(b),b) = o then: FOld(f a)

Soundness: by mutual correlated agreement,

O =0 w.h.p. if A(f, CRS[n, m, p,w, c]) > 6 then
Y (fla.b),a,b) = (a) A(Fold(f, &), CRS[n/2.m — 1.p, W, h(@)]) > &
w (Z,X) = Ww(Z, a,X) Unchanged!

. Fold(f, a) = fla, -)

23

WHIR iteration

WHIR iteration

WHIR iteration

WHIR iteration

J_

Folding k times by 2

J_

Folding k times by 2

24

J_

Folding k times by 2

24

J_

Folding k times by 2

g is over a domain of
. n n
size — > —
2 2k

24

J_

Folding k times by 2

Claimed to be_ g is over a domain of
same polynomial n)

size — > —
2 T Dk

24

J_

Folding k times by 2

Claimed to be Jog 4|:|:|:|:|:|:|_> g is over a domain of
same polynomial n)

size — > —
2 T Dk

Domain shift

—_—
—

24

J_

Folding k times by 2

Claimed to be Jog 4|:|:|:|:|:|:|_> g is over a domain of
same polynomial n)

size — > —
2 T Dk

Domain shift

—_—
— Makes queries to f

24

J_

Folding k times by 2

2me polynom § I[[[[F—
same polynomial
Domain shift

—
— Makes 7 queries to f

Returns a list of claims on g Wy, 09); .., (Wg, 0p)

24

J_

Folding k times by 2

2me polynom § I[[[[F—
same polynomial
Domain shift

—
— Makes 7 queries to f

Returns a list of claims on g (Wl’ 61)’ Tt (Wf’ 6&”)
Batching

(W™, 6%)

24

WHIR iteration

J_

Folding k times by 2

2me polynom § I[[[[F—
same polynomial
Domain shift

—
— Makes 7 queries to f

Returns a list of claims on g (Wl’ 61)’ Tt (Wf’ Gf)
Batching

(W™, 6%)

As in STIR, rate
Improves!

Recurse g € CRS g, m — Kk,

WHIR iteration

J_

Folding k times by 2

Fold(f, ay, ...,a) &1}

2me polynom § —II[[[F—
same polynomial

Similar structure to STIR! Domain shift

Multilinear structure

forbids using quotients: Makes ¢ queries to f
; —
we need new ideas to
domain shift! A A
Returns a list of claims on g (W1, 61), ..., (Wg, 6)
Batching
(W*, 0%)

As in STIR, rate
Improves!

Recurse g € CRS g, m — Kk,

WHIR iteration

J_

Folding k times by 2

Fold(f, ay, ...,a) &1}

2me polynom § —II[[[F—
same polynomial

Similar structure to STIR! Domain shift

Multilinear structure

forbids using quotients: Makes ¢ queries to f
; —
we need new ideas to
domain shift! A A
Returns a list of claims on g (W1, 61), ..., (Wg, 6)
Batching
(W*, 0%)

As in STIR, rate
Improves!

Recurse g € CRS g, m — Kk,

Domain shifting

Domain shifting

f:L—TF
Claimon f: (W, 0) [[TTTTTT]

Domain shifting

Claim on f: (W, 0)

f:L—TF
[[TTTTTT]

m

Domain shifting

Claim on f: (W, 0)

f:L—TF
[[TTTTTT]

25

g:L*—>TF
ENENNEEENEEN

Output claims on g:
(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

Domain shifting

Claim on f: (W, o) [TTTTTTT]1 [TTT T 1T 1] Output claims on g:

(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — ﬁ)-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

25

Domain shifting

Claim on f: (W, o) [TTTTTTT]1 [TTT T 1T 1] Output claims on g:

(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — ﬁ)-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

25

Domain shifting

Claim on f: (W, o) [TTTTTTT]1 [TTT T 1T 1] Output claims on g:

(‘;‘\/19 61)9 IO (‘;‘\/fa Gf)

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — ﬁ)-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5)—far from it.

25

Domain shifting

f:L—-TF g.L* — |
Claim on f: (W,) BUEBEEE B DE]:.:.] OAutput clalms: on g:
4 (Wi,61) ooy Wy, 0p)

<

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — \/,;’>-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5)—far from it.

25

Domain shifting

f:L—-TF g.L* — |
Claim on f: (W,) BUEBEEE B DE]:.:.] OAutput clalms: on g:
4 (Wi,61) ooy Wy, 0p)

<

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — \/,;’>-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5)—far from it.

: Just an evaluation constraint which we
New constraints: (i) original constraint (w, o) (i) p(z) = y for some random point z. know how to handle!

25

Domain shifting

f:L—-TF g.L* — |
Claim on f: (W,) BUEBEEE B DE]:.:.] OAutput clalms: on g:
¢ Wi,61) ..., (Wp, 0,)

<

f and g claimed to be evaluations of same polynomial. Want to output claims on g.

Goal: If fis (1 — \/ﬁ)-far from CRS[|L|, m, p,w, 6], w.h.p. g is (1 — \/;’>-far from CRS[| L* |, m, p’, W,, 5;] for at
least one i € [}

Assume there is unique polynomial p that is (1 — \/;’)—close to g. 00D subprotocol (next)

Then, if p satisfies the (W, o)-constraint f must be be (1 — \/,5)—far from it.

: Just an evaluation constraint which we
New constraints: (i) original constraint (w, o) (i) p(z) = y for some random point z. know how to handle!

So, except with probability \/,5 g is (1 — \/;’)—far from CRS[|L* |, m, p’, Wy, 067), ..., (W,, 0,)].

Can amplify to \/,Bt 25

Out Of Domain

Subprotocol to force unique

Out Of Domain

Subprotocol to force unique

Out Of Domain

Subprotocol to force unique

QRSN

Out Of Domain

Subprotocol to force unique

QRSN

AN(G, g, 0*)

Out Of Domain

Subprotocol to force unique

QRSN

26

AN(G, g, 0*)

Out Of Domain

Subprotocol to force unique

QRSN

26

AN(G, g, 0*)

Out Of Domain

Subprotocol to force unique

QRSN

26

AN(G, g, 0*)

Out Of Domain

Subprotocol to force unique

QRSN

26

A(E, g, 0%*)

—

Out Of Domain

Subprotocol to force unique v Johnson bound, this ®
W
g L* ~ [F JETTTT T LT
g
: S
@ 0
@
@
@

26

A(E, g, 6%)

—

Out Of Domain

Subprotocol to force unique v Johnson bound, this ®
W
g L* — [I: JETTTT T LT
", P ¢
. “‘
—>ﬁ il i Lo

26

A(E, g, 0%)

—

Out Of Domain

- By Joh bound, thi
Subprotocol to force unique Y Jofnson aund, s ®
W
n st —F W ® e @
N .
g
peFr 5 e
| ®
* By SZlemma w.h.p. ®
no pair i, v with #(r) = V(1) ®

 Prover "chooses" which codeword ii it
"commits" to

26

A(E, g, 0%)

—

Out Of Domain

- By Joh bound, thi
Subprotocol to force unique Y Jofnson aund, s ®
W
n st —F W ® e @
N .
g
peFr 5 e
| ®
* By SZlemma w.h.p. ®
no pair i, v with #(r) = V(1) ®

 Prover "chooses" which codeword ii it
"commits" to

26

Out Of Domain

Subprotocol to force unique

QRSN

J_m

4—

p el

R ————

By SZlemma w.h.p.
no pair i, v with #(r) = V(1)

 Prover "chooses" which codeword ii it
"commits" to

Add to list of constraints to enforce!

26

AN(G, g, 0*)

—

By Johnson bound, this

IS small

5>I<

WHIR

WHIR */

27

WHIR */

27

WHIR

27

WHIR */

Domain shift

S ———
—

27

WHIR */

Domain shift

S ———
—

Batching

27

WHIR

Domain shift
—_—,
 —

Batching

n
Recurse g € CRS 5’ m — Kk,

Application: 2-I0P

High soundness compilation using constrained codes

28

Application: 2-I0P

High soundness compilation using constrained codes

4 O

2-lI0OP

28

Application: 2-I0P

High soundness compilation using constrained codes

4 O

2-lI0OP

28

Application: 2-I0P

High soundness compilation using constrained codes

4 O

>-IOP
P

— -
|

28

Application: 2-I0P

High soundness compilation using constrained codes

4 O

>-IOP
P

N E
' G

N -

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

g 5_|OP A
p
] .
=
q
] .
_ y

Verifier can ask sumcheck queries

i.e. send w and receive Z w(f(b), b)
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

g 5_|OP A
P
— | -
=
q
] .
_ y

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

s 5_|OP A
P
= =
PZIOP) A VZIOP
q
] .
_ y

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

5_|OP A

p
B -

|_>

_ J

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

5_|OP A

P
o -
- *

_ J

Verifier can ask sumcheck queries

.e. send w and receive Z w(f(b), b)
b

28

Generalizes univariate and

Appl icatiOn: Z— I O P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

>-IOP A f \ (

P
o -
- *

_ J

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b) | y K
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

>-IOP A f \ (

P
o -
- *

_ J

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b) | y K
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

~

>-10P f \ (

P
o -
- *

_ J

f-L—->TF

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b) | y K
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

>-IOP A f \ (

f-L—->TF

P
o
»
- * i

_ J

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b) | y K
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

g 5-IOP h f \ :
) P Vv
7 f-L—->TF
N ‘
| * 4 W
yel

_ J

Verifier can ask sumcheck queries

.e. send W and receive Z w(f(b),b) | y K
b

28

Generalizes univariate and

Appl icatiOn: Z— I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes

>-10P f \ , \

>

Verifier can ask sumcheck queries

i.e. send w and receive Z w(f(b), b)
b

Constrained (batched) Reed—Solomon proximity
teston f

28

Generalizes univariate and

Appl icatiOn: Z- I 0 P multilinear PIOPs at no extra cost!

High soundness compilation using constrained codes Q: Can we use this to do more
efficient arithmetizations?

>-10P f \ , \
P \

>

Verifier can ask sumcheck queries

i.e. send w and receive Z w(f(b), b)
b

Constrained (batched) Reed —Solomon proximity
teston f

28

Extra slides

Comparison with BaseFold

8000 -

Size (KiB

BaseFold: *
WHIR-UD: A

WHIR-CB: A

6000 -
4000 -
2000 ~

Argument size

218 220 222 224 226
Degree

Verifier time

M

1 | |
218 220 222 224 226

Degree

Prover time

|
218 220

|
222

Degree

30

I I
924 226

Comparison with BaseFold

Argument size Verifier time

25 -

8000 - .

M n 20 -

"~ 6000 - S

< 15 -

@ 4000 - £ 10 -

@ 2000 - =

0 __h%— 0 - i | |
218 22() 222 224 226 218 22() 222 224 226
Degree Degree

Prover time

BaseFold: x 2
2% 1 Remark: BaseFold

WHIR-UD: A 5 2~ 1 - implementation is not
fully optimised
WHIR-CB: A T P

Degree

30

Implementation

31

whir (pcs) 9§
Field: Goldilocks2 and MT: Blake3
Number of variables: 20, folding

Security level: 100 bits using ConjecturelList security and

initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_
Num_queries: 17, rate: 2"-5, pow_
Num_queries: 11, rate: 2"-8, pow_
Num_queries: 8, rate: 2"-11, pow_

final_queries: 6, final_rate: 2"-

00D commitment

00D sample

00D sample

qguery error: 85.0,
(x4) prox gaps: 99.
00D sample
guery error: 88.
(x4) prox gaps:
00D sample
guery error: 88.
(x4) prox gaps:
guery error: 84.

0000000000000 O

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

factor: 4

bits: 18, ood_samples:
bits: 15, ood_samples:
bits: 12, ood_samples:
bits: 12, ood_samples:

query error: 82.0, combination:
(x4) prox gaps: 101.0, sumcheck:

combination:
@, sumcheck:

combination:
.0, sumcheck:

combination:
.0, sumcheck:

pow: 16.0

94.6, pow:

folding_pow:
folding_pow:
, folding_pow:
, folding_pow:
14, final_pow_bits: 16, final_folding_pow_bits: @

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0

18.0

100.0, pow: 0.0

pow:
pow:

pow:
pow:

pow:
pow:

15.0
2.0

12.0
4.0

19 bits of PoW

6

Implementation

» Rust & implementation, available at WizardOfMenlo/whir

whir (pcs) 9§

Field: Goldilocks2 and MT: Blake3

Number of variables: 2@, folding factor: 4

Security level: 100 bits using ConjecturelList security and 19 bits of PoW
initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_bits: 18, ood_samples: folding_pow:
Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
Num_queries: 11, rate: 2*-8, pow_bits: 12, ood_samples: 2, folding_pow:
Num_queries: 8, rate: 2*-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2"-14, final_pow_bits: 16, final_folding_pow_bits: @

00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.08, combination: . pow: 15.0
(x4) prox gaps: 99.0, sumcheck: .0, pow: 2.0
00D sample

query error: 88.0, combination: .3, pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 4.0
00D sample

qguery error: 88. combination: . pow:

(x4) prox gaps: .0, sumcheck: .0, pow:

guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

whir (pcs) 9§

Field: Goldilocks2 and MT: Blake3

Number of variables: 2@, folding factor: 4

Security level: 100 bits using ConjecturelList security and 19 bits of PoW
initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_bits: 18, ood_samples: folding_pow:
Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
Num_queries: 11, rate: 2*-8, pow_bits: 12, ood_samples: 2, folding_pow:
Num_queries: 8, rate: 2*-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2"-14, final_pow_bits: 16, final_folding_pow_bits: @

00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.08, combination: . pow: 15.0
(x4) prox gaps: 99.0, sumcheck: .0, pow: 2.0
00D sample

query error: 88.0, combination: .3, pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 4.0
00D sample

qguery error: 88. combination: . pow:

(x4) prox gaps: .0, sumcheck: .0, pow:

guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

* Huge thanks to Remco Bloemen!!! i 609 3

Field: Goldilocks2 and MT: Blake3

Number of variables: 2@, folding factor: 4

Security level: 100 bits using ConjecturelList security 19 bits of PoW
initial_folding_pow_bits: @

Num_queries: 41, rate: 2"-2, pow_bits: 18, ood_samples: folding_pow:
Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
Num_queries: 11, rate: 2*-8, pow_bits: 12, ood_samples: 2, folding_pow:
Num_queries: 8, rate: 2*-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2"-14, final_pow_bits: 16, final_folding_pow_bits: @

00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.0, combination: 93. pow: 15.0
(x4) prox gaps: 99.0, sumcheck: 98.0, pow: 2.0
00D sample

query error: 88.0, combination: 92.3, pow: 12.0
(x4) prox gaps: .0, sumcheck: 96.0, pow: 4.0
00D sample

qguery error: 88. combination: 90. pow:

(x4) prox gaps: .0, sumcheck: 94.0, pow:

guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Implementation

» Rust & implementation, available at WizardOfMenlo/whir

 Arkworks as backend, (extension of) Goldilocks for benchmarks

* Huge thanks to Remco Bloemen!!! i 609 3

Field: Goldilocks2 and MT: Blake3
Number of variables: 2@, folding factor: 4
Security level: 100 bits using ConjecturelList security and 19 bits of PoW

® We Com pared to FRI, STIR and BaseFOId_ ﬁﬂi{;ﬂiﬁiﬁd12?“’??{2“?'3 pow_bits: 18, ood_samples: 2, folding_pow:

Num_queries: 17, rate: 2”-5, pow_bits: 15, ood_samples: folding_pow:
Num_queries: 11, rate: 2*-8, pow_bits: 12, ood_samples: 2, folding_pow:
Num_queries: 8, rate: 2*-11, pow_bits: 12, ood_samples: 2, folding_pow: 6
final_queries: 6, final_rate: 2"-14, final_pow_bits: 16, final_folding_pow_bits: @

00D commitment

(x4) prox gaps: 103.0, sumcheck: 102.0, pow: 0.0
00D sample

qguery error: 82.0, combination: 94.6, pow: 18.0
(x4) prox gaps: 101.0, sumcheck: 100.0, pow: 0.0
00D sample

query error: 85.08, combination: . pow: 15.0
(x4) prox gaps: 99.0, sumcheck: .0, pow: 2.0
00D sample

query error: 88.0, combination: .3, pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 4.0
00D sample

query error: 88. combination: . pow: 12.0
(x4) prox gaps: .0, sumcheck: .0, pow: 6.0
guery error: 84. pow: 16.0

.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0

Prover time: 356.9ms
Proof size: 58.7 KiB
Verifier time: 342.8ps
Average hashes: 1.1k

31

https://github.com/WizardOfMenlo/whir
http://arkworks.rs

Comparison to STIR and FRI

A

FRI: 0(;'%)

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

» Drop-in replacement of FRI and STIR (when used for CRS[[F, m, p,0,0])

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

» Drop-in replacement of FRI and STIR (when used for CRS[[F, m, p,0,0])

« Same benefits as STIR over FRI, and faster prover time.

32

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

» Drop-in replacement of FRI and STIR (when used for CRS[[F, m, p,0,0])
« Same benefits as STIR over FRI, and faster prover time.

 Additionally, richer proximity tests means that:

32

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

» Drop-in replacement of FRI and STIR (when used for CRS[[F, m, p,0,0])
« Same benefits as STIR over FRI, and faster prover time.
 Additionally, richer proximity tests means that:

 Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

32

Comparison to STIR and FRI

A
STIR & WHIR 07 -1ogn)
» Drop-in replacement of FRI and STIR (when used for CRS[[F, m, p,0,0])
« Same benefits as STIR over FRI, and faster prover time.
 Additionally, richer proximity tests means that:
 Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)

* Additionally, bivariate PCS (and anything in between)

32

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

» Drop-in replacement of FRI and STIR (when used for CRS[[F, m, p,0,0])

« Same benefits as STIR over FRI, and faster prover time.

 Additionally, richer proximity tests means that:
 Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)
* Additionally, bivariate PCS (and anything in between)

e Can be used in compiler for 2-I0OP

32

Comparison to STIR and FRI

STIR & WHIR 07 -1ogn)

» Drop-in replacement of FRI and STIR (when used for CRS[[F, m, p,0,0])

« Same benefits as STIR over FRI, and faster prover time.

* Additionally, richer proximity tests means that:
 Can be used as a multilinear PCS (instead of BaseFold, FRI-Binius, etc)
* Additionally, bivariate PCS (and anything in between)
e Can be used in compiler for 2-I0OP

* Further, super-fast verification (next)

32

Batching

Pick your favourite sumcheck batching

33

Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[TTTTITTITTTITT (vpops ... Obpop)

33

Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[TTTTTTTTTITT] (pop)s..s (g 0p)

Batching

33

Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[LIITTTTTTITTT (o), (g 0p)

Batching

g.L—-TF
[IIIIIIITITI] sumcheck claimon g: (W¥, o¥)

33

Batching

Pick your favourite sumcheck batching

g:L—-T Sumcheck claims on g:

[LIITTTTTTITTT (o), (g 0p)

Batching

g.L—-TF
[IIIIIIITITI] sumcheck claimon g: (W¥, o¥)

Many ways this can be done: we chose random linear combination.

33

Review: FRI iteration

Review: FRI iteration

f:L—->TF
[TTTTTTT]

Review: FRI iteration

f:L—->TF
[TTTTTTT]

0

Review: FRI iteration

*
llllllllllllllll

Fold(f,)

34

Review: FRI iteration

*
llllllllllllllll

Fold(f,)

f/‘lj]]—’

34

Review: FRI iteration

f:L—->TF

Claimed to be

/
same polynomial f —I:l:l:l:l—b

34

Review: FRI iteration

f:L—->TF

*
IIIIIIIIIIIIIII;
]

Check that
Fold(f, @)(z) = f'(z) at

Claimed to be : : 2k
t points in L

; /
same polynomial f

34

Review: FRI iteration

f:L—->TF

Q
................
.]
H []
M . M
.

Check that
Fold(f, @)(z) = f'(z) at

Claimed to be _ : ok
t points in L

same polynomial

n
Recurse on f € RS ?’m — k, p]

34

Review: FRI iteration

f:L—->TF

Check that
Fold(f, @)(z) = f'(z) at

Claimed to be _ ok
t points in L

same polynomial

n
Recurse on f € RS ?,m — k, p]

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

34

Review: FRI iteration

Soundness:

FiL—>F Suppose that ' € RS[n/2%, m — k, p].

D]]:l:l:l:l If fis o-far from RS[n, m, p],

Fold(f, @) must be o-far from
RS[n/2%, m — k, p]

Check that
Fold(f, @)(z) = f'(z) at

Claimed to be _ ok
t points in L

; /
same polynomial f

n
Recurse on f € RS ?,m — k, p]

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

34

Review: FRI iteration

Soundness:

Suppose that f' € RS[n/2%, m — k, p].
f:L—-TF

D]]:l:l:l:l If fis o-far from RS[n, m, p],

Fold(f, @) must be o-far from
RS[n/2%, m — k, p]

Then, " and Fold(f,) differ on

Check that a O-fraction.

Fold(f, @)(z) = f'(z) at

Claimed to b .
o tpoints in sz Soundness error is (1 — 5)t

; /
same polynomial f

Recurse on f € RS %m — k, p]

Disclaimer: in full FRI
consistency checks are
correlated between rounds.

34

Review: FRI iteration

Soundness:

FiL—>F Suppose that ' € RS[n/2%, m — k, p].

D]]:l:l:l:l If fis o-far from RS[n, m, p],

Fold(f, @) must be o-far from
RS[n/2%, m — k, p]

Then, f" and Fold(f, a) differ on

Check that a O-fraction.

Fold(f, @)(z) = f'(z) at

Claimed to b .
St tpoints in sz Soundness error is (1 — 5)t

; /
same polynomial f

n
Recurse on f € RS ?’m — k, p]

To get soundness error ¢, < 27

_ | set§:=1—,/pandt:=
Disclaimer: in full FRI —log\/ﬁ

consistency checks are
correlated between rounds.

34

List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

35

List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

fiseeesfys L= F
@

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

A(E, - ,0)

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

A(E, - ,0)

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—)J_ A(%m,,é)

A(E, - ,0)

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forsdui L= F pgm . g

 Random linear combination version: w.h.p. over r:

A@B, (f,r),5) = {(ur):ue AE"15)}

A(E, - ,0)

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of € that are o-close
Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

]ﬂ,...,fm:L—l'J_ A(%m,,é)

® Random linear combination version: w.h.p. over r:

A@B, (f,r),5) = {(ur):ue AE"15)}

(-,r) (-,r) l * Folding version: w.h.p. over a:
A(8, Fold(f, @), §) = {Fold(u,) : u € A(%,f,6)}

A(E, - ,0)

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forsdui L= F pgm . g

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l Folding version: w.h.p. over Q:
| A(E, Fold(f,), 5) = {Fold(u,) : u € A(G,f,5)}
® * Alternatively, each term in the |.h.s can be “explained"

A(E, - ,0) by terms in the r.h.s.

35

List-RLC lemma and List-Fold A(B.£,)is the it o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

forshi L= F A, g

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l Folding version: w.h.p. over Q:
| A(E, Fold(f,), 5) = {Fold(u,) : u € A(G,f,5)}
® * Alternatively, each term in the |.h.s can be “explained"

A(E, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
correlated agreement in unique decoding.

35

List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of & that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

fi,...,fm: LH J_ A(%m9.95)

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l Folding version: w.h.p. over a:
’ A(E, Fold(f, @), 8) = {Fold(u, @) : u € A(%,f,5)}
® * Alternatively, each term in the I.h.s can be “explained”

A(G, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
Stronger than what is required correlated agreement in unique decoding.
for STIR’s soundness

35

List-RLC lemma and List-Fold A(%.1.6) is the lst o

codewords of € that are o-close

Implied by mutual correlated agreement to f

* Taking lists and (random) combinations commute (if
mutual correlated agreement holds).

fi,...,fm: LH J_ A(%m9.95)

 Random linear combination version: w.h.p. over r:

7 (B, (£.1),8) = {(u,r) : u € A(G".1,5))
< , I‘) < . l‘) l Folding version: w.h.p. over a:
’ A(E, Fold(f, @), 8) = {Fold(u, @) : u € A(%,f,5)}
® * Alternatively, each term in the I.h.s can be “explained”

A(G, - ,0) by terms in the r.h.s.

* We show correlated agreement implies mutual
Stronger than what is required correlated agreement in unique decoding.

for STIR’s soundness
Recent results show it holds up to 1.5 Johnson for

35 general linear codes!

