

Gröbner basis Cryptanalysis of Anemoi

Luca Campa (Joint work with Arnab Roy)

Department of Computer Science University of Innsbruck

08 May, 2025

- 1. Introduction
- 2. Gröbner basis
- 3. Gröbner basis attack methodology
- 4. Anemoi
- 5. Anemoi cryptanalysis
- 6. Easy GB computation: univariate polynomial finding

Introduction

- Advanced cryptographic protocols, e.g. ZK-Proofs: need efficient hash functions over large fields.
- Arithmetization-Oriented Primitives (AOP)
- Algebraic representation: algebraic attacks are the main threat.

- \mathbb{K} : a finite field
- $R = \mathbb{K}[x_1, \dots, x_n]$: polynomial ring: the set of polynomials in *n* variables x_1, \dots, x_n with coefficients in \mathbb{K} .
- $I \subset R$ is an ideal iff:
 - 0 ∈ *I*
 - $\forall a, b \in I \implies a \pm b \in I$
 - $r \in R, a \in I \implies r \cdot a \in I$ (simplification)
- **x** denotes the set of variables x_1, \ldots, x_n .

Gröbner basis background

Every monomial $m = \prod_{i=1}^{n} x_i^{\alpha_i} \in R$ can be identified with the corresponding vector of exponents $\alpha = (\alpha_1, \ldots, \alpha_n)$.

Monomial ordering

A monomial ordering \prec on $\mathbb{K}[x_1, \ldots, x_n]$ is a relation \prec on $\mathbb{Z}_{\geq 0}^n$, or rather a relation on the set of monomials x^{α} where $\alpha \in \mathbb{Z}_{\geq 0}^n$, satisfying the following conditions:

- \prec is a total (or linear) order on $\mathbb{Z}_{>0}^n$
- if $\alpha \prec \beta$ and $\gamma \in \mathbb{Z}^n_{\geq 0}$, then $\alpha + \gamma \prec \beta + \gamma$
- \prec is a well-ordering on $\mathbb{Z}_{\geq 0}^n$, meaning that every non empty subset of $\mathbb{Z}_{\geq 0}^n$ has a smallest element under the relation \prec .

DRL Monomial ordering

Let $\alpha, \beta \in \mathbb{Z}_{\geq 0}^n$. We say $\alpha >_{\mathsf{DRL}} \beta$ if

$$|\alpha| = \sum_{i=1}^{n} \alpha_i > |\beta| = \sum_{i=1}^{n} \beta_i$$
, or $|\alpha| = |\beta|$ and $\alpha >_{\mathsf{RLEX}} \beta_i$

We say $x^{\alpha} >_{\mathsf{DRL}} x^{\beta}$ if $\alpha >_{\mathsf{DRL}} \beta$.

Weighted Monomial ordering

Given a weight vector $w = (w_1, \ldots, w_n) \in \mathbb{R}^n_{\geq 0}$, where $w_1 \neq 0$. We say that w is associated with the monomial ordering \prec , defined by:

$$\prod_{i=1}^{n} x_{i}^{\alpha_{i}} \prec \prod_{i=1}^{n} x_{i}^{\beta_{i}} \iff \begin{cases} \sum_{i=1}^{n} w_{i}\alpha_{i} > \sum_{i=1}^{n} w_{i}\beta_{i} \\ \sum_{i=1}^{n} w_{i}\alpha_{i} = \sum_{i=1}^{n} w_{i}\beta_{i}, \alpha \prec_{M} \beta \end{cases}$$

where M is another monomial order like LEX, RLEX.

Gröbner basis

Let $I = \langle f_1, \ldots, f_s \rangle$ be an ideal in $\mathbb{K}[x_1, \ldots, x_n]$ and let \prec be a valid monomial ordering. A finite subset $G = \{g_1, \ldots, g_t\}$ of I different from $\{0\}$ is said to be a **Gröbner Basis** (or Standard Basis) w.r.t. \prec if

 $\langle \mathsf{LM}(g_1), \ldots, \mathsf{LM}(g_t) \rangle = \langle \mathsf{LM}(I) \rangle.$

Reduced Gröbner basis

Let G be a Gröbner basis for the ideal $I \subset \mathbb{K}[x_1, \ldots, x_n]$ with respect to a monomial ordering \prec , if

- LC(g) = 1 for all $g \in G$
- for all $g \in G$, no monomial of g lies in $\langle \mathsf{LT}(G \setminus \{g\}) \rangle$

G is said to be a reduced Gröbner basis.

S-polynomial

Let $f, g \in R$ be nonzero polynomials. The S-polynomials of f and g, denoted as S(f,g) is defined as:

$$\frac{\operatorname{LCM}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(f)}f - \frac{\operatorname{LCM}(\operatorname{LM}(f),\operatorname{LM}(g))}{\operatorname{LT}(g)}g$$

Buchberger criterion

Let *I* be a polynomial ideal. Then a basis $G = \{g_1, \ldots, g_t\}$ of *I* is a Gröbner basis of *I* if and only if for all pairs $i \neq j$, the remainder on division of $S(g_i, g_j)$ by *G* (listed in some order) is zero.

GB attack methodology

Primitive

Gröbner basis attack walkthrough

$$P = \begin{cases} p_1(x_1, \dots, x_n) \\ p_2(x_1, \dots, x_n) \\ p_3(x_1, \dots, x_n) \\ \vdots \\ p_m(x_1, \dots, x_n) \end{cases}$$

- Choose a monomial ordering
- Compute a GB G of (P) with well-known algorithms, e.g.:
 - Buchberger's algorithm [Buc85]
 - F4 [Fau99]
 - F5 [Fau02]

Gröbner basis attack walkthrough

- Univariate polynomial finding step
- Two main techniques:
 - basis conversion (e.g. FGLM [FM17])
 - determinant computation

Gröbner basis attack walkthrough

• Root finding for computing the variety (the solutions to the original system)

Existing problems (at least some of them)

- Degrees of the equations
- Sparse polynomial representation of the primitive
- High complexity algorithms [CG20; CLO15]:
 - GB computation
 - univariate polynomial finding
- Loose theoretical bounds

Anemoi

- ZK-friendly permutation [Bou+23] proposed in CRYPTO '23.
- Defined over $\mathbb{K} = \mathbb{F}_q$ where q is prime (or $q = 2^n, n \ge 32$).
- Two parameters: $\ell \geq 1$ and $\alpha \in \{3, 5, 7, 11\}$.
- Anemoi : $\mathbb{K}^{2\ell}
 ightarrow \mathbb{K}^{2\ell}$
- Each round is composed by a:
 - Linear Layer
 - Non-linear layer: called Flystel

- ZK-friendly permutation [Bou+23] proposed in CRYPTO '23.
- Defined over $\mathbb{K} = \mathbb{F}_q$ where q is prime (or $q = 2^n, n \ge 32$).
- Two parameters: $\ell \geq 1$ and $\alpha \in \{3, 5, 7, 11\}$.
- Anemoi : $\mathbb{K}^{2\ell}
 ightarrow \mathbb{K}^{2\ell}$
- Each round is composed by a:
 - Linear Layer
 - Non-linear layer: called Flystel

NOTE: we focused on $\mathbb{K} = \mathbb{F}_q$ where q is prime.

Non-linear layer: Flystel

 $Q_{\gamma}=eta x^2+\gamma$ and $Q_{\delta}=eta x^2+\delta$

where $E^{-1}=x^{rac{1}{lpha}}$, eta=g, $\gamma=0$, $\delta=g^{-1}$

Anemoi is mainly used within **sponge constructions**.

The permutation function $f = \text{Anemoi}_{q,\alpha}(\mathbf{x}_0, \mathbf{y}_0)$ operating on \mathbb{K}^{r+c} .

Anemoi cryptanalysis

Example with $\ell = 1$ and $\alpha = 3$

The main problem on which algebraic attacks are based on is the CICO (Constrained Input Constrained Output) problem.

CICO for Anemoi $\ell=1$

Let $P : \mathbb{K}^2 \to \mathbb{K}^2$ be a permutation. The CICO problem consists in finding $(y_0, y_{N+1}) \in \mathbb{K}^2$ such that Anemoi $(0, y_0) = (0, y_{N+1})$.

Hash functions rely on 3 main properties:

- Pre-Image Resistance
- Second Pre-Image Resistance
- Collision Resistance

Finding the solutions to the system of polynomials means:

- Number of solutions $> 1 \implies$ breaking Collision resistance.
- Number of solutions $\geq 1 \implies$ breaking Pre-Image resistance.

Goals

$$b_{r+1} = \mathcal{L}^{(2)}(x_r, y_r) - s_{r+1} - y_{r+1}$$

 $a_{r+1} = Q_{\gamma}(\mathcal{L}^{(2)}(x_r, y_r)) - s_{r+1}^{\alpha} - \mathcal{L}^{(1)}(x_r, y_r)$

 $f_{N+1} = \mathcal{L}^{(1)}(x_N, y_N)$

Definition ($A_{ m CICO}$ model for $\ell \geq 1$)

An algebraic model of the Anemoi permutation $A_{\pi} : \mathbb{K}^{2\ell} \to \mathbb{K}^{2\ell}$ applied for N rounds, under the *CICO* constraints, is given by the system

$$A_{\text{CICO}} = \{\mathbf{a}_1, \dots, \mathbf{a}_N, \mathbf{b}_1, \dots, \mathbf{b}_N, \mathbf{f}_{N+1}\}$$

where $A_{\text{CICO}} \subset \mathbb{K}[\mathbf{y}_0, \dots, \mathbf{y}_N, \mathbf{s}_1, \dots, \mathbf{s}_N]$. The generated system contains $\ell(2N+1)$ equations in $\ell(2N+1)$ variables.

Goals

Gröbner basis computation

$$G_{\text{DRL}} = \begin{cases} g_{i,0} := y_{i,0} + Q(\mathbf{y}_1, \mathbf{s}_1) \\ g'_{i,j} := y_{i,j}^{\alpha} + Q(s_{i,j}, \mathbf{s}_{j+1}, \mathbf{y}_{j-1}, \mathbf{y}_j, \mathbf{y}_{j+1}) \\ g_{i,j} := s_{i,j}^{\alpha} + Q(\mathbf{y}_j, \mathbf{y}_{j+1}, \mathbf{s}_{j+1}) \\ g''_{i,j} := y_{i,j} s_{i,j} + Q(s_{i,j}, \mathbf{s}_{j+1}, \mathbf{y}_{j-1}, \mathbf{y}_j, \mathbf{y}_{j+1}) \end{cases}$$
$$G_{W_{DRL}} = \begin{cases} g_{i,0} := y_{i,0} + Q(\mathbf{y}_1, \mathbf{s}_1) \\ g'_{i,j} := s_{i,j}^{\alpha+1} + Q(s_{i,j}, \mathbf{s}_{j+1}, \mathbf{y}_{j-1}, \mathbf{y}_j, \mathbf{y}_{j+1}) \\ g_{i,j}^{\prime} := s_{i,j}^{\alpha+1} + Q(s_{i,j}, \mathbf{s}_{j+1}, \mathbf{y}_{j-1}, \mathbf{y}_j, \mathbf{y}_{j+1}) \end{cases}$$

$$\begin{cases} g_{i,j} := y_{i,j}^2 + Q(s_{i,j}^{\alpha}, y_{l-i-1,j}, \mathbf{y}_{j+1}, \mathbf{s}_{j+1}) \\ g_{i,j}'' := y_{i,j}s_{i,j} + Q(s_{i,j}, \mathbf{s}_{j+1}, \mathbf{y}_{j-1}, \mathbf{y}_j, \mathbf{y}_{j+1}) \end{cases}$$

where $1 \leq i \leq \ell, 1 \leq j \leq N$.

Complexity and structure of the GB: proven by following the steps of the Buchberger's Algorithm.

4: s10^5 + 3*s11^5 + 3*y20^2 + 9*y21^2 + 3*y20 + y21 - y30 - s20 - 12 5: s10^5 + 33*s11^5 + 3*y20^2 + 10*y21^2 + 33*y20 + y21 - 30*y31 - 30*s21 + 10 16: -30*s11^5 - y21^2 - 30*y20 - y30 + 30*y31 - s20 + 30*s21 - 22

Why a weighted monomial ordering?

Why a weighted monomial ordering?

 $2wt(y) \ge \alpha wt(s)$

Why a weighted monomial ordering?

4: s10^5 + 3*s11^5 + 3*y20^2 + 9*y21^2 + 3*y20 + y21 - y30 - s20 - 12 5: s10^5 + 33*s11^5 + 3*y20^2 + 10*y21^2 + 33*y20 + y21 - 30*y31 - 30*s21 + 10 16: -30*s11^5 + y21^2 30*y20 - y30 + 30*y31 - s20 + 30*s21 - 22

 $2wt(y) \ge \alpha wt(s)$

4: y20^2 + 3*y21^2 + 30*s10^5 + s11^5 + y20 + 30*y21 - 30*y30 - 30*s20 - 4 5: y20^2 + 33*y21^2 + 30*s10^5 + 11*s11^5 + 11*y20 + 30*y21 - 10*y31 - 10*s21 + 33 18: -30*y21^2 - 10*s11^5 - 10*y20 - 30*y30 + 10*y31 - 30*s20 + 10*s21 - 37

Gröbner basis computation: experimental results

Small scale experiments with a 31-bit prime: 1481823929.

		$\alpha = 3$	lpha= 5	$ \alpha = 7$	$\alpha = 11$
$\ell = 1$	T _{GB} [ms]	2.16 (21)	2.33 (21)	2.12 (20)	1.94 (19)
	d _{solv}	9	30	42	66
$\ell = 2$	T _{GB} [ms]	4.57 (14)	4.39 (14)	3.83 (13)	4.02 (13)
	d _{solv}	9	30	42	66
$\ell = 3$	T _{GB} [ms]	11.0 (12)	8.79 (12)	8.74 (12)	8.49 (11)
	d _{solv}	9	30	42	66

Table: For $\ell = 1, 2, 3$, the G_{DRL} (if $\alpha = 3$) and $G_{W_{DRL}}$ (if $\alpha = 5, 7, 11$) computation time in millisecond and the solving degree d_{solv} . We present the GB results with respect to the number of rounds of Anemoi (in brackets), but we were able to compute the Gröbner basis for more than 100 rounds.

Gröbner basis computation complexity

DRL GB for $\alpha = 3$

$$\mathcal{O}\left(rac{\mathsf{poly}_1(\ell)\mathsf{N}-\mathsf{poly}_2(\ell)}{2}
ight)$$

field operations where $poly_1(\ell) = \ell^2(24\ell^4 + 40\ell^3 + 32\ell^2 + 29\ell - 1)$ and $poly_2(\ell) = \ell^2(17\ell^4 + 4\ell^3 + 27\ell^2 + 15\ell + 1).$

W_{DRL} GB for $\alpha = 5, 7, 11$

$$\mathcal{O}\left(rac{poly_1(\ell)\mathsf{N}+poly_2(\ell)}{2}
ight)$$

field operations where $poly_1(\ell) = \ell^2(24\ell^3 + 6\ell^2 + 7\ell - 1)$ and $poly_2(\ell) = \ell^2(4\ell^4 - 6\ell^3 + 18\ell^2 + 11\ell - 1).$

Goals

Main methods:

- Basis conversion: e.g. SparseFGLM [FM17] $(\mathcal{O}(d_I(\mathcal{Z} + n_v \log(d_I))))$
- Eigenvalue methods:
 - Determinant computation [Bar+24; LNZ17]: $\mathcal{O}(\ell \cdot d_I^{\omega})$
 - Wiedemann algorithm [FM17; Wie86]: $O(\ell d_I(\mathcal{Z} + \log(d_I)))$

Depend on:

- $\bullet \ \mathcal{Z}:$ number of non-zero entries in the multiplication matrices
- d_I: quotient ring dimension

Conjectured in [KLR24; Bar+24].

Quotient ring dimension for Anemoi

Let N be the number of rounds of Anemoi for $\ell \ge 1$ and $\alpha = 3$ (resp. $\alpha = 3, 5, 7, 11$). The dimension of the quotient ring basis of the DRL Gröbner basis (resp. W_{DRL} Gröbner basis) w.r.t Anemoi(N, α , ℓ) is:

$$d_I = |B_{G_{\text{DRL}}}| = |B_{G_{\text{W}_{DRL}}}| := (\alpha + 2)^{N\ell}$$

Proof idea: the proven GB structure of Anemoi \implies proving d_I .

Conjecture: Sparsity of the multiplication matrices

Sparseness of the multiplication matrices w.r.t the input variables computed as Z/d_I^2 :

$$Sparsity(T_i) pprox \begin{cases} 0.9e^{-1.148N}/\ell & ext{for } lpha = 3\\ 0.32e^{-1.06N}/\ell & ext{for } lpha = 5 \end{cases}$$

Applying the Wiedemann algorithm: results

bits : security of full rounds instances

bits : security of reduced rounds instances

Goals

Basis conversion: is it useful for Anemoi?

- Common *modus operandi*: converting the GB from a graded monomial ordering to lexicographic
- In cryptanalysis, Shape lemma is often assumed.

Shape lemma

Let *I* be a zero-dimensional radical ideal such that the x_n coordinate of the points in $\mathbb{V}(I)$ are distinct. Let *G* be a reduced Gröbner basis for *I* relative to a LEX monomial order with x_n as the last variable. *G* consists of *n* polynomials

$$\{x_1 - g_1(x_n), x_2 - g_2(x_n), \dots, g_n(x_n)\}$$

where deg (g_i) < deg (g_n) for each $1 \le i < n$ and deg $(g_n) = dim_{\mathbb{K}}(\mathbb{K}[x_1, \ldots, x_n]/I)$. We say, equivalently, that the ideal I has shape lemma or shape form.

Theorem

Let $I \subset \mathbb{K}[x_1, \ldots, x_n]$ be a zero-dimensional ideal and let G be its Gröbner basis (w.r.t a generic monomial ordering \prec) which contains elements f_i such that $LM(f_i) = x_i^{\alpha_i}$ for each $1 \leq i \leq n$. If I has no solutions at ∞ , then the ideal I has a Shape Form in the reduced LEX Gröbner basis.

Proof uses a recent result by Cox and D'Andrea [CD23].

Summary of the results

Thanks for your attention! Questions?

Bibliography I

- [Bar+24] Augustin Bariant et al. "The Algebraic FreeLunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives". In: Advances in Cryptology - CRYPTO 2024, Proceedings, Part IV. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14923. Lecture Notes in Computer Science. Springer, 2024, pp. 139–173. DOI: 10.1007/978-3-031-68385-5_5.
- [Bou+23] Clémence Bouvier et al. "New Design Techniques for Efficient Arithmetization-Oriented Hash Functions: ttAnemoi Permutations and ttJive Compression Mode". In: Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part III. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14083. Lecture Notes in Computer Science. Springer, 2023, pp. 507–539. DOI: 10.1007/978-3-031-38548-3_17. URL: https://doi.org/10.1007/978-3-031-38548-3%5C_17.

Bibliography II

- [Buc85] Bruno Buchberger. "Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory". In: Jan. 1985, pp. 184–232. ISBN: 978-1-4020-0328-8. DOI: 10.1007/978-94-009-5225-6_6.
- [CD23] David Cox and Carlos D'andrea. "Subresultants and the Shape Lemma". In: Math. Comput. 92.343 (2023), pp. 2355–2379. DOI: 10.1090/MC0M/3840.
- [CG20] Alessio Caminata and Elisa Gorla. "Solving Multivariate Polynomial Systems and an Invariant from Commutative Algebra". In: Arithmetic of Finite Fields -8th International Workshop, WAIFI 2020, Revised Selected and Invited Papers. Ed. by Jean-Claude Bajard and Alev Topuzoglu. Vol. 12542. Lecture Notes in Computer Science. Springer, 2020, pp. 3–36. DOI: 10.1007/978-3-030-68869-1_1.

Bibliography III

[CL015] David A. Cox, John Little, and Donal O'Shea. Ideals, Varieties, and Algorithms. Fourth. Undergraduate Texts in Mathematics. Springer, 2015. ISBN: 978-3-319-16720-6. DOI: 10.1007/978-3-319-16721-3.

[Fau02] Jean Charles Faugère. "A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)". In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation. ISSAC '02. Association for Computing Machinery, 2002, pp. 75–83. ISBN: 1581134843. DOI: 10.1145/780506.780516.

[Fau99] Jean-Charles Faugére. "A new efficient algorithm for computing Gröbner bases (F4)". In: Journal of Pure and Applied Algebra 139.1 (1999), pp. 61-88. ISSN: 0022-4049. DOI: https://doi.org/10.1016/S0022-4049(99)00005-5.

Bibliography IV

[FM17] Jean-Charles Faugère and Chenqi Mou. "Sparse FGLM algorithms". In: J. Symb. Comput. 80 (2017), pp. 538–569. DOI: 10.1016/J.JSC.2016.07.025.

- [KLR24] Katharina Koschatko, Reinhard Lüftenegger, and Christian Rechberger.
 "Exploring the Six Worlds of Gröbner Basis Cryptanalysis: Application to Anemoi". In: IACR Trans. Symmetric Cryptol. 2024.4 (2024), pp. 138–190.
 DOI: 10.46586/T0SC.V2024.I4.138–190.
- [LNZ17] George Labahn, Vincent Neiger, and Wei Zhou. "Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix". In: J. Complex. 42 (2017), pp. 44–71. DOI: 10.1016/J.JCO.2017.03.003.

[Wie86] Douglas H. Wiedemann. "Solving sparse linear equations over finite fields". In: IEEE Trans. Inf. Theory 32.1 (1986), pp. 54–62. DOI: 10.1109/TIT.1986.1057137.