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Encapsulation Mechanism (KEM): 

•NTRU [Lattice-based]. 

•SABER [Lattice-based].

Round 4 Submissions for KEM: 

•BIKE [Code-based]. 

•Classic McEliece [Code-based].

ALL of these are NLA-based.

LWE and LPN have been most reliable and most widely studied assumptions  

believed to be Quantum secure
What if 

both  
LWE and (Alekhnovich) LPN 

are (quantum) broken!!!



Main Question

Can we build PKE from Unstructured Noisy Linear Algebraic assumptions that are 
potentially secure in the world where 

BOTH LWE and Alekhnovich’s LPN are broken?
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To decrypt, Bob computes:

𝖼𝗍𝟤 − 𝖼𝗍⊤
1 ⋅ s ∈ 𝔽q

if , uniform (large)x = 0

Bob

In the case of LWE, small.

if ,  x = 1 r⊤ ⋅ e

In the case of LPN, when the error is -sparse, 
for , then .

n−δ

δ ≥ 0.5 0

r e

⋅ = 0
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To decrypt, Bob computes:
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Assume for simplicity: .m = O(n)
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No known setting of  such that correctness holds and security holds 
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m, δ, γ



PKE from LW2E

Hybrid 1: (A, u, r⊤ ⋅ A, r⊤ ⋅ u)
where . r ←$ 𝒟𝗌𝗆𝖺𝗅𝗅 𝖺𝗇𝖽 𝗌𝗉𝖺𝗋𝗌𝖾

by LW2E

Adversary’s view 
when x = 1

(A, b ≜ A ⋅ s + e1 + e2, r⊤ ⋅ A, r⊤ ⋅ b)
where . r ←$ 𝒟𝗌𝗆𝖺𝗅𝗅 𝖺𝗇𝖽 𝗌𝗉𝖺𝗋𝗌𝖾

Hybrid 2: , i.e. uniform random field elements.(A, u, ũ, u′￼)
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problem
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How does its hardness relate 
to LWE and LPN?



Learning with Short and Sparse Errors (LWSSE)

is computationally indistinguishable from

r

,( )A⊥

Dual and equivalent 
to ISSIS.

The matrix is near-
square .𝔽 (m−n)×m

q +A⊥ s e

,( )A⊥



Relation to LPN

+A⊥ s e

,( )A⊥

• LWSSE reduces to LPN with the same sparsity

Recall we crucially use ISSIS with sparsity n−γ, γ < 0.5
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Relation to lattice problems

Can we separate ISSIS from LWE or approx CVP?

No. 

In general, it is not known how to obtain formal separations between assumptions 
without proving .𝖯 ≠ 𝖭𝖯

What can we show?
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Informal main result: There exists PKE assuming the hardness of LW2E and ISSIS in 
parameter regimes such that neither are potentially lattice problems and potentially 

stronger than Alekhnovich’s LPN.

Main Result

We introduce the Learning with Two Errors (LW2E) assumption and the Inhomogeneous 
Short and Sparse Integer Solution (ISSIS) assumption.

We give evidence that LW2E and ISSIS—in a range of parameters that imply public-key 
encryption (PKE)—remain secure even if LWE and Alekhnovich LPN are (quantum) broken.



• Use ISSIS and LW2E to build advanced primitives. 

• Develop a rich cryptanalysis for LW2E and ISSIS. 

• Construct PKE or other primitives from LW2E alone. 

• Propose another assumption that is potentially harder than both LWE and LPN, 
and can imply PKE without additional helper assumption.
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Thank You!


