
Secret Sharing with Publicly Verifiable Deletion

Jonathan Katz1 Ben Sela2

1Google

2University of Maryland

Katz, Sela Secret Sharing with PVD May 4, 2025 1 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):
Any third party can verify deletion proofs

Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):
Any third party can verify deletion proofs
Do not need to store verification keys securely

Katz, Sela Secret Sharing with PVD May 4, 2025 2 / 42

Secret sharing

Definition: Secret sharing scheme

Classical Secret Sharing

Parameterized by a monotone access structure defining the authorized sets

Share(s) : Outputs shares sh1, ..., shn.

Reconstruct({shi}i∈A) : If A is an authorized set, outputs the secret s.

Security: If A ⊆ [n] is not authorized, then

SD
(
{sh0i }i∈A, {sh1i }i∈A

)
≤ ϵ.

Katz, Sela Secret Sharing with PVD May 4, 2025 3 / 42

Secret sharing

Definition: Secret sharing scheme

Classical Secret Sharing

Parameterized by a monotone access structure defining the authorized sets

Share(s) : Outputs shares sh1, ..., shn.

Reconstruct({shi}i∈A) : If A is an authorized set, outputs the secret s.

Security: If A ⊆ [n] is not authorized, then

SD
(
{sh0i }i∈A, {sh1i }i∈A

)
≤ ϵ.

Katz, Sela Secret Sharing with PVD May 4, 2025 3 / 42

Secret sharing

Definition: Secret sharing scheme

Classical Secret Sharing

Parameterized by a monotone access structure defining the authorized sets

Share(s) : Outputs shares sh1, ..., shn.

Reconstruct({shi}i∈A) : If A is an authorized set, outputs the secret s.

Security: If A ⊆ [n] is not authorized, then

SD
(
{sh0i }i∈A, {sh1i }i∈A

)
≤ ϵ.

Katz, Sela Secret Sharing with PVD May 4, 2025 3 / 42

Secret sharing

Definition: Secret sharing scheme

Classical Secret Sharing

Parameterized by a monotone access structure defining the authorized sets

Share(s) : Outputs shares sh1, ..., shn.

Reconstruct({shi}i∈A) : If A is an authorized set, outputs the secret s.

Security: If A ⊆ [n] is not authorized, then

SD
(
{sh0i }i∈A, {sh1i }i∈A

)
≤ ϵ.

Katz, Sela Secret Sharing with PVD May 4, 2025 3 / 42

Secret sharing

Definition: Secret sharing scheme

Classical Secret Sharing

Parameterized by a monotone access structure defining the authorized sets

Share(s) : Outputs shares sh1, ..., shn.

Reconstruct({shi}i∈A) : If A is an authorized set, outputs the secret s.

Security: If A ⊆ [n] is not authorized, then

SD
(
{sh0i }i∈A, {sh1i }i∈A

)
≤ ϵ.

Katz, Sela Secret Sharing with PVD May 4, 2025 3 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Katz, Sela Secret Sharing with PVD May 4, 2025 4 / 42

Adaptive certified deletion

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Computational security: If A is bounded, then secret s is computationally hidden given
States , i.e.,

|States0⟩ ≈c |States1⟩ ∀s0, s1

Everlasting security: If A is bounded during adaptive certified deletion experiment, then
secret s is information-theoretically hidden given States , i.e.,

TD(|States0⟩, |States1⟩) ≤ negl(λ) ∀s0, s1

Katz, Sela Secret Sharing with PVD May 4, 2025 5 / 42

Adaptive certified deletion

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Computational security: If A is bounded, then secret s is computationally hidden given
States , i.e.,

|States0⟩ ≈c |States1⟩ ∀s0, s1
Everlasting security: If A is bounded during adaptive certified deletion experiment, then
secret s is information-theoretically hidden given States , i.e.,

TD(|States0⟩, |States1⟩) ≤ negl(λ) ∀s0, s1

Katz, Sela Secret Sharing with PVD May 4, 2025 5 / 42

Prior work on secret sharing with certified deletion

Prior results [BR24]:

Two (incomparable) security notions:

No-signaling certified deletion
Adaptive certified deletion

Constructions with privately verifiable deletion (for both security notions)

Secure against unbounded adversary

Katz, Sela Secret Sharing with PVD May 4, 2025 6 / 42

Prior work on secret sharing with certified deletion

Prior results [BR24]:

Two (incomparable) security notions:

No-signaling certified deletion
Adaptive certified deletion

Constructions with privately verifiable deletion (for both security notions)

Secure against unbounded adversary

Katz, Sela Secret Sharing with PVD May 4, 2025 6 / 42

Prior work on secret sharing with certified deletion

Prior results [BR24]:

Two (incomparable) security notions:

No-signaling certified deletion

Adaptive certified deletion

Constructions with privately verifiable deletion (for both security notions)

Secure against unbounded adversary

Katz, Sela Secret Sharing with PVD May 4, 2025 6 / 42

Prior work on secret sharing with certified deletion

Prior results [BR24]:

Two (incomparable) security notions:

No-signaling certified deletion
Adaptive certified deletion

Constructions with privately verifiable deletion (for both security notions)

Secure against unbounded adversary

Katz, Sela Secret Sharing with PVD May 4, 2025 6 / 42

Prior work on secret sharing with certified deletion

Prior results [BR24]:

Two (incomparable) security notions:

No-signaling certified deletion
Adaptive certified deletion

Constructions with privately verifiable deletion (for both security notions)

Secure against unbounded adversary

Katz, Sela Secret Sharing with PVD May 4, 2025 6 / 42

Prior work on secret sharing with certified deletion

Prior results [BR24]:

Two (incomparable) security notions:

No-signaling certified deletion
Adaptive certified deletion

Constructions with privately verifiable deletion (for both security notions)

Secure against unbounded adversary

Katz, Sela Secret Sharing with PVD May 4, 2025 6 / 42

Summary of our contributions

Publicly verifiable
deletion

Monotone access
structures

No-signaling
security Prior work: ✗

Our result: ✓

Prior work: ✓

Our result: ✓

Adaptive security
Prior work: ✗

Our result: ✓

Prior work: ✗

Our result: ✓

Katz, Sela Secret Sharing with PVD May 4, 2025 7 / 42

Summary of our contributions

Publicly verifiable
deletion

Monotone access
structures

No-signaling
security Prior work: ✗

Our result: ✓

Prior work: ✓

Our result: ✓

Adaptive security
Prior work: ✗

Our result: ✓

Prior work: ✗

Our result: ✓

Katz, Sela Secret Sharing with PVD May 4, 2025 7 / 42

Summary of our contributions

Assume information-theoretic classical secret sharing scheme for monotone access
structure A (with share size m)

Security Assumptions Number of qubits

Construction 1 Adaptive PVD OWF O(n ·m)

Construction 2 Adaptive PVD LWE O(m)

Construction 3 No-signaling PVD sub-exponentially
secure OWF

O(m)

Adaptive PVD with computational security =⇒ Adaptive PVD with everlasting security.

Katz, Sela Secret Sharing with PVD May 4, 2025 8 / 42

Summary of our contributions

Assume information-theoretic classical secret sharing scheme for monotone access
structure A (with share size m)

Security Assumptions Number of qubits

Construction 1 Adaptive PVD OWF O(n ·m)

Construction 2 Adaptive PVD LWE O(m)

Construction 3 No-signaling PVD sub-exponentially
secure OWF

O(m)

Adaptive PVD with computational security =⇒ Adaptive PVD with everlasting security.

Katz, Sela Secret Sharing with PVD May 4, 2025 8 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.

Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf

prepare the state
|ψb⟩ := |x0⟩+ (−1)b|x1⟩,

and verification key vk = {f (x0), f (x1)}
Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,

and verification key vk = {f (x0), f (x1)}
Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b

Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}

Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})

If x ∈ {f (x0), f (x1)}, then
TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.
Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.

Katz, Sela Secret Sharing with PVD May 4, 2025 9 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.

Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.

Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.

Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.

Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.

Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.

Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.
Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.
Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.
Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0), f (x i ,k1)}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.
Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1)

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.

Katz, Sela Secret Sharing with PVD May 4, 2025 10 / 42

Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares

Katz, Sela Secret Sharing with PVD May 4, 2025 11 / 42

Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares

Katz, Sela Secret Sharing with PVD May 4, 2025 11 / 42

Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares

Katz, Sela Secret Sharing with PVD May 4, 2025 11 / 42

Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares

Katz, Sela Secret Sharing with PVD May 4, 2025 11 / 42

Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares

Katz, Sela Secret Sharing with PVD May 4, 2025 11 / 42

Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares

Katz, Sela Secret Sharing with PVD May 4, 2025 11 / 42

Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares

Katz, Sela Secret Sharing with PVD May 4, 2025 11 / 42

Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares

Katz, Sela Secret Sharing with PVD May 4, 2025 11 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

Katz, Sela Secret Sharing with PVD May 4, 2025 12 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

Katz, Sela Secret Sharing with PVD May 4, 2025 13 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

Katz, Sela Secret Sharing with PVD May 4, 2025 14 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1

Katz, Sela Secret Sharing with PVD May 4, 2025 15 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1

Katz, Sela Secret Sharing with PVD May 4, 2025 16 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1

Katz, Sela Secret Sharing with PVD May 4, 2025 17 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1 cert2

Katz, Sela Secret Sharing with PVD May 4, 2025 18 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1 cert2

Katz, Sela Secret Sharing with PVD May 4, 2025 19 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1 cert2

Katz, Sela Secret Sharing with PVD May 4, 2025 20 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1 cert2

Observation: At least one quantum share must be deleted properly.

Scheme is secure if it is (4, 4) instead of (3, 4).

Idea: Make (3,4)-schemes secure by adding another layer to construction.

Katz, Sela Secret Sharing with PVD May 4, 2025 21 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1 cert2

Observation: At least one quantum share must be deleted properly.

Scheme is secure if it is (4, 4) instead of (3, 4).

Idea: Make (3,4)-schemes secure by adding another layer to construction.

Katz, Sela Secret Sharing with PVD May 4, 2025 21 / 42

Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
���XXX|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)

cert1 cert2

Observation: At least one quantum share must be deleted properly.

Scheme is secure if it is (4, 4) instead of (3, 4).

Idea: Make (3,4)-schemes secure by adding another layer to construction.

Katz, Sela Secret Sharing with PVD May 4, 2025 21 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
|qsh01⟩ |qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)

Katz, Sela Secret Sharing with PVD May 4, 2025 22 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
|qsh01⟩ |qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)

Katz, Sela Secret Sharing with PVD May 4, 2025 23 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
|qsh01⟩ |qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)

Katz, Sela Secret Sharing with PVD May 4, 2025 24 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
���HHH|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
���H

HH|qsh01⟩ |qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)
cert1

Katz, Sela Secret Sharing with PVD May 4, 2025 25 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
���HHH|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
���H

HH|qsh01⟩ |qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)
cert1

Katz, Sela Secret Sharing with PVD May 4, 2025 26 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
���HHH|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
���H

HH|qsh01⟩ |qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)
cert1

Katz, Sela Secret Sharing with PVD May 4, 2025 27 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
���HHH|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
���H

HH|qsh01⟩ ���HHH|qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)
cert1 cert2

Katz, Sela Secret Sharing with PVD May 4, 2025 28 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
���HHH|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
���H

HH|qsh01⟩ ���HHH|qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)
cert1 cert2

Katz, Sela Secret Sharing with PVD May 4, 2025 29 / 42

Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
���HHH|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
���H

HH|qsh01⟩ ���HHH|qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)
cert1 cert2

Katz, Sela Secret Sharing with PVD May 4, 2025 30 / 42

Final construction from one-way functions

ShareA: Classical secret sharing scheme for access structure A.
csh1 cshn ← ShareA

(
{x i ,k0,n, x

i ,k
1,n}

)
|qshn−1

1 ⟩ . . . |qshn−1
n ⟩ ← ShareA

(
{x i ,k0,n−1, x

i ,k
1,n−1}

)
...

. . .
... ← ShareA

(
{x i ,k0,1, x

i ,k
1,1}

)
|qsh01⟩ |qsh0n⟩ ← ShareA (s)

Problem: The size of the secret being shared at each level is a multiple of the size of the
shares in the previous level.

Solution: Use a PRF to generate the preimages, and share the PRF key at each level

Katz, Sela Secret Sharing with PVD May 4, 2025 31 / 42

Final construction from one-way functions

ShareA: Classical secret sharing scheme for access structure A.
csh1 cshn ← ShareA

(
{x i ,k0,n, x

i ,k
1,n}

)
|qshn−1

1 ⟩ . . . |qshn−1
n ⟩ ← ShareA

(
{x i ,k0,n−1, x

i ,k
1,n−1}

)
...

. . .
... ← ShareA

(
{x i ,k0,1, x

i ,k
1,1}

)
|qsh01⟩ |qsh0n⟩ ← ShareA (s)

Problem: The size of the secret being shared at each level is a multiple of the size of the
shares in the previous level.

Solution: Use a PRF to generate the preimages, and share the PRF key at each level

Katz, Sela Secret Sharing with PVD May 4, 2025 31 / 42

Final construction from one-way functions

ShareA: Classical secret sharing scheme for access structure A.
csh1 cshn ← ShareA

(
{x i ,k0,n, x

i ,k
1,n}

)
|qshn−1

1 ⟩ . . . |qshn−1
n ⟩ ← ShareA

(
{x i ,k0,n−1, x

i ,k
1,n−1}

)
...

. . .
... ← ShareA

(
{x i ,k0,1, x

i ,k
1,1}

)
|qsh01⟩ |qsh0n⟩ ← ShareA (s)

Problem: The size of the secret being shared at each level is a multiple of the size of the
shares in the previous level.

Solution: Use a PRF to generate the preimages, and share the PRF key at each level

Katz, Sela Secret Sharing with PVD May 4, 2025 31 / 42

Final construction from one-way functions

ShareA: Classical secret sharing scheme for access structure A.
csh1 cshn ← ShareA (kn)

|qshn−1
1 ⟩ . . . |qshn−1

1 ⟩ ← ShareA (kn−1) {x i ,kb,n−1} = {PRF(kn, b||i ||k)}

...
. . .

... ← ShareA (k1) {x i ,kb,1} = {PRF(k2, b||i ||k)}

|qsh01⟩ |qsh0n⟩ ← ShareA (s) {x i ,kb,0} = {PRF(k1, b||i ||k)}

Problem: The size of the secret being shared at each level is a multiple of the size of the
shares in the previous level.

Solution: Use a PRF to generate the preimages, and share a seperate PRF key at each
level.

Katz, Sela Secret Sharing with PVD May 4, 2025 32 / 42

Summary of first result

Theorem 1

There exists a secret sharing scheme satisfying adaptive publicly verifiable deletion for any
monotone access structure A using O(n ·m) qubits per share assuming:

OWFs

classical (information-theoretic) secret sharing scheme for access structure A (with share
size m)

Katz, Sela Secret Sharing with PVD May 4, 2025 33 / 42

Secret sharing with smaller qubit complexity

Construction from OWFs required O(n · (classical share size)) qubits for n parties.

Can we eliminate dependence on n?

Katz, Sela Secret Sharing with PVD May 4, 2025 34 / 42

Secret sharing with smaller qubit complexity

Construction from OWFs required O(n · (classical share size)) qubits for n parties.

Can we eliminate dependence on n?

Katz, Sela Secret Sharing with PVD May 4, 2025 34 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)

Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)
Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)
Problem:

Need to hide x0 ⊕ x1 for valid deletion.

Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)
Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)
Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)
Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)
Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)
Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)
Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)
Katz, Sela Secret Sharing with PVD May 4, 2025 35 / 42

Instantiating the reconstruction oracle

Consider the compute-and-compare program:

CC[P, lock, z](x) :=

{
z P(x) = lock

⊥ otherwise.

Compute-and-compare obfuscator

Functionality: C̃C← CC.Obf(CC), where C̃C(x) = CC(x)

Security: If lock is unpredictable given P, then C̃C hides the details of CC[P, lock, z]

Can be constructed assuming LWE [WZ17]

Idea: Set P = Rec and lock = z = secret

Katz, Sela Secret Sharing with PVD May 4, 2025 36 / 42

Instantiating the reconstruction oracle

Consider the compute-and-compare program:

CC[P, lock, z](x) :=

{
z P(x) = lock

⊥ otherwise.

Compute-and-compare obfuscator

Functionality: C̃C← CC.Obf(CC), where C̃C(x) = CC(x)

Security: If lock is unpredictable given P, then C̃C hides the details of CC[P, lock, z]

Can be constructed assuming LWE [WZ17]

Idea: Set P = Rec and lock = z = secret

Katz, Sela Secret Sharing with PVD May 4, 2025 36 / 42

Instantiating the reconstruction oracle

Consider the compute-and-compare program:

CC[P, lock, z](x) :=

{
z P(x) = lock

⊥ otherwise.

Compute-and-compare obfuscator

Functionality: C̃C← CC.Obf(CC), where C̃C(x) = CC(x)

Security: If lock is unpredictable given P, then C̃C hides the details of CC[P, lock, z]

Can be constructed assuming LWE [WZ17]

Idea: Set P = Rec and lock = z = secret

Katz, Sela Secret Sharing with PVD May 4, 2025 36 / 42

Instantiating the reconstruction oracle

Consider the compute-and-compare program:

CC[P, lock, z](x) :=

{
z P(x) = lock

⊥ otherwise.

Compute-and-compare obfuscator

Functionality: C̃C← CC.Obf(CC), where C̃C(x) = CC(x)

Security: If lock is unpredictable given P, then C̃C hides the details of CC[P, lock, z]

Can be constructed assuming LWE [WZ17]

Idea: Set P = Rec and lock = z = secret

Katz, Sela Secret Sharing with PVD May 4, 2025 36 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)

Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].

R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)

Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)

Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)

Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)
Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)
Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)
Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)
Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)
Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)
Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1)

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 37 / 42

Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s) Share(lock) (lock is uniform)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s]) R̃ec← Obf(CC[Rec, lock, s])

Reconstruct({|qshi ⟩}i∈A)
Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m].

Output s ← R̃ec({di ,k}i∈A,k∈[m]).

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1).

Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable.

Solution: Use a uniform value
independent of s as the lock

Katz, Sela Secret Sharing with PVD May 4, 2025 38 / 42

Summary of second result

Theorem 2

There exists a secret sharing scheme with adaptive publicly verifiable deletion for any
monotone access structure A using O(m) qubits per share assuming:

LWE

classical (information-theoretic) secret sharing scheme for access structure A

Katz, Sela Secret Sharing with PVD May 4, 2025 39 / 42

Open problems

Secret sharing with PVD from weaker assumptions than OWF (e.g., from hard quantum
planted problems [KNY23])?

No-signaling security (with PVD) without sub-exponentially secure OWF?

Information-theoretic secret sharing with adaptive certified deletion for any monotone
access structure in the privately verifiable setting?

Katz, Sela Secret Sharing with PVD May 4, 2025 40 / 42

Thank You!

Katz, Sela Secret Sharing with PVD May 4, 2025 41 / 42

	Secret Sharing with Publicly Verifiable Deletion
	Secret sharing from compute-and-compare obfuscation

