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Certified deletion

Secure key leasing: revoking access to functionality

Certified deletion in our setting: deleting classical information

Storage providerUser
|data⟩

Verify(vk, cert) ���XXX|data⟩cert

privately verifiable deletion: Need to hide vk for deletion security to hold.

Advantages of publicly verifiable deletion (PVD):

Any third party can verify deletion proofs
Do not need to store verification keys securely
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Secret sharing

Definition: Secret sharing scheme

Classical Secret Sharing

Parameterized by a monotone access structure defining the authorized sets

Share(s) : Outputs shares sh1, ..., shn.

Reconstruct({shi}i∈A) : If A is an authorized set, outputs the secret s.

Security: If A ⊆ [n] is not authorized, then

SD
(
{sh0i }i∈A, {sh1i }i∈A

)
≤ ϵ.
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Secret sharing with certified deletion [BR24]

Definition: Secret sharing with certified deletion [BR24]

Share(1λ, s) : Outputs shares |qsh1⟩, ..., |qshn⟩, and verification key vk.

Reconstruct({|qshi ⟩}i∈A) : If A is an authorized set, outputs the secret s.

Delete(|qsh⟩) : Outputs a classical deletion proof cert.

Verify(vk, cert) : Outputs ⊤ if cert is valid, and outputs ⊥ otherwise.

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.
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Adaptive certified deletion

Adaptive certified deletion experiment [BR24]

Generate verification key and quantum shares vk, |qsh1⟩, ..., |qshn⟩ ← Share(1λ, s)

Adversary A adaptively corrupts and deletes shares such that...

the set of shares that are corrupted but not deleted is never authorized.

Output |States⟩, the state of A.

Computational security: If A is bounded, then secret s is computationally hidden given
States , i.e.,

|States0⟩ ≈c |States1⟩ ∀s0, s1

Everlasting security: If A is bounded during adaptive certified deletion experiment, then
secret s is information-theoretically hidden given States , i.e.,

TD(|States0⟩, |States1⟩) ≤ negl(λ) ∀s0, s1
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Prior work on secret sharing with certified deletion

Prior results [BR24]:

Two (incomparable) security notions:

No-signaling certified deletion
Adaptive certified deletion

Constructions with privately verifiable deletion (for both security notions)

Secure against unbounded adversary
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Summary of our contributions

Publicly verifiable
deletion

Monotone access
structures

No-signaling
security Prior work: ✗

Our result: ✓

Prior work: ✓

Our result: ✓

Adaptive security
Prior work: ✗

Our result: ✓

Prior work: ✗

Our result: ✓
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Summary of our contributions

Assume information-theoretic classical secret sharing scheme for monotone access
structure A (with share size m)

Security Assumptions Number of qubits

Construction 1 Adaptive PVD OWF O(n ·m)

Construction 2 Adaptive PVD LWE O(m)

Construction 3 No-signaling PVD sub-exponentially
secure OWF

O(m)

Adaptive PVD with computational security =⇒ Adaptive PVD with everlasting security.
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Publicly verifiable deletion—prior work [BKM+23]

Let f : {0, 1}ℓowfin 7→ {0, 1}ℓowfout be a one-way function.

Encode(b ∈ {0, 1}):

Sample uniform x0, x1 ← {0, 1}ℓowf
prepare the state

|ψb⟩ := |x0⟩+ (−1)b|x1⟩,
and verification key vk = {f (x0), f (x1)}

Extract(|ψb⟩,x0 ⊕ x1): Measuring |ψb⟩ in the Hadamard basis yields a string d such that
d · (x0 ⊕ x1) = b
Delete(|ψb⟩): Measure in the computational basis (→ |x0⟩ or |x1⟩) and release the result

Verify(cert = x , vk = {f (x0), f (x1)}): Accept if f (x) ∈ {f (x0), f (x1)}
Security: Assume x0 ⊕ x1 is hidden from A

(x , stateb)← A (|ψb⟩, vk := {f (x0), f (x1)})
If x ∈ {f (x0), f (x1)}, then

TD(state0, state1) ≤ negl(λ)

Note: Preimages must be hidden for deletion security, but knowledge of preimages are
required to extract encoded bit b.
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Secret sharing with PVD from OWFs—first attempt

Share(s)csh1 csh2 ............................... cshn

|qsh1⟩ |qsh2⟩ |qshn⟩

{x1,k0 , x1,k1 }k∈[m] ← {0, 1}ℓ
owf
in {x2,k0 , x2,k1 }k∈[m] ← {0, 1}ℓ

owf
in {xn,k0 , xn,k1 }k∈[m] ← {0, 1}ℓ

owf
in

|qshi ⟩ :=
⊗

k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x1,ki ⟩

)
vk = {f (x i ,k0 ), f (x i ,k1 )}i∈[n],k∈[m]

Reconstruct({|qshi ⟩}i∈A) : Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}.

Compute each bit of the ith classical share as cshi [k] = di,k · (x i,k0 ⊕ x i,k1 )

Delete(|qshi ⟩) : Measure |qshi ⟩ in the computational basis → x i ,1c1 , ..., x
i ,m
cm .

Verify({x i ,kck }): Check that f (x i ,kck ) matches correct image in vk for each k ∈ [m].

Problem: need preimages x i,k0 ⊕ x i,k1 to extract the classical share.
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Secret sharing with PVD from OWFs—second attempt

Idea: Give each party classical share of preimages in addition to quantum share.

s

{x i ,k0 , x i ,k1 }

cshsecret1 cshsecret2
............................... cshsecretn

cshpreim1 cshpreim2 cshpreimn
...............................

|qsh1⟩ |qsh2⟩ |qshn⟩cshpreim1 cshpreim2
cshpreimn

Share

Share

Authorized set of parties can reconstruct preimages.

Preimages are hidden from adversary holding an unauthorized set of shares.

Problem: Classical part of each share does not get deleted. Adversary can accumulate an
authorized set of classical preimage shares by adaptively corrupting shares
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authorized set of classical preimage shares by adaptively corrupting shares
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Example attack - (3,4)-secret sharing

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0 ⊕ x i ,k1 }

)
|qsh1⟩ |qsh2⟩ |qsh3⟩ |qsh4⟩ ← Share(3,4) (s)
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Observation: At least one quantum share must be deleted properly.

Scheme is secure if it is (4, 4) instead of (3, 4).

Idea: Make (3,4)-schemes secure by adding another layer to construction.
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Secure (3, 4)-secret sharing scheme

csh1 csh2 csh3 csh4 ← Share(3,4)

(
{x i ,k0,2 ⊕ x i ,k1,2}

)
|qsh11⟩ |qsh12⟩ |qsh13⟩ |qsh14⟩ ← Share(3,4)

(
{x i ,k0,1 ⊕ x i ,k1,1}

)
|qsh01⟩ |qsh02⟩ |qsh03⟩ |qsh04⟩ ← Share(3,4) (s)
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Final construction from one-way functions

ShareA: Classical secret sharing scheme for access structure A.
csh1 . . . . . . cshn ← ShareA

(
{x i ,k0,n, x

i ,k
1,n}

)
|qshn−1

1 ⟩ . . . |qshn−1
n ⟩ ← ShareA

(
{x i ,k0,n−1, x

i ,k
1,n−1}

)
...

. . .
... ← ShareA

(
{x i ,k0,1, x

i ,k
1,1}

)
|qsh01⟩ . . . . . . |qsh0n⟩ ← ShareA (s)

Problem: The size of the secret being shared at each level is a multiple of the size of the
shares in the previous level.

Solution: Use a PRF to generate the preimages, and share the PRF key at each level
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Final construction from one-way functions

ShareA: Classical secret sharing scheme for access structure A.
csh1 . . . . . . cshn ← ShareA (kn)

|qshn−1
1 ⟩ . . . |qshn−1

1 ⟩ ← ShareA (kn−1) {x i ,kb,n−1} = {PRF(kn, b||i ||k)}

...
. . .

... ← ShareA (k1) {x i ,kb,1} = {PRF(k2, b||i ||k)}

|qsh01⟩ . . . . . . |qsh0n⟩ ← ShareA (s) {x i ,kb,0} = {PRF(k1, b||i ||k)}

Problem: The size of the secret being shared at each level is a multiple of the size of the
shares in the previous level.

Solution: Use a PRF to generate the preimages, and share a seperate PRF key at each
level.
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Summary of first result

Theorem 1

There exists a secret sharing scheme satisfying adaptive publicly verifiable deletion for any
monotone access structure A using O(n ·m) qubits per share assuming:

OWFs

classical (information-theoretic) secret sharing scheme for access structure A (with share
size m)
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Secret sharing with smaller qubit complexity

Construction from OWFs required O(n · (classical share size)) qubits for n parties.

Can we eliminate dependence on n?
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Construction from compute-and-compare obfuscation

Starting point for construction:

csh1, ..., cshn ← Share(s)

|qshi ⟩ :=
⊗
k∈[m]

(
|x i ,k0 ⟩+ (−1)cshi [k]|x i ,k1 ⟩

)

Problem:

Need to hide x0 ⊕ x1 for valid deletion.
Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1 ). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)
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Preimages are required for extraction/reconstruction.

Idea: Hide the the preimages inside a reconstruction oracle:

Rec({di ,k}i∈A)

Hardcode preimages {x i ,k0 , x i ,k1 }i∈[n],k∈[m]

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1 ). Set csh′i = csh′i [1]...csh
′
i [m].

Output Reconstruct({csh′i}i∈A)
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Instantiating the reconstruction oracle

Consider the compute-and-compare program:

CC[P, lock, z ](x) :=

{
z P(x) = lock

⊥ otherwise.

Compute-and-compare obfuscator

Functionality: C̃C← CC.Obf(CC), where C̃C(x) = CC(x)

Security: If lock is unpredictable given P, then C̃C hides the details of CC[P, lock, z ]

Can be constructed assuming LWE [WZ17]

Idea: Set P = Rec and lock = z = secret
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Secret sharing from compute-and-compare obfuscation

Share(s):

Generate classical shares {cshi}i∈[n] ← Share(s)

Generate corresponding quantum shares {|qshi ⟩}i∈[n] ← {cshi}i∈[n].
R̃ec← Obf(CC[Rec, s, s])

Reconstruct({|qshi ⟩}i∈A)

Measure each |qshi ⟩ in the Hadamard basis to obtain {di ,k}i∈A,k∈[m]

Output s ← R̃ec({di ,k}i∈A,k∈[m])

Security: Rec is independent of classical shares/lock. Therefore R̃ec should hide preimages.

Rec({di ,k}i∈A)

Compute csh′i [k] = di ,k · (x i ,k0 ⊕ x i ,k1 )

Set csh′i = csh′i [1]...csh
′
i [m]

Output Reconstruct({csh′i}i∈A)

Problem: The secret s is not
unpredictable

Solution: Use a uniform value
independent of s as the lock
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Summary of second result

Theorem 2

There exists a secret sharing scheme with adaptive publicly verifiable deletion for any
monotone access structure A using O(m) qubits per share assuming:

LWE

classical (information-theoretic) secret sharing scheme for access structure A
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Open problems

Secret sharing with PVD from weaker assumptions than OWF (e.g., from hard quantum
planted problems [KNY23])?

No-signaling security (with PVD) without sub-exponentially secure OWF?

Information-theoretic secret sharing with adaptive certified deletion for any monotone
access structure in the privately verifiable setting?
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Thank You!
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