Secret Sharing with Publicly Verifiable Deletion

Jonathan Katz¹ Ben Sela²

 1 Google

²University of Maryland

Katz, S

	<u> </u>
Katz	Sela
INALZ,	Jela

▶ < Ξ ▶</p>

< □ > < 同

э

• Secure key leasing: revoking access to functionality

▶ < ∃ ▶</p>

э

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

▶ < ∃ >

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

<u>User</u>

Storage provider

▶ < ∃ ▶</p>

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

▶ < ∃ >

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

▶ < ∃ ▶</p>

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

→ < ∃ →</p>

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

글 제 제 글 제

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

• privately verifiable deletion: Need to hide vk for deletion security to hold.

→ < ∃→

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

- privately verifiable deletion: Need to hide vk for deletion security to hold.
- Advantages of **publicly verifiable deletion (PVD)**:

→ < ∃→

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

- privately verifiable deletion: Need to hide vk for deletion security to hold.
- Advantages of **publicly verifiable deletion (PVD)**:
 - Any third party can verify deletion proofs

- Secure key leasing: revoking access to functionality
- Certified deletion in our setting: deleting classical information

- privately verifiable deletion: Need to hide vk for deletion security to hold.
- Advantages of **publicly verifiable deletion (PVD)**:
 - Any third party can verify deletion proofs
 - Do not need to store verification keys securely

Classical Secret Sharing

• Parameterized by a monotone access structure defining the authorized sets

Classical Secret Sharing

- Parameterized by a monotone access structure defining the authorized sets
- Share(s) : Outputs shares sh₁, ..., sh_n.

Classical Secret Sharing

- Parameterized by a monotone access structure defining the authorized sets
- Share(s) : Outputs shares sh₁, ..., sh_n.
- Reconstruct($\{sh_i\}_{i \in A}$) : If A is an authorized set, outputs the secret s.

Classical Secret Sharing

- Parameterized by a monotone access structure defining the authorized sets
- Share(s) : Outputs shares sh₁, ..., sh_n.
- Reconstruct($\{sh_i\}_{i \in A}$) : If A is an authorized set, outputs the secret s.

Security: If $A \subseteq [n]$ is not authorized, then

 $SD\left(\{sh_i^0\}_{i\in A}, \{sh_i^1\}_{i\in A}\right) \leq \epsilon.$

• Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.

- Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.
- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : If A is an authorized set, outputs the secret s.

- Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.
- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : If A is an authorized set, outputs the secret s.
- $Delete(|qsh\rangle)$: Outputs a classical deletion proof cert.

- Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.
- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : If A is an authorized set, outputs the secret s.
- $Delete(|qsh\rangle)$: Outputs a classical deletion proof cert.
- Verify(vk, cert) : Outputs \top if cert is valid, and outputs \bot otherwise.

- Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.
- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : If A is an authorized set, outputs the secret s.
- $Delete(|qsh\rangle)$: Outputs a classical deletion proof cert.
- Verify(vk, cert) : Outputs \top if cert is valid, and outputs \bot otherwise.

Adaptive certified deletion experiment [BR24]

- Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.
- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : If A is an authorized set, outputs the secret s.
- $Delete(|qsh\rangle)$: Outputs a classical deletion proof cert.
- Verify(vk, cert) : Outputs \top if cert is valid, and outputs \bot otherwise.

Adaptive certified deletion experiment [BR24]

• Generate verification key and quantum shares vk, $|qsh_1\rangle, ..., |qsh_n\rangle \leftarrow Share(1^{\lambda}, s)$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.
- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : If A is an authorized set, outputs the secret s.
- $Delete(|qsh\rangle)$: Outputs a classical deletion proof cert.
- Verify(vk, cert) : Outputs \top if cert is valid, and outputs \bot otherwise.

Adaptive certified deletion experiment [BR24]

- Generate verification key and quantum shares vk, $|qsh_1\rangle, ..., |qsh_n\rangle \leftarrow Share(1^{\lambda}, s)$
- \bullet Adversary ${\cal A}$ adaptively corrupts and deletes shares such that...

- Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.
- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : If A is an authorized set, outputs the secret s.
- $Delete(|qsh\rangle)$: Outputs a classical deletion proof cert.
- Verify(vk, cert) : Outputs \top if cert is valid, and outputs \bot otherwise.

Adaptive certified deletion experiment [BR24]

- Generate verification key and quantum shares vk, $|qsh_1\rangle, ..., |qsh_n\rangle \leftarrow Share(1^{\lambda}, s)$
- \bullet Adversary ${\cal A}$ adaptively corrupts and deletes shares such that...
 - the set of shares that are corrupted but not deleted is never authorized.

Kat-	Sal	
rtatz,	Se	а

- Share(1^{λ} , s) : Outputs shares $|qsh_1\rangle$, ..., $|qsh_n\rangle$, and verification key vk.
- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : If A is an authorized set, outputs the secret s.
- $Delete(|qsh\rangle)$: Outputs a classical deletion proof cert.
- Verify(vk, cert) : Outputs \top if cert is valid, and outputs \bot otherwise.

Adaptive certified deletion experiment [BR24]

- Generate verification key and quantum shares vk, $|qsh_1\rangle, ..., |qsh_n\rangle \leftarrow Share(1^{\lambda}, s)$
- \bullet Adversary ${\cal A}$ adaptively corrupts and deletes shares such that...
 - the set of shares that are corrupted but not deleted is never authorized.
- Output $|\mathsf{State}_s\rangle$, the state of \mathcal{A} .

• • = • • = •

Adaptive certified deletion

Adaptive certified deletion experiment [BR24]

- Generate verification key and quantum shares vk, $|qsh_1\rangle, ..., |qsh_n\rangle \leftarrow Share(1^{\lambda}, s)$
- Adversary ${\cal A}$ adaptively corrupts and deletes shares such that...
 - the set of shares that are corrupted but not deleted is never authorized.
- Output $|State_s\rangle$, the state of \mathcal{A} .
- Computational security: If A is bounded, then secret s is **computationally** hidden given State_s, i.e.,

 $|\mathsf{State}_{s_0}
angle pprox_c |\mathsf{State}_{s_1}
angle \quad orall s_0, s_1$

Adaptive certified deletion

Adaptive certified deletion experiment [BR24]

- Generate verification key and quantum shares vk, $|qsh_1\rangle, ..., |qsh_n\rangle \leftarrow Share(1^{\lambda}, s)$
- Adversary ${\cal A}$ adaptively corrupts and deletes shares such that...
 - the set of shares that are corrupted but not deleted is never authorized.
- Output $|\mathsf{State}_s\rangle$, the state of \mathcal{A} .
- Computational security: If A is bounded, then secret s is **computationally** hidden given State_s, i.e.,

$$|\mathsf{State}_{s_0}
angle pprox_c \ |\mathsf{State}_{s_1}
angle \quad orall s_0, s_1$$

• Everlasting security: If A is bounded *during adaptive certified deletion experiment*, then secret s is **information-theoretically** hidden given State_s, i.e.,

 $\mathsf{TD}(|\mathsf{State}_{s_0}\rangle, |\mathsf{State}_{s_1}\rangle) \leq \mathsf{negl}(\lambda) \quad \forall s_0, s_1$

▶ < ∃ ▶</p>

• Two (incomparable) security notions:

- Two (incomparable) security notions:
 - No-signaling certified deletion

- Two (incomparable) security notions:
 - No-signaling certified deletion
 - Adaptive certified deletion

- Two (incomparable) security notions:
 - No-signaling certified deletion
 - Adaptive certified deletion
- Constructions with privately verifiable deletion (for both security notions)

- Two (incomparable) security notions:
 - No-signaling certified deletion
 - Adaptive certified deletion
- Constructions with privately verifiable deletion (for both security notions)
 - Secure against unbounded adversary

	Publicly verifiable deletion	Monotone access structures
No-signaling security	• Prior work: 🗡	• Prior work: 🗸
Adaptive security	• Prior work: 🗡	• Prior work: 🗡

▶ < ∃ ▶</p>

э
	Publicly verifiable deletion	Monotone access structures
No-signaling security	 Prior work: X Our result: ✓ 	 Prior work: ✓ Our result: ✓
Adaptive security	 Prior work: X Our result: ✓ 	 Prior work: X Our result: ✓

▶ < ∃ ▶</p>

• Assume information-theoretic classical secret sharing scheme for monotone access structure A (with share size m)

	Security	Assumptions	Number of qubits
Construction 1	Adaptive PVD	OWF	$O(n \cdot m)$
Construction 2	Adaptive PVD	LWE	<i>O</i> (<i>m</i>)
Construction 3	No-signaling PVD	sub-exponentially	<i>O</i> (<i>m</i>)
		secure OWF	

▶ < ⊒ ▶

• Assume information-theoretic classical secret sharing scheme for monotone access structure A (with share size m)

	Security	Assumptions	Number of qubits
Construction 1	Adaptive PVD	OWF	$O(n \cdot m)$
Construction 2	Adaptive PVD	LWE	<i>O</i> (<i>m</i>)
Construction 3	No-signaling PVD	sub-exponentially secure OWF	<i>O</i> (<i>m</i>)

• Adaptive PVD with computational security \implies Adaptive PVD with everlasting security.

Let $f: \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \mapsto \{0,1\}^{\ell_{\text{out}}^{\text{owf}}}$ be a one-way function.

글 제 제 글 제

Let
$$f : \{0,1\}^{\ell_{in}^{owf}} \mapsto \{0,1\}^{\ell_{out}^{owf}}$$
 be a one-way function.
• Encode $(b \in \{0,1\})$:

▶ < ∃ ▶

- Let $f : \{0, 1\}_{i \text{out}}^{\ell_{out}} \mapsto \{0, 1\}_{out}^{\ell_{out}}$ be a one-way function.
 - Encode $(b \in \{0, 1\})$:
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$

- Let $f : \{0, 1\}_{in}^{\ell_{in}^{owf}} \mapsto \{0, 1\}_{out}^{\ell_{out}^{owf}}$ be a one-way function.
 - **Encode**($b \in \{0, 1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

A B M A B M

- Let $f : \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \mapsto \{0,1\}^{\ell_{\text{out}}^{\text{owf}}}$ be a one-way function. • **Encode**($b \in \{0,1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

• and verification key $vk = \{f(x_0), f(x_1)\}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Let $f: \{0,1\}_{in}^{\ell_{out}^{owf}} \mapsto \{0,1\}_{out}^{\ell_{out}^{owf}}$ be a one-way function.
 - **Encode**($b \in \{0, 1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

- and verification key $vk = \{f(x_0), f(x_1)\}$
- Extract($|\psi_b\rangle, x_0 \oplus x_1$): Measuring $|\psi_b\rangle$ in the Hadamard basis yields a string d such that $d \cdot (x_0 \oplus x_1) = b$

- Let $f: \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \mapsto \{0,1\}^{\ell_{\text{out}}^{\text{owf}}}$ be a one-way function.
 - **Encode**($b \in \{0, 1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

- and verification key $vk = \{f(x_0), f(x_1)\}$
- Extract($|\psi_b\rangle, x_0 \oplus x_1$): Measuring $|\psi_b\rangle$ in the Hadamard basis yields a string d such that $d \cdot (x_0 \oplus x_1) = b$
- **Delete** $(|\psi_b\rangle)$: Measure in the computational basis $(\rightarrow |x_0\rangle$ or $|x_1\rangle)$ and release the result

- Let $f: \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \mapsto \{0,1\}^{\ell_{\text{out}}^{\text{owf}}}$ be a one-way function.
 - **Encode**($b \in \{0, 1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

- and verification key $vk = \{f(x_0), f(x_1)\}$
- Extract($|\psi_b\rangle, x_0 \oplus x_1$): Measuring $|\psi_b\rangle$ in the Hadamard basis yields a string d such that $d \cdot (x_0 \oplus x_1) = b$
- **Delete**($|\psi_b\rangle$): Measure in the computational basis ($\rightarrow |x_0\rangle$ or $|x_1\rangle$) and release the result
 - Verify(cert = x, vk = { $f(x_0), f(x_1)$ }): Accept if $f(x) \in {f(x_0), f(x_1)}$

(4) E (4) E (4)

- Let $f: \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \mapsto \{0,1\}^{\ell_{\text{out}}^{\text{owf}}}$ be a one-way function.
 - **Encode**($b \in \{0, 1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

- and verification key $vk = \{f(x_0), f(x_1)\}$
- Extract($|\psi_b\rangle, x_0 \oplus x_1$): Measuring $|\psi_b\rangle$ in the Hadamard basis yields a string d such that $d \cdot (x_0 \oplus x_1) = b$
- **Delete**($|\psi_b\rangle$): Measure in the computational basis ($\rightarrow |x_0\rangle$ or $|x_1\rangle$) and release the result
 - Verify(cert = x, vk = { $f(x_0), f(x_1)$ }): Accept if $f(x) \in {f(x_0), f(x_1)}$
 - Security: Assume $x_0 \oplus x_1$ is hidden from \mathcal{A}

- Let $f: \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \mapsto \{0,1\}^{\ell_{\text{out}}^{\text{owf}}}$ be a one-way function.
 - **Encode**($b \in \{0, 1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

- and verification key $vk = \{f(x_0), f(x_1)\}$
- Extract($|\psi_b\rangle, x_0 \oplus x_1$): Measuring $|\psi_b\rangle$ in the Hadamard basis yields a string d such that $d \cdot (x_0 \oplus x_1) = b$
- **Delete**($|\psi_b\rangle$): Measure in the computational basis ($\rightarrow |x_0\rangle$ or $|x_1\rangle$) and release the result
 - Verify(cert = x, vk = { $f(x_0), f(x_1)$ }): Accept if $f(x) \in {f(x_0), f(x_1)}$
 - **Security:** Assume $x_0 \oplus x_1$ is hidden from \mathcal{A}
 - $(x, \mathsf{state}_b) \leftarrow \mathcal{A}(|\psi_b\rangle, \mathsf{vk} := \{f(x_0), f(x_1)\})$

A B M A B M

- Let $f: \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \mapsto \{0,1\}^{\ell_{\text{out}}^{\text{owf}}}$ be a one-way function.
 - **Encode**($b \in \{0, 1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

- and verification key $vk = \{f(x_0), f(x_1)\}$
- Extract($|\psi_b\rangle, x_0 \oplus x_1$): Measuring $|\psi_b\rangle$ in the Hadamard basis yields a string d such that $d \cdot (x_0 \oplus x_1) = b$
- **Delete** $(|\psi_b\rangle)$: Measure in the computational basis $(\rightarrow |x_0\rangle$ or $|x_1\rangle)$ and release the result
 - Verify(cert = x, vk = { $f(x_0), f(x_1)$ }): Accept if $f(x) \in {f(x_0), f(x_1)}$
 - **Security:** Assume $x_0 \oplus x_1$ is hidden from \mathcal{A}
 - $(x, \text{state}_b) \leftarrow \mathcal{A}(|\psi_b\rangle, \text{vk} := \{f(x_0), f(x_1)\})$
 - If $x \in \{f(x_0), f(x_1)\}$, then

 $\mathsf{TD}(\mathsf{state}_0,\mathsf{state}_1) \leq \mathsf{negl}(\lambda)$

A B M A B M

- Let $f: \{0,1\}_{\text{in}}^{\ell_{\text{in}}^{\text{owf}}} \mapsto \{0,1\}_{\text{out}}^{\ell_{\text{out}}^{\text{owf}}}$ be a one-way function.
 - **Encode**($b \in \{0, 1\}$):
 - Sample uniform $x_0, x_1 \leftarrow \{0, 1\}^{\ell_{\mathsf{owf}}}$
 - prepare the state

$$|\psi_b\rangle := |x_0\rangle + (-1)^b |x_1\rangle,$$

- and verification key $vk = \{f(x_0), f(x_1)\}$
- Extract($|\psi_b\rangle, x_0 \oplus x_1$): Measuring $|\psi_b\rangle$ in the Hadamard basis yields a string d such that $d \cdot (x_0 \oplus x_1) = b$
- **Delete**($|\psi_b\rangle$): Measure in the computational basis ($\rightarrow |x_0\rangle$ or $|x_1\rangle$) and release the result
 - Verify(cert = x, vk = { $f(x_0), f(x_1)$ }): Accept if $f(x) \in {f(x_0), f(x_1)}$
 - Security: Assume $x_0 \oplus x_1$ is hidden from \mathcal{A}
 - $(x, \mathsf{state}_b) \leftarrow \mathcal{A}(|\psi_b\rangle, \mathsf{vk} := \{f(x_0), f(x_1)\})$
 - If $x \in \{f(x_0), f(x_1)\}$, then

 $\mathsf{TD}(\mathsf{state}_0,\mathsf{state}_1) \leq \mathsf{negl}(\lambda)$

• Note: Preimages must be hidden for deletion security, but knowledge of preimages are required to extract encoded bit b.

Katz, Sela

Secret Sharing with PVD

May 4, 2025

 csh_2 $csh_n \leftarrow Share(s)$

Katz,	Sela

 csh_1

→ < ∃→

$$csh_{1} csh_{2} csh_{n} csh_$$

→ < ∃→

$$\begin{array}{ccc} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{n} & \operatorname{csh}_{n} & \operatorname{Share}(s) \\ & & & \downarrow \{x_{0}^{1,k}, x_{1}^{1,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{\operatorname{in}}^{\operatorname{ovf}}} \downarrow \{x_{0}^{2,k}, x_{1}^{2,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{\operatorname{in}}^{\operatorname{ovf}}} & \downarrow \{x_{0}^{n,k}, x_{1}^{n,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{\operatorname{in}}^{\operatorname{ovf}}} \\ & & & |\operatorname{qsh}_{2}\rangle & & & |\operatorname{qsh}_{n}\rangle \end{array}$$

→ < ∃→

$$\begin{array}{ccc} \cosh_{1} & \cosh_{2} & \cdots & \cosh_{n} & & \text{Share}(s) \\ & & \downarrow \{x_{0}^{1,k}, x_{1}^{1,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \middle| \{x_{0}^{2,k}, x_{1}^{2,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} & \downarrow \{x_{0}^{n,k}, x_{1}^{n,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{\text{in}}^{\text{owf}}} \\ & & |qsh_{1}\rangle & & |qsh_{2}\rangle & & |qsh_{n}\rangle \\ & & & \downarrow \{qsh_{i}\rangle := \bigotimes_{k \in [m]} \left(|x_{0}^{i,k}\rangle + (-1)^{csh_{i}[k]}|x_{i}^{1,k}\rangle\right) & \forall k = \{f(x_{0}^{i,k}), f(x_{1}^{i,k})\}_{i \in [n], k \in [m]} \end{array}$$

→ < ∃→

$$\begin{aligned} \cosh_{1} & \cosh_{2} & \cosh_{n} \longleftarrow \operatorname{Share}(s) \\ \downarrow \{x_{0}^{1,k}, x_{1}^{1,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} \downarrow \{x_{0}^{2,k}, x_{1}^{2,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} \downarrow \{x_{0}^{n,k}, x_{1}^{n,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} \\ |qsh_{1}\rangle & |qsh_{2}\rangle & |qsh_{n}\rangle \\ \downarrow \{y_{0}^{i,k}\}_{i \in [m]} \left(|x_{0}^{i,k}\rangle + (-1)^{\operatorname{csh}_{i}[k]}|x_{i}^{1,k}\rangle\right) & \forall k = \{f(x_{0}^{i,k}), f(x_{1}^{i,k})\}_{i \in [n], k \in [m]} \end{aligned}$$

• Reconstruct($\{|qsh_i\rangle\}_{i\in A}$): Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}$.

글 에 제 글 어

$$\begin{aligned} \cosh_{1} & \cosh_{2} & \cosh_{n} \longleftarrow \operatorname{Share}(s) \\ \downarrow \{x_{0}^{1,k}, x_{1}^{1,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{\text{owf}}} \downarrow \{x_{0}^{2,k}, x_{1}^{2,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{\text{owf}}} \downarrow \{x_{0}^{n,k}, x_{1}^{n,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{\text{owf}}} \\ |qsh_{1}\rangle & |qsh_{2}\rangle & |qsh_{n}\rangle \\ \downarrow \{qsh_{i}\rangle &:= \bigotimes_{k \in [m]} \left(|x_{0}^{i,k}\rangle + (-1)^{\operatorname{csh}_{i}[k]}|x_{i}^{1,k}\rangle\right) & \mathsf{vk} = \{f(x_{0}^{i,k}), f(x_{1}^{i,k})\}_{i \in [n], k \in [m]} \end{aligned}$$

- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}$.
 - Compute each bit of the *i*th classical share as $csh_i[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$

▶ < ∃ ▶</p>

$$\begin{aligned} \cosh_{1} & \cosh_{2} & \cosh_{n} \longleftarrow \operatorname{Share}(s) \\ & \downarrow \{x_{0}^{1,k}, x_{1}^{1,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} \middle| \{x_{0}^{2,k}, x_{1}^{2,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} & \downarrow \{x_{0}^{n,k}, x_{1}^{n,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} \\ & |qsh_{1}\rangle & |qsh_{2}\rangle & |qsh_{n}\rangle \\ & \downarrow \{qsh_{i}\rangle &:= \bigotimes_{k \in [m]} \left(|x_{0}^{i,k}\rangle + (-1)^{\operatorname{csh}_{i}[k]} |x_{i}^{1,k}\rangle \right) & \forall k = \{f(x_{0}^{i,k}), f(x_{1}^{i,k})\}_{i \in [n], k \in [m]} \end{aligned}$$

- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$): Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}$.
 - Compute each bit of the *i*th classical share as $csh_i[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$
- $\mathsf{Delete}(|\mathsf{qsh}_i\rangle)$: Measure $|\mathsf{qsh}_i\rangle$ in the computational basis $\to x_{c_1}^{i,1},...,x_{c_m}^{i,m}$.

$$\begin{aligned} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{n} & \operatorname{csh}_{n} & \operatorname{Share}(s) \\ \downarrow \{x_{0}^{1,k}, x_{1}^{1,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{\operatorname{ovf}}} \downarrow \{x_{0}^{2,k}, x_{1}^{2,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{\operatorname{ovf}}} & \downarrow \{x_{0}^{n,k}, x_{1}^{n,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{\operatorname{ovf}}} \\ |\operatorname{qsh}_{1}\rangle & |\operatorname{qsh}_{2}\rangle & |\operatorname{qsh}_{n}\rangle \\ \downarrow \{\operatorname{qsh}_{i}\rangle &:= \bigotimes_{k \in [m]} \left(|x_{0}^{i,k}\rangle + (-1)^{\operatorname{csh}_{i}[k]}|x_{i}^{1,k}\rangle\right) & \operatorname{vk} = \{f(x_{0}^{i,k}), f(x_{1}^{i,k})\}_{i \in [n], k \in [m]} \end{aligned}$$

- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}$.
 - Compute each bit of the *i*th classical share as $csh_i[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$
- $\mathsf{Delete}(|\mathsf{qsh}_i\rangle)$: $\mathsf{Measure} \; |\mathsf{qsh}_i\rangle$ in the computational basis $\to x_{c_1}^{i,1}, ..., x_{c_m}^{i,m}$.
- Verify($\{x_{c_k}^{i,k}\}$): Check that $f(x_{c_k}^{i,k})$ matches correct image in vk for each $k \in [m]$.

$$\begin{aligned} \cosh_{1} & \cosh_{2} & \cosh_{n} & \cosh_{n} & \text{Share}(s) \\ & \downarrow \{x_{0}^{1,k}, x_{1}^{1,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} \downarrow \{x_{0}^{2,k}, x_{1}^{2,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} \downarrow \{x_{0}^{n,k}, x_{1}^{n,k}\}_{k \in [m]} \leftarrow \{0,1\}^{\ell_{in}^{owf}} \\ & |qsh_{1}\rangle & |qsh_{2}\rangle & |qsh_{n}\rangle \\ & \downarrow \{qsh_{i}\rangle & := \bigotimes_{k \in [m]} \left(|x_{0}^{i,k}\rangle + (-1)^{csh_{i}[k]}|x_{i}^{1,k}\rangle\right) & \forall k = \{f(x_{0}^{i,k}), f(x_{1}^{i,k})\}_{i \in [n], k \in [m]} \end{aligned}$$

- Reconstruct($\{|qsh_i\rangle\}_{i\in A}$) : Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}$.
 - Compute each bit of the *i*th classical share as $csh_i[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$
- $\mathsf{Delete}(|\mathsf{qsh}_i\rangle)$: $\mathsf{Measure}\; |\mathsf{qsh}_i\rangle$ in the computational basis $\to x_{c_1}^{i,1},...,x_{c_m}^{i,m}$.
- Verify($\{x_{c_k}^{i,k}\}$): Check that $f(x_{c_k}^{i,k})$ matches correct image in vk for each $k \in [m]$.
 - Problem: need preimages $x_0^{i,k} \oplus x_1^{i,k}$ to extract the classical share.

• Idea: Give each party classical share of preimages in addition to quantum share.

글 에 제 글 에 다

• Idea: Give each party classical share of preimages in addition to quantum share.

글 🖌 🖌 글 🛌

• Idea: Give each party classical share of preimages in addition to quantum share.

May 4, 2025

• Idea: Give each party classical share of preimages in addition to quantum share.

May 4, 2025

• Idea: Give each party classical share of preimages in addition to quantum share.

• Idea: Give each party classical share of preimages in addition to quantum share.

• Authorized set of parties can reconstruct preimages.

May 4, 2025

• Idea: Give each party classical share of preimages in addition to quantum share.

- Authorized set of parties can reconstruct preimages.
- Preimages are hidden from adversary holding an unauthorized set of shares.

• Idea: Give each party classical share of preimages in addition to quantum share.

- Authorized set of parties can reconstruct preimages.
- Preimages are hidden from adversary holding an unauthorized set of shares.
- Problem: Classical part of each share does not get deleted. Adversary can accumulate an authorized set of classical preimage shares by adaptively corrupting shares

$$\begin{array}{lll} \operatorname{csh}_1 & \operatorname{csh}_2 & \operatorname{csh}_3 & \operatorname{csh}_4 & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_0^{i,k} \oplus x_1^{i,k}\}\right) \\ |\operatorname{qsh}_1\rangle & |\operatorname{qsh}_2\rangle & |\operatorname{qsh}_3\rangle & |\operatorname{qsh}_4\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \end{array}$$

医下 不至下

$$\begin{array}{lll} \mathsf{csh}_1 & \mathsf{csh}_2 & \mathsf{csh}_3 & \mathsf{csh}_4 & \leftarrow \mathsf{Share}_{(3,4)}\left(\{x_0^{i,k} \oplus x_1^{i,k}\}\right) \\ \\ |\mathsf{qsh}_1\rangle & |\mathsf{qsh}_2\rangle & |\mathsf{qsh}_3\rangle & |\mathsf{qsh}_4\rangle & \leftarrow \mathsf{Share}_{(3,4)}\left(s\right) \end{array}$$

医下 不至下

$$\begin{array}{lll} \operatorname{csh}_1 & \operatorname{csh}_2 & \operatorname{csh}_3 & \operatorname{csh}_4 & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_0^{i,k} \oplus x_1^{i,k}\}\right) \\ |\operatorname{qsh}_1\rangle & |\operatorname{qsh}_2\rangle & |\operatorname{qsh}_3\rangle & |\operatorname{qsh}_4\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \end{array}$$

May 4, 20<u>25</u>

医下 不至下
$$\begin{array}{ll} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0}^{i,k} \oplus x_{1}^{i,k}\}\right) \\ \hline \\ \hline \\ qsh_{1} & |qsh_{2}\rangle & |qsh_{3}\rangle & |qsh_{4}\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \\ \hline \\ \operatorname{cert}_{1} & \end{array}$$

$$\begin{array}{ll} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0}^{i,k} \oplus x_{1}^{i,k}\}\right) \\ \hline \\ \hline \\ qsh_{1} & |qsh_{2}\rangle & |qsh_{3}\rangle & |qsh_{4}\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \\ \hline \\ \\ \operatorname{cert}_{1} & \end{array}$$

May 4, 2025

► < Ξ ►</p>

 cert_1

► < Ξ ►</p>

$$\begin{array}{lll} \mathsf{csh}_1 & \mathsf{csh}_2 & \mathsf{csh}_3 & \mathsf{csh}_4 & \leftarrow \mathsf{Share}_{(3,4)}\left(\{x_0^{i,k} \oplus x_1^{i,k}\}\right) \\ \hline \mathsf{qsh}_1 & |\mathsf{qsh}_2\rangle & |\mathsf{qsh}_3\rangle & |\mathsf{qsh}_4\rangle & \leftarrow \mathsf{Share}_{(3,4)}\left(s\right) \end{array}$$

 $cert_1 cert_2$

▶ < ∃ ▶

$$\begin{array}{lll} \mathsf{csh}_1 & \mathsf{csh}_2 & \mathsf{csh}_3 & \mathsf{csh}_4 & \leftarrow \mathsf{Share}_{(3,4)}\left(\{x_0^{i,k} \oplus x_1^{i,k}\}\right) \\ \hline \mathsf{qsh}_1 & |\mathsf{qsh}_2\rangle & |\mathsf{qsh}_3\rangle & |\mathsf{qsh}_4\rangle & \leftarrow \mathsf{Share}_{(3,4)}\left(s\right) \end{array}$$

 $cert_1 cert_2$

▶ < ∃ ▶</p>

 $cert_1 cert_2$

▶ < ∃ ▶</p>

 $csh_1 \quad csh_2 \quad csh_3 \quad csh_4 \quad \leftarrow \text{Share}_{(3,4)}\left(\{x_0^{i,k} \oplus x_1^{i,k}\}\right)$ $ash_1 \quad |qsh_2\rangle \quad |qsh_3\rangle \quad |qsh_4\rangle \quad \leftarrow \text{Share}_{(3,4)}(s)$

 $cert_1 cert_2$

• Observation: At least one quantum share must be deleted properly.

• • = •

3

 csh_1 csh_2 csh_3 csh_4 \leftarrow $\operatorname{Share}_{(3,4)}\left(\{x_0^{i,k} \oplus x_1^{i,k}\}\right)$

$$\begin{array}{ccc} \begin{array}{ccc} \mathbf{qsh}_1 \\ \hline \mathbf{qsh}_2 \\ \end{array} & \left| \mathbf{qsh}_2 \\ \end{array} & \left| \mathbf{qsh}_3 \\ \end{array} & \left| \mathbf{qsh}_4 \\ \end{array} & \left(\begin{array}{c} \mathbf{s} \\ \end{array} \right) \\ \end{array} \\ \end{array}$$

 $cert_1 cert_2$

-

- Observation: At least one quantum share must be deleted properly.
- Scheme is secure if it is (4, 4) instead of (3, 4).

 csh_1 csh_2 csh_3 csh_4 \leftarrow $\operatorname{Share}_{(3,4)}\left(\{x_0^{i,k} \oplus x_1^{i,k}\}\right)$

 $cert_1 cert_2$

- Observation: At least one quantum share must be deleted properly.
- Scheme is secure if it is (4,4) instead of (3,4).
- Idea: Make (3,4)-schemes secure by adding another layer to construction.

$$\begin{array}{lll} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\}\right) \\ |\operatorname{qsh}_{1}^{1}\rangle & |\operatorname{qsh}_{2}^{1}\rangle & |\operatorname{qsh}_{3}^{1}\rangle & |\operatorname{qsh}_{4}^{1}\rangle & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,1}^{i,k} \oplus x_{1,1}^{i,k}\}\right) \\ |\operatorname{qsh}_{1}^{0}\rangle & |\operatorname{qsh}_{2}^{0}\rangle & |\operatorname{qsh}_{3}^{0}\rangle & |\operatorname{qsh}_{4}^{0}\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \end{array}$$

▲ 臣 ▶ | ▲ 臣 ▶ |

$$\begin{array}{lll} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\}\right) \\ |\operatorname{qsh}_{1}^{1}\rangle & |\operatorname{qsh}_{2}^{1}\rangle & |\operatorname{qsh}_{3}^{1}\rangle & |\operatorname{qsh}_{4}^{1}\rangle & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,1}^{i,k} \oplus x_{1,1}^{i,k}\}\right) \\ |\operatorname{qsh}_{1}^{0}\rangle & |\operatorname{qsh}_{2}^{0}\rangle & |\operatorname{qsh}_{3}^{0}\rangle & |\operatorname{qsh}_{4}^{0}\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \end{array}$$

프 에 제 프 에

$$\begin{array}{lll} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\}\right) \\ |\operatorname{qsh}_{1}^{1}\rangle & |\operatorname{qsh}_{2}^{1}\rangle & |\operatorname{qsh}_{3}^{1}\rangle & |\operatorname{qsh}_{4}^{1}\rangle & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,1}^{i,k} \oplus x_{1,1}^{i,k}\}\right) \\ |\operatorname{qsh}_{1}^{0}\rangle & |\operatorname{qsh}_{2}^{0}\rangle & |\operatorname{qsh}_{3}^{0}\rangle & |\operatorname{qsh}_{4}^{0}\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \end{array}$$

- 4 西

프 에 제 프 에

$$\begin{array}{ccc} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\}\right) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

$$\begin{array}{ccc} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\}\right)\\ \hline \\ \begin{array}{ccc} qsh_{1}^{4} & |qsh_{2}^{1}\rangle & |qsh_{3}^{1}\rangle & |qsh_{4}^{1}\rangle & \leftarrow \operatorname{Share}_{(3,4)}\left(\{x_{0,1}^{i,k} \oplus x_{1,1}^{i,k}\}\right)\\ \hline \\ \begin{array}{ccc} qsh_{1}^{0} & |qsh_{2}^{0}\rangle & |qsh_{3}^{0}\rangle & |qsh_{4}^{0}\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s)\\ \end{array}$$

$$\begin{array}{ccc} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\left\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\right\}\right) \\ & & & & \\ \hline qsh_{1}^{4} & & & & \\ qsh_{1}^{2} & & & & \\ qsh_{2}^{0} & & & & \\ qsh_{3}^{0} & & & & \\ \hline qsh_{4}^{0} & & & \leftarrow \operatorname{Share}_{(3,4)}\left(s\right) \\ & & & & \\ \hline cert_{1} & & & \\ \end{array}$$

$$\begin{array}{ccc} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\left\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\right\}\right) \\ \hline qsh_{1}^{4} & |qsh_{2}^{1}\rangle & |qsh_{3}^{1}\rangle & |qsh_{4}^{1}\rangle & \leftarrow \operatorname{Share}_{(3,4)}\left(\left\{x_{0,1}^{i,k} \oplus x_{1,1}^{i,k}\right\}\right) \\ \hline qsh_{1}^{\theta} & \overline{qsh}_{2}^{\theta} & |qsh_{3}^{\theta}\rangle & |qsh_{4}^{\theta}\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \\ \hline \operatorname{cert}_{1} & \operatorname{cert}_{2} \end{array}$$

$$\begin{array}{ccc} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\left\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\right\}\right) \\ \hline qsh_{1}^{4} & |qsh_{2}^{1}\rangle & |qsh_{3}^{1}\rangle & |qsh_{4}^{1}\rangle & \leftarrow \operatorname{Share}_{(3,4)}\left(\left\{x_{0,1}^{i,k} \oplus x_{1,1}^{i,k}\right\}\right) \\ \hline qsh_{1}^{\theta} & \overline{qsh}_{2}^{\theta} & |qsh_{3}^{\theta}\rangle & |qsh_{4}^{\theta}\rangle & \leftarrow \operatorname{Share}_{(3,4)}(s) \\ \hline \operatorname{cert}_{1} & \operatorname{cert}_{2} & \end{array}$$

$$\begin{array}{ccc} \operatorname{csh}_{1} & \operatorname{csh}_{2} & \operatorname{csh}_{3} & \operatorname{csh}_{4} & \leftarrow \operatorname{Share}_{(3,4)}\left(\left\{x_{0,2}^{i,k} \oplus x_{1,2}^{i,k}\right\}\right) \\ \hline \\ \begin{array}{ccc} \left|\operatorname{gsh}_{1}^{4}\right\rangle & \left|\operatorname{qsh}_{2}^{1}\right\rangle & \left|\operatorname{qsh}_{3}^{1}\right\rangle & \left|\operatorname{qsh}_{4}^{1}\right\rangle & \leftarrow \operatorname{Share}_{(3,4)}\left(\left\{x_{0,1}^{i,k} \oplus x_{1,1}^{i,k}\right\}\right) \\ \hline \\ \begin{array}{ccc} \left|\operatorname{gsh}_{1}^{\theta}\right\rangle & \left|\operatorname{qsh}_{2}^{\theta}\right\rangle & \left|\operatorname{qsh}_{3}^{\theta}\right\rangle & \left|\operatorname{qsh}_{4}^{\theta}\right\rangle & \leftarrow \operatorname{Share}_{(3,4)}\left(s\right) \\ \hline \\ \operatorname{cert}_{1} & \operatorname{cert}_{2} \end{array}\right) \end{array}$$

• Share_A: Classical secret sharing scheme for access structure A. $csh_1 \quad \dots \quad csh_n \quad \leftarrow Share_A\left(\{x_{0,n}^{i,k}, x_{1,n}^{i,k}\}\right)$

$$|\mathsf{qsh}_1^{n-1}\rangle$$
 (qsh_n^{n-1}) \leftarrow $\mathsf{Share}_{\mathbb{A}}\left(\{x_{0,n-1}^{i,k}, x_{1,n-1}^{i,k}\}\right)$

$$\vdots \qquad \ddots \qquad \vdots \qquad \leftarrow \mathsf{Share}_{\mathbb{A}}\left(\{x_{0,1}^{i,k}, x_{1,1}^{i,k}\}\right)$$

$$|qsh_1^0\rangle$$
 ... $|qsh_n^0\rangle$ \leftarrow Share_A (s)

► < Ξ ►</p>

3

- Share_A: Classical secret sharing scheme for access structure A. $\operatorname{csh}_1 \quad \ldots \quad \operatorname{csh}_n \quad \leftarrow \operatorname{Share}_{\mathbb{A}}\left(\{x_{0,n}^{i,k}, x_{1,n}^{i,k}\}\right)$ $|\mathsf{qsh}_1^{n-1}\rangle \quad \stackrel{\cdot}{\cdot} \quad |\mathsf{qsh}_n^{n-1}\rangle \quad \leftarrow \mathsf{Share}_{\mathbb{A}}\left(\{x_{0,n-1}^{i,k}, x_{1,n-1}^{i,k}\}\right)$ $|qsh_1^0\rangle$... $|qsh_n^0\rangle$ \leftarrow Share_A (s)
- Problem: The size of the secret being shared at each level is a multiple of the size of the shares in the previous level.

< = > < = > = <> < ⊂

• Share_A: Classical secret sharing scheme for access structure A. $\operatorname{csh}_1 \quad \ldots \quad \operatorname{csh}_n \quad \leftarrow \operatorname{Share}_{\mathbb{A}}\left(\{x_{0,n}^{i,k}, x_{1,n}^{i,k}\}\right)$ $|qsh_1^{n-1}\rangle \quad \cdot \quad |qsh_n^{n-1}\rangle \quad \leftarrow \mathsf{Share}_{\mathbb{A}}\left(\{x_{0,n-1}^{i,k}, x_{1,n-1}^{i,k}\}\right)$ $\vdots \qquad \vdots \qquad \leftarrow \text{Share}_{\mathbb{A}}\left(\left\{x_{0,1}^{i,k}, x_{1,1}^{i,k}\right\}\right)$ $|qsh_1^0\rangle$... $|qsh_n^0\rangle$ \leftarrow Share_A (s)

- Problem: The size of the secret being shared at each level is a multiple of the size of the shares in the previous level.
- Solution: Use a PRF to generate the preimages, and share the PRF key at each level

Katz, Sela

Secret Sharing with PVD

• Share_A: Classical secret sharing scheme for access structure A. $csh_1 \dots csh_n \leftarrow Share_A(k_n)$ $|qsh_1^{n-1}\rangle \ddots |qsh_1^{n-1}\rangle \leftarrow Share_A(k_{n-1})$ $\vdots \ddots \vdots \leftarrow Share_A(k_1)$ $|qsh_1^0\rangle \dots |qsh_n^0\rangle \leftarrow Share_A(s)$ $\{x_{b,1}^{i,k}\} = \{PRF(k_2, b||i||k)\}$

- Problem: The size of the secret being shared at each level is a multiple of the size of the shares in the previous level.
- Solution: Use a PRF to generate the preimages, and share a seperate PRF key at each level.

Katz, Sela

Theorem 1

There exists a secret sharing scheme satisfying adaptive publicly verifiable deletion for any monotone access structure \mathbb{A} using $O(n \cdot m)$ qubits per share assuming:

- OWFs
- classical (information-theoretic) secret sharing scheme for access structure A (with share size m)

• Construction from OWFs required $O(n \cdot (\text{classical share size}))$ qubits for *n* parties.

▶ < ∃ ▶</p>

- Construction from OWFs required $O(n \cdot (\text{classical share size}))$ qubits for *n* parties.
- Can we eliminate dependence on *n*?

▶ < ⊒ ▶

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in [m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]} |x_1^{i,k}
angle
ight)$$

< ∃ >

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in [m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]} |x_1^{i,k}
angle
ight)$$

• Problem:

< ∃ >

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in[m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]}|x_1^{i,k}
angle
ight)$$

- Problem:
 - Need to hide $x_0 \oplus x_1$ for valid deletion.

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in[m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]}|x_1^{i,k}
angle
ight)$$

• Problem:

- Need to hide $x_0 \oplus x_1$ for valid deletion.
- Preimages are required for extraction/reconstruction.

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in[m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]}|x_1^{i,k}
angle
ight)$$

• Problem:

- Need to hide $x_0 \oplus x_1$ for valid deletion.
- Preimages are required for extraction/reconstruction.
- Idea: Hide the the preimages inside a reconstruction oracle:

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in[m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]}|x_1^{i,k}
angle
ight)$$

• Problem:

- Need to hide $x_0 \oplus x_1$ for valid deletion.
- Preimages are required for extraction/reconstruction.
- Idea: Hide the the preimages inside a reconstruction oracle:

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in [m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]}|x_1^{i,k}
angle
ight)$$

• Problem:

- Need to hide $x_0 \oplus x_1$ for valid deletion.
- Preimages are required for extraction/reconstruction.
- Idea: Hide the the preimages inside a reconstruction oracle:

$\operatorname{Rec}(\{d_{i,k}\}_{i\in A})$

• Hardcode preimages
$$\{x_0^{i,k}, x_1^{i,k}\}_{i \in [n], k \in [m]}$$

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in [m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]}|x_1^{i,k}
angle
ight)$$

• Problem:

- Need to hide $x_0 \oplus x_1$ for valid deletion.
- Preimages are required for extraction/reconstruction.
- Idea: Hide the the preimages inside a reconstruction oracle:

$\operatorname{Rec}(\{d_{i,k}\}_{i\in A})$

- Hardcode preimages $\{x_0^{i,k}, x_1^{i,k}\}_{i \in [n], k \in [m]}$
- Compute $\operatorname{csh}_i'[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$. Set $\operatorname{csh}_i' = \operatorname{csh}_i'[1]...\operatorname{csh}_i'[m]$.

Starting point for construction:

• $csh_1, ..., csh_n \leftarrow Share(s)$

$$|\mathsf{qsh}_i
angle := igodot_{k\in [m]} \left(|x_0^{i,k}
angle + (-1)^{\mathsf{csh}_i[k]}|x_1^{i,k}
angle
ight)$$

• Problem:

- Need to hide $x_0 \oplus x_1$ for valid deletion.
- Preimages are required for extraction/reconstruction.
- Idea: Hide the the preimages inside a reconstruction oracle:

$\operatorname{Rec}(\{d_{i,k}\}_{i\in A})$

- Hardcode preimages $\{x_0^{i,k}, x_1^{i,k}\}_{i \in [n], k \in [m]}$
- Compute $\operatorname{csh}_i'[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$. Set $\operatorname{csh}_i' = \operatorname{csh}_i'[1]...\operatorname{csh}_i'[m]$.
- Output Reconstruct({csh_i'}_{i∈A})

Instantiating the reconstruction oracle

• Consider the compute-and-compare program:

$$CC[P, lock, z](x) := \begin{cases} z & P(x) = lock \\ \bot & otherwise. \end{cases}$$

Instantiating the reconstruction oracle

• Consider the compute-and-compare program:

$$\mathsf{CC}[P, \mathsf{lock}, z](x) := egin{cases} z & P(x) = \mathsf{lock} \\ ot & \mathsf{otherwise.} \end{cases}$$

Compute-and-compare obfuscator

• Functionality: $\widetilde{CC} \leftarrow CC.Obf(CC)$, where $\widetilde{CC}(x) = CC(x)$
Instantiating the reconstruction oracle

• Consider the compute-and-compare program:

$$\mathsf{CC}[P,\mathsf{lock},z](x) := \begin{cases} z & P(x) = \mathsf{lock} \\ \bot & \mathsf{otherwise.} \end{cases}$$

Compute-and-compare obfuscator

- Functionality: $\widetilde{CC} \leftarrow CC.Obf(CC)$, where $\widetilde{CC}(x) = CC(x)$
- Security: If lock is unpredictable given P, then \widetilde{CC} hides the details of CC[P, lock, z]

Instantiating the reconstruction oracle

• Consider the compute-and-compare program:

$$\mathsf{CC}[P, \mathsf{lock}, z](x) := \begin{cases} z & P(x) = \mathsf{lock} \\ \bot & \mathsf{otherwise.} \end{cases}$$

Compute-and-compare obfuscator

- Functionality: $\widetilde{CC} \leftarrow CC.Obf(CC)$, where $\widetilde{CC}(x) = CC(x)$
- Security: If lock is unpredictable given P, then CC hides the details of CC[P, lock, z]
- Can be constructed assuming LWE [WZ17]
- Idea: Set P = Rec and lock = z = secret

Share(s):

• Generate classical shares $\{csh_i\}_{i \in [n]} \leftarrow Share(s)$

Share(s):

- Generate classical shares $\{csh_i\}_{i \in [n]} \leftarrow Share(s)$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.

Share(s):

- Generate classical shares $\{csh_i\}_{i \in [n]} \leftarrow Share(s)$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\mathsf{Rec}} \leftarrow \mathsf{Obf}(\mathsf{CC}[\mathsf{Rec}, s, s])$

Share(s):

- Generate classical shares ${csh_i}_{i \in [n]} \leftarrow Share(s)$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\mathsf{Rec}} \leftarrow \mathsf{Obf}(\mathsf{CC}[\mathsf{Rec}, s, s])$

Reconstruct($\{|qsh_i\rangle\}_{i\in A}$)

Share(s):

- Generate classical shares $\{csh_i\}_{i \in [n]} \leftarrow Share(s)$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\mathsf{Rec}} \leftarrow \mathsf{Obf}(\mathsf{CC}[\mathsf{Rec}, s, s])$

 $\mathbf{Reconstruct}(\{|\mathsf{qsh}_i\rangle\}_{i\in\mathcal{A}})$

• Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}_{i\in\mathcal{A},k\in[m]}$

Share(s):

- Generate classical shares ${csh_i}_{i \in [n]} \leftarrow Share(s)$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\mathsf{Rec}} \leftarrow \mathsf{Obf}(\mathsf{CC}[\mathsf{Rec}, s, s])$

 $\text{Reconstruct}(\{|qsh_i\rangle\}_{i\in A})$

- Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}_{i\in\mathcal{A},k\in[m]}$
- Output $s \leftarrow \widetilde{\mathsf{Rec}}(\{d_{i,k}\}_{i \in A, k \in [m]})$

Share(s):

- Generate classical shares ${csh_i}_{i \in [n]} \leftarrow Share(s)$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\mathsf{Rec}} \leftarrow \mathsf{Obf}(\mathsf{CC}[\mathsf{Rec}, s, s])$

 $\mathsf{Reconstruct}(\{|\mathsf{qsh}_i\rangle\}_{i\in\mathcal{A}})$

- Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}_{i\in\mathcal{A},k\in[m]}$
- Output $s \leftarrow \widetilde{\mathsf{Rec}}(\{d_{i,k}\}_{i \in A, k \in [m]})$

Security: Rec is independent of classical shares/lock. Therefore Rec should hide preimages.

Share(s):

- Generate classical shares $\{csh_i\}_{i \in [n]} \leftarrow Share(s)$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\mathsf{Rec}} \leftarrow \mathsf{Obf}(\mathsf{CC}[\mathsf{Rec}, s, s])$

 $\text{Reconstruct}(\{|qsh_i\rangle\}_{i\in A})$

- Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}_{i\in\mathcal{A},k\in[m]}$
- Output $s \leftarrow \widetilde{\mathsf{Rec}}(\{d_{i,k}\}_{i \in A, k \in [m]})$

Security: Rec is independent of classical shares/lock. Therefore Rec should hide preimages.

$\operatorname{\mathsf{Rec}}(\{d_{i,k}\}_{i\in A})$

- Compute $\operatorname{csh}_i'[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$
- Set $csh'_i = csh'_i[1]...csh'_i[m]$
- Output Reconstruct($\{csh'_i\}_{i \in A}$)

Share(s):

- Generate classical shares ${csh_i}_{i \in [n]} \leftarrow Share(s)$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\mathsf{Rec}} \leftarrow \mathsf{Obf}(\mathsf{CC}[\mathsf{Rec}, s, s])$

 $\text{Reconstruct}(\{|qsh_i\rangle\}_{i\in A})$

- Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}_{i\in\mathcal{A},k\in[m]}$
- Output $s \leftarrow \widetilde{\mathsf{Rec}}(\{d_{i,k}\}_{i \in A, k \in [m]})$

Security: Rec is independent of classical shares/lock. Therefore Rec should hide preimages.

$\operatorname{Rec}(\{d_{i,k}\}_{i\in A})$

- Compute $\operatorname{csh}_i'[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$
- Set $csh'_i = csh'_i[1]...csh'_i[m]$
- Output Reconstruct($\{csh'_i\}_{i \in A}$)

• Problem: The secret *s* is not unpredictable

May 4, 2025

Share(s):

- Generate classical shares ${csh_i}_{i \in [n]} \leftarrow {Share(s)}$
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\mathsf{Rec}} \leftarrow \mathsf{Obf}(\mathsf{CC}[\mathsf{Rec}, s, s])$

 $\text{Reconstruct}(\{|qsh_i\rangle\}_{i\in A})$

- Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}_{i\in\mathcal{A},k\in[m]}$
- Output $s \leftarrow \widetilde{\operatorname{Rec}}(\{d_{i,k}\}_{i \in A, k \in [m]})$

Security: Rec is independent of classical shares/lock. Therefore $\widetilde{\text{Rec}}$ should hide preimages.

$\mathsf{Rec}(\{d_{i,k}\}_{i\in A})$

- Compute $\operatorname{csh}_i'[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k})$
- Set $csh'_i = csh'_i[1]...csh'_i[m]$
- Output Reconstruct($\{csh'_i\}_{i \in A}$)

- Problem: The secret *s* is not unpredictable
- Solution: Use a uniform value independent of *s* as the lock

May 4, 2025

글 제 제 글 제 .

Share(s):

- Generate classical shares $\{csh_i\}_{i \in [n]} \leftarrow Share(lock)$ (lock is uniform)
- Generate corresponding quantum shares $\{|qsh_i\rangle\}_{i\in[n]} \leftarrow \{csh_i\}_{i\in[n]}$.
- $\widetilde{\text{Rec}} \leftarrow \text{Obf}(\text{CC}[\text{Rec}, s, s])$ $\widetilde{\text{Rec}} \leftarrow \text{Obf}(\text{CC}[\text{Rec}, \text{lock}, s])$

 $\mathbf{Reconstruct}(\{|qsh_i\rangle\}_{i\in A})$

- Measure each $|qsh_i\rangle$ in the Hadamard basis to obtain $\{d_{i,k}\}_{i\in A,k\in [m]}$.
- Output $s \leftarrow \widetilde{\operatorname{Rec}}(\{d_{i,k}\}_{i \in A, k \in [m]}).$

Security: Rec is independent of classical shares/lock. Therefore $\widetilde{\text{Rec}}$ should hide preimages.

$\mathsf{Rec}(\{d_{i,k}\}_{i\in A})$

- Compute $\operatorname{csh}_i'[k] = d_{i,k} \cdot (x_0^{i,k} \oplus x_1^{i,k}).$
- Set $csh'_i = csh'_i[1]...csh'_i[m]$.
- Output Reconstruct($\{csh'_i\}_{i \in A}$)

- Problem: The secret *s* is not unpredictable.
- Solution: Use a uniform value independent of *s* as the lock

May 4, 2025

38 / 42

Theorem 2

There exists a secret sharing scheme with adaptive publicly verifiable deletion for any monotone access structure \mathbb{A} using O(m) qubits per share assuming:

- LWE
- $\bullet\,$ classical (information-theoretic) secret sharing scheme for access structure $\mathbb A$

- Secret sharing with PVD from weaker assumptions than OWF (e.g., from hard quantum planted problems [KNY23])?
- No-signaling security (with PVD) without sub-exponentially secure OWF?
- **Information-theoretic** secret sharing with adaptive certified deletion for any monotone access structure in the privately verifiable setting?

Thank You!

3