Tighter Security Notions for a Modular Approach to Private Circuits

Bohan Wang^{1,2}, Juelin Zhang^{1,2}, Yu Yu^{3,4} and Weijia Wang^{1,2}

 $^1{\rm Shandong}$ University, $^2{\rm Quan}$ Cheng Laboratory, $^3{\rm Shanghai}$ Jiao Tong University and $^4{\rm Shanghai}$ Qi Zhi Institute

April 30, 2025

- ▶ Physical leakage → Information of wires
- Different models to formally describe leakage.

イロト 不得 トイヨト イヨト

3

Masking

- Split each secret a into $a_{[n]} \stackrel{\text{def}}{=} (a_1, a_2, \dots, a_n)$.
- ▶ Linear masking: $a = \sum_{i \in [1,n]} a_i, b = \sum_{i \in [1,n]} b_i, c = \sum_{i \in [1,n]} c_i$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Add is called an *n*-share gadget.

Masking

- Split each secret a into $a_{[n]} \stackrel{\text{def}}{=} (a_1, a_2, \dots, a_n)$.
- ▶ Linear masking: $a = \sum_{i \in [1,n]} a_i, b = \sum_{i \in [1,n]} b_i, c = \sum_{i \in [1,n]} c_i$

Add is called an *n*-share gadget.

Simulation:
$$I_1, I_2 \subseteq [1, n]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random Probing Security (RPS)

Each wire is independently sampled by the adversary with probability p.
 Sampler Sam(C)

$$\mathsf{Sam} \overbrace{[]{}}^{a \ b} \xrightarrow{[]{}} \mathsf{Sam}(a, b, a + b) = W \rightarrow \begin{cases} \Pr(a \in W) = p \\ \Pr(b \in W) = p \\ \Pr(a + b \in W) = p \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Each wire is independently sampled by the adversary with probability p.
Sampler Sam(C)

• (p, ϵ) -RPS: For any wire set $W \in \mathbf{W}$ sampled from circuit C, where the sum of leakage probabilities of sets in \mathbf{W} is $1 - \epsilon$, there exists a simulator Sim such that

$$\mathsf{Sim}(a_{|I_1}^1,\ldots,a_{|I_\ell}^\ell)=W$$

where $I_i \subsetneq [1,n]$ for $i \in [1,\ell]$ and $(a_{[n]}^i)_{i \in [1,\ell]}$ are input sharings of C.

Failure probability (Belaïd et al., Crypto 2020)

• ϵ is a polynomial of p;

If there are s wires in circuit C and the simulation of wire set W fails (i.e. some I_i = [1, n]),

$$f(p) = f(p) + p^{|W|} \cdot (1-p)^{s-|W|}$$

• (t, f)-Random Probing Composability (RPC) (Belaïd et al., Crypto 2020)

- Assume constant number (e.g. t) of leaking shares from each output sharing;
- Require a simulation experiment similar to RPS, but |I_i| ≤ t.

A D N A 目 N A E N A E N A B N A C N

The modular approach (Ananth et al., Crypto 2018)

- Each round of compilation replaces p with ϵ ;
- Arbitrary failure probability is achievable if $\epsilon < p$.
- Random Probing Expandability (RPE) (Belaïd et al., Crypto 2020)
 - Composability;
 - Failed simulation for each input sharing happens independently.

The modular approach (Ananth et al., Crypto 2018)

- Each round of compilation replaces p with ϵ ;
- Arbitrary failure probability is achievable if $\epsilon < p$.
- Random Probing Expandability (RPE) (Belaïd et al., Crypto 2020)
 - Composability;
 - Failed simulation for each input sharing happens independently.

- Amplification order (Belaïd et al., Crypto 2020)
 - If the failure probability of gadget G is $f(p) = \sum_{i \in [d,s]} c_i p^i$, d is called the amplification order of G;
 - For a target failure probability 2^{-κ}, a larger d refers to less expansion, leading to lower complexity for the expanded circuit.

Motivations

Some wires are inherently correlated to other wire(s).

$$\Pr(c=0,b=i) \neq \Pr(c=0) \cdot \Pr(b=i)$$

where $i \in \{0, 1\}$.

a	b	$c = a \cdot b$	\Pr
0	0		
0	1	0	$\frac{3}{4}$
1	0		
1	1	1	$\frac{1}{4}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivations

Some wires are inherently correlated to other wire(s).

$$\Pr(c=0,b=i) \neq \Pr(c=0) \cdot \Pr(b=i)$$

where $i \in \{0, 1\}$.

a	b	$c = a \cdot b$	\mathbf{Pr}
0	0		
0	1	0	$\frac{3}{4}$
1	0		
1	1	1	$\frac{1}{4}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The independence assumption of RPE is sometimes inefficient.

If the initial failure probabilities are respectively

$$\begin{cases} f_a(p) = f_b(p) = \mathcal{O}(p^2) \\ f_{ab}(p) = \mathcal{O}(p^3) \end{cases}$$

the RPE failure probability for single sharing is $\sqrt{f_{ab}} \approx \mathcal{O}(p^{1.5})$.

Tighter classifications

► For a gate ⊙ with uniform input(s),

 if its output(s) is independent with its input(s), ⊙ is a Complementary gate (C gate);

▶ Otherwise, ⊙ is Non-Complementary (NC).

- related RPE (rRPE)
 - Similar to RPE;
 - The requirement of independent failure is removed.
- Tighter compilation

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Virtual NC (VNC) gates

- a gate transformation allowing the rRPE expansion of C gates
- add a virtual wire for sampler, equivalent to all input wires
- don't change the functionality of the initial C gate

VNC gates can be expanded by rRPE gadgets directly.

Virtual NC (VNC) gates

a gate transformation allowing the rRPE expansion of C gates

- add a virtual wire for sampler, equivalent to all input wires
- don't change the functionality of the initial C gate

▶ VNC gates can be expanded by rRPE gadgets directly. $(+ \rightarrow \widetilde{+})$

Further improved expansion method: motivation

- "Composability" demands additional cost for some cases rarely happened;
- It's exponentially harmful to expansion methods;
- Expansion for multiple gates can reduce such redundancy.

(日) (四) (日) (日) (日)

Further improved expansion method: gates

- Half-Complementary gates with dependent sets A_[q] (A_[q]-HC gates)
 - It's composed of C and VNC gates;
 - HC gate is not transformation but a composition of multiple gates;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• If $|A_i| = 2$, $\beta_{|A_i|}$ are the inputs of a VNC gate.

Further improved expansion method: gates

- Half-Complementary gates with dependent sets A_[q] (A_[q]-HC gates)
 - It's composed of C and VNC gates;
 - HC gate is not transformation but a composition of multiple gates;
 - If $|A_i| = 2$, $\beta_{|A_i|}$ are the inputs of a VNC gate.

$$\mathsf{ref}(\beta_{[4]}) = \begin{cases} \beta_1 \widetilde{+} \beta_2 & \to x \\ \beta_2 + \beta_3 & \to y \\ \beta_3 \widetilde{+} \beta_4 & \to z \end{cases}$$

ref is a $(\{1,2\},\{3,4\})$ -HC gate.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Further improved expansion method: gadgets

- (t, f, \mathbf{A}) -Multiple inputs RPE (MiRPE)
 - A mixture of RPE and rRPE for gadgets with multiple input sharings.
 - Input sharings with correlated failures correspond to inputs of a VNC gate.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• (A)-HC gates could be expanded by (t, f, A)-MiRPE.

Further improved expansion method: gadgets

• (t, f, \mathbf{A}) -Multiple inputs RPE (MiRPE)

- A mixture of RPE and rRPE for gadgets with multiple input sharings.
- Input sharings with correlated failures correspond to inputs of a VNC gate.

• (A)-HC gates could be expanded by (t, f, A)-MiRPE.

Further improved expansion method: example

- A detailed example for the improved expansion
 - R: $O(n \log n)$ refreshing (Battistello et al., CHES 2016)
 - A trivial expansion of ref needs 2×2+2×1+1×2=8 R.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Further improved expansion method: example

A detailed example for the improved expansion

- R: $O(n \log n)$ refreshing (Battistello et al., CHES 2016)
- A trivial expansion of ref needs $2 \times 2 + 2 \times 1 + 1 \times 2 = 8$ R.
- The same security is achieved by an MiRPE gadget with 4 R.

500

Results

- n-share ISW multiplication algorithm is ([ⁿ/₂], f)-rRPE with amplification order d = [ⁿ/₂] + 1 for n ≥ 3.
 - The amplification order is the same as the work proposed at AC21;
 - Multiplication complexity is reduced from $\mathcal{O}(n^2 \log n)$ to $\mathcal{O}(n^2)$.

• Improved circuit compiler with security level $2^{-\kappa}$

	Leakage probability	Complexity	
3-share	$2^{-7.5}$	$\mathcal{O}(s \cdot \kappa^{3.9})$	EC21
	$2^{-6.9}$	$\mathcal{O}(s \cdot \kappa^{3.2})$	Our works
5-share	$[2^{-9.7}, 2^{-7.6}]$	$\mathcal{O}(s \cdot \kappa^{3.2})$	EC21
	$\geqslant 2^{-9.4}$	$\mathcal{O}(s \cdot \kappa^{2.8})$	Our works

Results

- n-share ISW multiplication algorithm is ([ⁿ/₂], f)-rRPE with amplification order d = [ⁿ/₂] + 1 for n ≥ 3.
 - The amplification order is the same as the work proposed at AC21;
 - Multiplication complexity is reduced from $\mathcal{O}(n^2 \log n)$ to $\mathcal{O}(n^2)$.

• Improved circuit compiler with security level $2^{-\kappa}$

	Leakage probability	Complexity	
3-share	$2^{-7.5}$	$\mathcal{O}(s \cdot \kappa^{3.9})$	EC21
	$2^{-6.9}$	$\mathcal{O}(s \cdot \kappa^{3.2})$	Our works
5-share	$[2^{-9.7}, 2^{-7.6}]$	$\mathcal{O}(s \cdot \kappa^{3.2})$	EC21
	$\geqslant 2^{-9.4}$	$\mathcal{O}(s \cdot \kappa^{2.8})$	Our works

Thank you!