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Side-channel Leakage

I Physical leakage → Information of wires

I Different models to formally describe leakage.

Probing model
(certain leakage)

Random probing model
(probabilistic leakage)

Noisy model
(leakage with noise)

realistic

convenient



Masking

I Split each secret a into a[n]
def
=(a1, a2, . . . , an).

I Linear masking: a =
∑
i∈[1,n] ai, b =

∑
i∈[1,n] bi, c =

∑
i∈[1,n] ci

+

ab

c

Add
compile

a[n]b[n]

c[n]

Add is called an n-share gadget.

I Simulation: I1, I2 ⊆ [1, n]

G
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c[n]

W W ′ Sim

a|I1b|I2
partial

identical
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Random Probing Security (RPS)

I Each wire is independently sampled by the adversary with probability p.

I Sampler Sam(C)

+

ab

c

Sam =⇒ Sam(a, b, a+ b) =W →


Pr(a ∈W ) = p

Pr(b ∈W ) = p

Pr(a+ b ∈W ) = p

I (p, ε)-RPS: For any wire set W ∈W sampled from circuit C, where the
sum of leakage probabilities of sets in W is 1− ε, there exists a simulator
Sim such that

Sim(a1|I1 , . . . , a
`
|I`) =W

where Ii ( [1, n] for i ∈ [1, `] and (ai[n])i∈[1,`] are input sharings of C.
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Prior Works
Foundational works

I Failure probability (Beläıd et al., Crypto 2020)

I ε is a polynomial of p;
I If there are s wires in circuit C and the simulation of wire set W

fails (i.e. some Ii = [1, n]),

f(p) = f(p) + p|W | · (1− p)s−|W | .

I (t, f)-Random Probing Composability (RPC) (Beläıd et al., Crypto 2020)

I Assume constant number (e.g. t) of leaking shares
from each output sharing;

I Require a simulation experiment similar to RPS,
but |Ii| 6 t.

G1

G2

W1
W2



Prior Works
Expansion methods

I The modular approach (Ananth et al., Crypto 2018)

I Each round of compilation replaces p with ε;
I Arbitrary failure probability is achievable if ε < p.

I Random Probing Expandability (RPE)

(Beläıd et al., Crypto 2020)

I Composability;
I Failed simulation for each input

sharing happens independently. Gadget

(ai)16i6n

(bi)16i6n

+ai
bj ck (ci)16i6n· · · · · ·

Addition gadget

(ai,`)16`6n
(bj,`)16`6n

(ck,`)16`6n
+· · · · · ·

· · ·

expand

expand

I Amplification order (Beläıd et al., Crypto 2020)

I If the failure probability of gadget G is f(p) =
∑
i∈[d,s] cip

i, d is
called the amplification order of G;

I For a target failure probability 2−κ, a larger d refers to less
expansion, leading to lower complexity for the expanded circuit.
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Our Contributions
Motivations

I Some wires are inherently correlated to other wire(s).

Pr(c = 0, b = i) 6= Pr(c = 0)·Pr(b = i)

where i ∈ {0, 1}.

a b c=a·b Pr

0 0
0 3

4
0 1
1 0

1 1 1 1
4

I The independence assumption of RPE is sometimes inefficient.

I If the initial failure probabilities are respectively{
fa(p) = fb(p) = O(p2)
fab(p) = O(p3)

,

the RPE failure probability for single sharing is
√
fab ≈ O(p1.5).
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Our Contributions
Tighter classifications

I For a gate � with uniform input(s),

I if its output(s) is independent with its input(s), � is a Complemen-
tary gate (C gate);

I Otherwise, � is Non-Complementary (NC).

I related RPE (rRPE)

I Similar to RPE;
I The requirement of independent failure is removed.

I Tighter compilation

C
gate

a

b
c

⇓

RPE
Gad.

(ai)16i6n

(bi)16i6n
(ci)16i6n

NC
gate

a

b
c

⇓

rRPE
Gad.

(ai)16i6n

(bi)16i6n
(ci)16i6n



Our Contributions
Wider application for rRPE

I Virtual NC (VNC) gates

I a gate transformation allowing the rRPE expansion of C gates
I add a virtual wire for sampler, equivalent to all input wires
I don’t change the functionality of the initial C gate

C
a

b
c

⇓

VNCab c

C
a

· · · c

b
⇓

VNC
ab

c· · ·
b

C
· · ·
· · · c

a

b
⇓

VNCab c
· · ·
· · ·

a

b

I VNC gates can be expanded by rRPE gadgets directly.

(+→ +̃)
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Our Contributions
Further improved expansion method: motivation

I “Composability” demands additional cost for some cases rarely happened;

I It’s exponentially harmful to expansion methods;

I Expansion for multiple gates can reduce such redundancy.

+
a
b

c + d

=⇒
Add.

(ai)16i6n
(bi)16i6n

(ci)16i6n Add. (di)16i6n

R

R

+
a
b

c + d

=⇒
Add.

(ai)16i6n
(bi)16i6n

(ci)16i6n Add. (di)16i6nR



Our Contributions
Further improved expansion method: gates

I Half-Complementary gates with dependent sets A[q] (A[q]-HC gates)

I It’s composed of C and VNC gates;
I HC gate is not transformation but a composition of multiple gates;
I If |Ai| = 2, β|Ai

are the inputs of a VNC gate.

ref(β[4]) =


β1+̃β2 → x

β2+β3 → y

β3+̃β4 → z

.

ref is a ({1, 2}, {3, 4})-HC gate.

+̃

+

+̃

β1

β2

β3

β4

y

x

z

ref
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Our Contributions
Further improved expansion method: gadgets

I (t, f,A)-Multiple inputs RPE (MiRPE)

I A mixture of RPE and rRPE for gadgets with multiple input
sharings.

I Input sharings with correlated failures correspond to inputs of a
VNC gate.

I (A)-HC gates could be expanded by (t, f,A)-MiRPE.

+̃

+

+̃

β1

β2

β3

β4

y

x

z

ref

=⇒

+̃

+

+̃

β1,[n]

β2,[n]

β3,[n]

β4,[n]

y[n]

x[n]

z[n]

A =
{
{1, 2}, {3, 4}

}

−→


Pr
(
Fail(β1,[n]) ∧ Fail(β2,[n])

)
= f(p)

Pr
(
Fail(β3,[n]) ∧ Fail(β4,[n])

)
= f(p)

Pr
(
Fail(β2,[n]) ∧ Fail(β3,[n])

)
= f2(p)

Pr
(
Fail(β2,[n]) ∧ Fail(β4,[n])

)
= f2(p)
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Our Contributions
Further improved expansion method: example

+

R

R
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RPE
Addition

+̃
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R c[n]

rRPE
Addition

R

R

a[n]

c[n]

b[n]

RPE Copy

I A detailed example for the improved expansion

I R: O(n logn) refreshing (Battistello et al., CHES 2016)
I A trivial expansion of ref needs 2×2+2×1+1×2=8 R.

I The same security is achieved by an MiRPE gadget with 4 R.
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Our Contributions
Results

I n-share ISW multiplication algorithm is (bn
2
c, f)-rRPE with amplification

order d = bn
2
c+ 1 for n > 3.

I The amplification order is the same as the work proposed at AC21;
I Multiplication complexity is reduced from O(n2 logn) to O(n2).

I Improved circuit compiler with security level 2−κ

Leakage
probability

Complexity

3-share
2−7.5 O(s · κ3.9) EC21

2−6.9 O(s · κ3.2) Our works

5-share
[2−9.7, 2−7.6] O(s · κ3.2) EC21

> 2−9.4 O(s · κ2.8) Our works

Thank you!
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