Combining PAKEs for hybrid security

Merged talk based on concurrent worRs by

PAKE Combiners and Efficient Post-Quantum Instantiations

Julia Hesse' Michael Rosenberg?

1|BM Research Europe — Zurich 2 Cloudflare

Hybrid Password Authentication Key Exchange in the UC
Framework

You Lyu Shengli Liu

Shanghal Jiao Tong University, China

ia.cr/2024/{16211630}

What is a PAKE

What is a PAKE

Two parties use a password to
establish a secure shared secret

What is a PAKE

Two parties use a password to
establish a secure shared secret

1. A passive adversary cannot derive K

What is a PAKE

Two parties use a password to
establish a secure shared secret

1. A passive adversary cannot derive K

2. An active adversary has only 1 pw
guess per session

pw pw
R
K PAKE K J L
— —
/F estPwd(pw’)

What is a PAKE

Two parties use a password to
establish a secure shared secret

1. A passive adversary cannot derive K

2. An active adversary has only 1 pw

: pPW
guess per session

. m 4_
K K
— e

/T estPwd(pw’)

d L

A PAKE combiner takes 2 PAKEs and
produces a new PAKE

Weird! Cryptographic statements where
nothing is high entropy!

Problem Statement

Problem Statement

We have classical and PQ PAKEs

Problem Statement

We have classical and PQ PAKEs

But the PQ ones are new

Problem Statement

We have classical and PQ PAKEs

But the PQ ones are new

note

proof flawed

(Appx. A.1)

result incorrect
(Sects. 3.2 and 3.3,
Appx. A.4)

result incorrect
(Sect. 3.2
and Appx. A.4)

result ambiguous,
unclear it OEKE-PRF
or OEKE-RO:;
security proof
incorrect (Sect. 3.1);
either way result also
incorrect (Appx. A.3)

result incorrect
(Sect. 3.3, Appxs. A.1
and A.3)

result incorrect

(Appx. A.3)

Problem Statement

We have classical and PQ PAKEs

But the PQ ones are new

We can hedge with hybrid

note

proof flawed

(Appx. A.1)

result incorrect
(Sects. 3.2 and 3.3,
Appx. A.4)

result incorrect
(Sect. 3.2
and Appx. A.4)

result ambiguous,
unclear it OEKE-PRF
or OEKE-RO:;
security proof
incorrect (Sect. 3.1);
either way result also
incorrect (Appx. A.3)

result incorrect
(Sect. 3.3, Appxs. A.1
and A.3)

result incorrect

(Appx. A.3)

Problem Statement

We have classical and PQ PAKEs

But the PQ ones are new

We can hedge with hybrid
Recommended by French ANSSI and German BSI

note

proof flawed

(Appx. A.1)

result incorrect
(Sects. 3.2 and 3.3,
Appx. A.4)

result incorrect
(Sect. 3.2
and Appx. A.4)

result ambiguous,
unclear if OEKE-PRF
or OEKE-RO:;
security proof
incorrect (Sect. 3.1);
either way result also
incorrect (Appx. A.3)

result incorrect
(Sect. 3.3, Appxs. A.1
and A.3)

result incorrect

(Appx. A.3)

Problem Statement

We have classical and PQ PAKEs

But the PQ ones are new

We can hedge with hybrid
Recommended by French ANSSI and German BSI

How do you make a hybrid PAKE?

note

proof flawed

(Appx. A.1)

result incorrect
(Sects. 3.2 and 3.3,
Appx. A.4)

result incorrect
(Sect. 3.2
and Appx. A.4)

result ambiguous,
unclear if OEKE-PRF
or OEKE-RO:;
security proof
incorrect (Sect. 3.1);
either way result also
incorrect (Appx. A.3)

result incorrect
(Sect. 3.3, Appxs. A.1
and A.3)

result incorrect

(Appx. A.3)

Our Contributions

Our Contributions

Parallel combiner (ParComb)
PW Pw
\\/[

K
1-round PAKE + 1-round PAKE = 1-round PAKE

Our Contributions

Parallel combiner (ParComb) Sequential combiner (SeqComb)

PW pw
N —— ~ pPw—> | paKE, | <PV

v

K K
1-round PAKE + 1-round PAKE = 1-round PAKE 1-round PAKE + N-round PAKE = (N+1)-round PAKE

Our Contributions

Parallel combiner (ParComb) Sequential combiner (SeqComb)

PW pw
N —— ~ pPw—> | paKE, | <PV

v

K K
1-round PAKE + 1-round PAKE = 1-round PAKE 1-round PAKE + N-round PAKE = (N+1)-round PAKE

Hybrid: can plug in an existing classical and PQ PAKEs

Our Contributions

Parallel combiner (ParComb) Sequential combiner (SeqComb)

PW pw
N —— ~ pPw—> | paKE, | <PV

PAKE, *
| | PAKE,

v

K K
1-round PAKE + 1-round PAKE = 1-round PAKE 1-round PAKE + N-round PAKE = (N+1)-round PAKE

Hybrid: can plug in an existing classical and PQ PAKEs

Cheap: overhead of at most 2 hashes

Our Contributions

Parallel combiner (ParComb) Sequential combiner (SeqComb)

PW pw
N —— ~ pPw—> | paKE, | <PV

PAKE, *
| | PAKE,

K K
1-round PAKE + 1-round PAKE = 1-round PAKE 1-round PAKE + N-round PAKE = (N+1)-round PAKE

Hybrid: can plug in an existing classical and PQ PAKEs
Cheap: overhead of at most 2 hashes

Yields other PAKE flavors: PAKE = aPAKE, iPAKE

4

How not to make a hybrid PAKE

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs
EKE w/ key conf.

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
Diffie-Hellman with

pw-encrypted shares

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
= Diffie-Hellman with

R := Encou(rG) PW-encrypted shares

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
= Diffie-Hellman with

R = Encou(rG) PW-encrypted shares
keyed permutation

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs
EKE w/ key conf.

r < [|
R
R' := Encpu(rG) ——>

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs
EKE w/ key conf.

r < [o
R' := EnCpu(rG) — > R := Decpu(R')

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s < [F

Ky := DH(s, R)

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s < [F
K1:= DH(s, R)

S':= Encpu(SG)

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s < [F
K1:= DH(s, R)

. S':= Encpu(sG)
——

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s & [
Ks := DH(s, R)
o O Encpu(SG)

S :=DecpulS') ———

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s & [
Ks := DH(s, R)
o O Encpu(SG)

S :=DecpulS') ———
Kq := DH(r, S)

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s < [F
K1:= DH(s, R)

S':= EnCpulSG
. ow(SG)

S := DeCpu(S') «—— T:= MAC(K;, 0)
K1 := DH(r, S) key confirmation

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s < [F
K1:= DH(s, R)

- S'":= Encpu(sG)
S, T

S := DeCpu(S') «———— T:= MAC(K;, 0)
K1 := DH(r, S) key confirmation

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s < [F
K1:= DH(s, R)

- S'":= Encpu(sG)
S, T

S := DeCpu(S') «———— T:= MAC(K;, 0)
K1 := DH(r, S) key confirmation

Verify T

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.
r < [F o
R' := EnCpu(rG) — > R := Decpu(R')
s < [F
K1:= DH(s, R)

| S':= Encpu(SG)
S = DeCp(S!) < T := MAC(Ks, 0)
K1 := DH(r,)
Verify T

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf. : CAKE (KEM-based) w/ key conf.

r < [o :
R' := Encpu(rG) — > R := Decpu(R)

s ¢ [

Ks := DH(s, R)

- S'":= Encpu(sG)

S = DeCp(S!) < T := MAC(Ks, 0)
Kq := DH(r, S)

Verify T

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf. : CAKE (KEM-based) w/ key conf.
r« : (sk, pk) ¢ Keygen() -
R' o !
R' := Encpu(rG) ———> R: I?_ech(R') R':= Encpu(pk) —— ok := DeCon(R)
s F
t, Ky) < E |
K1 := DH(s, R) (ct, Kz) ¢ Encap(pk)

S':= Enpr(Ct)

- S':=Encpu(sG) |
>, T S, T T:=MAC(Ky, 0)
_

S := Decou(S') «——— T:=MAC(K;, 0) i ct:=Decpu(S)
Ky := DH(r, S) i Kz := Decap(sk, ct)
Verify T 2 Verify T

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf. |
r < [F o :
R' := Encpu(rG) — > R := Decpu(R)
s ¢ [
K1 := DH(s, R)
- S':=Encpu(sG)
S = DeCp(S!) < T := MAC(Ks, 0)
K1 := DH(r, S)
Verify T

CAKE (KEM-based) w/ key conf.

= (sk, pk) « Same thing but using

. R':= Encpu(pk)

R' KEM instead of DH
pk o= DEpr(R')

(ct, K») < Encap(pk)
S':= Enpr(Ct)

S, T T:=MAC(Ky, 0)
——

ct := Decpu(S')
K :=|Decap(sk, ct)

Verify T

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf. : CAKE (KEM-based) w/ key conf.
r« : (sk, pk) ¢ Keygen() -
R' o !
R' := Encpu(rG) ———> R: I?_ech(R') R':= Encpu(pk) —— ok := DeCon(R)
s F
t, Ky) < E |
K1 := DH(s, R) (ct, Kz) ¢ Encap(pk)

S':= Enpr(Ct)

- S':=Encpu(sG) |
>, T S, T T:=MAC(Ky, 0)
_

S := Decou(S') «——— T:=MAC(K;, 0) i ct:=Decpu(S)
Ky := DH(r, S) i Kz := Decap(sk, ct)
Verify T 2 Verify T

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf. : CAKE (KEM-based) w/ key conf.
r« : (sk, pk) ¢ Keygen() -
R' o !
R' := Encpu(rG) ———> R: I?_ech(R') R':= Encpu(pk) —— ok := DeCon(R)
s F
t, Ky) < E |
K1 := DH(s, R) (ct, Kz) ¢ Encap(pk)

S':= Encpu(SG) S':= Encpulct)

S := Decpu(S') <S’_T T := MAC(K;, 0) ct := Decpu(S') (S'_T T := MAC(Ky, 0)
K := DH(r, S) K := Decap(sk, ct)
Verify T Verify T

K := H(K1, K2)

5

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf. : CAKE (KEM-based) w/ key conf.
r« : (sk, pk) ¢ Keygen() -
R' o !
R' := Encpu(rG) ———> R: I?_ech(R') R':= Encpu(pk) —— ok := DeCon(R)
s F
t, Ky) < E |
K1 := DH(s, R) (ct, Kz) ¢ Encap(pk)

S':= Encpu(sG) S':= Encpu(ct)

S := Decpu(S') := MAC(K4, 0) ct := Decpu(S') (S'_T T := MAC(K, 0)
Ky := DH(r, S) i Kz := Decap(sk, ct)

Verify T i dlog is easy, T letsyou i Verify T
guess/check pw K := H(Ks, K>)

5

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf. : CAKE (KEM-based) w/ key conf.
r ¢« [: (sk, pk) ¢ Keygen() y
R = ENCo(16) ——> RizDeco(®) | R=ENCulpk) —— (o
s ¢« [F : | ;
(ct K;) < Encap(pk)
Ki:= DH(s,R) | Ene(ct o
S S':= Encpu(sG) G N\ACpVIV<
S := DeCou(S') <= [T]:= MAC(Ks, 0) . ct:= Decpu(S) <—I- l 20
Ky := DH(r, S) i Kz := Decap(sk, ct)

Verify T Ifdlog is easy, T lets you i Verify T Ditto if KEM is broken
guess/check pw K := H(Ks, K>)

5

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ Rey conf. : CAKE (KEM-based) w/ key conf.
r ¢« [: (sk, pk) ¢ Keygen() y
R = ENCo(16) ——> RizDeco(®) | R=ENCulpk) —— (o
s ¢« [F : | ;
(ct K;) < Encap(pk)
Ki:= DH(s,R) | Ene(ct o
S S':= Encpu(sG) G N\ACpVIV<
S := DeCou(S') <= [T]:= MAC(Ks, 0) . ct:= Decpu(S) <—I- l 20
Ky := DH(r, S) i Kz := Decap(sk, ct)

Verify T i dlog is easy, Tletsyou i Verify T Ditto if KEM is broken
guess/check pw K := H(K1, K)

This hybrid is the WEAKER of the two!

How else not to make a hybrid PAKE

How else not to make a hybrid PAKE
CAKE (KEM-based) with key conf.

(sk, pk) ¢« Keygen()

R' .= Enpr(Pk) —R) pk = DECpW(RI)

(ct, K2) < Encap(pk)
S':= Encpu(ct)

ct = Decu(S) ST 1= MAC(K,, 0)

K := Decap(sk, ct)
Verify T

How else not to make a hybrid PAKE

CAKE 1s KEM-based. Just use
a hybrid KEM

CAKE (KEM-based) with key conf.

(sk, pk) ¢« Keygen()

R' .= Enpr(Pk) —R) pk = DECpW(RI)

(ct, K2) < Encap(pk)
S':= Encpu(ct)

ct = Decpw(sl) (S’_T T = MAC(KZ, O)

K := Decap(sk, ct)
Verify T

How else not to make a hybrid PAKE

CAKE 1s KEM-based. Just use
a hybrid KEM

CAKE (KEM-based) with key conf.
pki || pk
(sk, pk) ¢« Keygen()

R' .= Enpr(Pk) —R) pk = DECpW(RI)

(ct, K2) < Encap(pk)
S':= Encpu(ct)

ct = Decpw(sl) (S’_T T = MAC(KZ, O)

K := Decap(sk, ct)
Verify T

How else not to make a hybrid PAKE

CAKE is KEM-based. Just use CAKE (KEM-based) with key conf.

‘ pki |l pk:
a hybrid KEM (sk, pk) < Keygen()

R' := Encpu(pk) _R,

Encou(pki) || Encpu(pko) pk := Decpu(R')

(ct, K2) < Encap(pk)
S':= Encpu(ct)

ct -2 DECpW(S') (S’_T T := MAC(K>, 0)

K := Decap(sk, ct)
Verify T

How else not to make a hybrid PAKE

CAKE is KEM-based. Just use CAKE (KEM-based) with key conf.

‘ pki |l pk:
a hybrid KEM (sk, pk) < Keygen()
Suppose pkiis an LWE R' := Encpu(pk) R

——> pk:=Decpu(R')

sample
P Encpu(pla) || Encpu(pk:)

(ct, K2) < Encap(pk)
S':= Encpu(ct)

ct -2 DECpW(S') (S’_T T := MAC(K>, 0)

K := Decap(sk, ct)
Verify T

How else not to make a hybrid PAKE

CAKE is KEM-based. Just use CAKE (KEM-based) with key conf.

: pki |l pk:
a hybrid KEM (sk, pk) < Keygen()
Suppose pkiis an LWE R' := Encpu(pk) R

——> pk:=Decpu(R')

sample
P Encpu(pla) || Encpu(pk:)

(ct, K2) < Encap(pk)

With an LWE oracle, Encpu(pk-) S':= Encpu(ct)

lets you guess/check pw ‘
» T 1:= MAC(Ky, 0
ct:=Decpu(S') €< Kz, 0

K := Decap(sk, ct)
Verify T

How else not to make a hybrid PAKE

CAKE is KEM-based. Just use CAKE (KEM-based) with key conf.

: pki |l pk:
a hybrid KEM (sk, pk) < Keygen()
Suppose pkiis an LWE R' := Encpu(pk) R

——> pk:=Decpu(R')

sample
P Encpu(pla) || Encpu(pk:)

(ct, K2) < Encap(pk)

With an LWE oracle, Encpu(pk-) S':= Encpu(ct)

lets you guess/check pw ‘
» T 1:= MAC(Ky, 0
ct:=Decpu(S') €< Kz, 0

This hybrid is only as secure as LWE! K, := Decap(sk, ct)

Verify T

Building ParComb

EKE w/ key conf. : CAKE (KEM-based) w/ key conf.
A = " : (sk, pk) < Keygen() y
R' := EnCpu(rG) —— R: I?_ech(R') R':= Encpu(pk) —— ok = Decou(R)
s F
Ky) ¢ E |
K1:= DH(s, R) (ct, K2) ¢ Encap(pk)

S':= Encpu(sG) S':= Encpu(ct)

S := Decpu(S') <S’_T T := MAC(K;, 0) ct := Decpu(S') (S'_T T := MAC(Ky, 0)
K := DH(r, S) K := Decap(sk, ct)
Verify T Verify T

K := H(K1, K2)

14

Building ParComb

EKE w/ key conf. |:
. (sk, pk) < Keygen()
R' := Encpu(pk)

r < [o

R':= EnCpw(rG) — > R := Decpu(R)
s « [
Ks := DH(s, R)
S' := Encpu(SG)
T := MAC(K4, 0)

S'T
(—

S := Decpu(S')
Kq := DH(r, S)
Verify T

CAKE (KEM-based) w/ key conf.

Rl
pk - Depr(R')
(ct, K2) ¢ Encap(pk)
S':= Enpr(Ct)

S, T T:=MAC(Ky, 0)
——

ct := Decpu(S')
K, := Decap(sk, ct)

Verify T

K := H(K1, K2)

Building ParComb

EKE w/ key conf.

Kq := DH(s, R)
S' := Encpu(SG)

S = Decy(S) <L 1= MAC(Ky, 0)
S pw

Ks := DH(r, S)
Verify T

Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE w/ key conf.

Kq := DH(s, R)
S' := Encpu(SG)

5= Decyu(s) < T~ ALK O

Ks := DH(r, S)
Verify T

Building ParComb

Observation: it seems T was the

only issue with the parallel
example

Kq := DH(s, R)
S' := Encpu(SG)
S . —0)

S:=Decpu(S) €
Kq := DH(r, S)
Very-+

Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE

K1 := DH(s, R)

S' := Encpu(SG)
Sl
S:=DecpulS) €

Ky := DH(r, S)

10

Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE

K1 := DH(s, R)

S' := Encpu(SG)
SI
S:=DecpulS) €

Ky := DH(r, S)

10

Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE

K1 := DH(s, R)

S' := Encpu(SG)
SI
S:=DecpulS) €

Ky := DH(r, S)

10

Building ParComb

EKE
F
.= .
o Rl:= EncorG) R := Decpu(R')
Observation: it seems T was the c e [
only issue with the parallel
example K1 := DH(s, R)

S' := Encpu(SG)
SI
S:=Decpu(S') €

Ky := DH(r, S)

10

Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE
r < [F
R' := EnCpu(rG) # R := Decpu(R')
s « [F
K1 := DH(s, R)
S':= Encpu(SG)
S

S:=Decpu(S) €

Ky := DH(r, S)

10

Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE
r < [F
R' := EnCpu(rG) # R := Decpu(R')
s « [F
K1 := DH(s, R)
S':= Encpu(SG)
S

S:=DecpulS) o

unif
Kq 2= DH(r, S)

10

Building ParComb

Observation: it seems T was the

only issue with the parallel
example

We'll call this statistical

password hiding, or (full) DH-
type PAKE

EKE
r< [F
R := Encou(rG) _R |
i > R:=Decpul(R')
s « [
Ks := DH(s, R)
S' := Encpu(SG)
SI
S = DEpr(SI) (unT
Kq := DH(r, S)

10

Building ParComb

EKE
r< [F
- R
- R := EncpulrG —> R:= Decpu(R)
Observation: it seems T was the c e [
only issue with the parallel
example K1 := DH(s, R)
S' := Encpu(SG)
We'll call this statistical S
. ge S:=DecpulS) riF
password hiding, or (full) DH- uni
type PAKE K; := DH(r, S)

EKE, SPAKE2, CPace are stat. pw-hiding

10

Building ParComb

PAKE;, PAKE:

S S

Compute K; Compute K; Compute K, Compute K;

K := H(Ky, Ky, tr)

11

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
. PAKE; | PAKE;
S 3

Compute K; Compute K; Compute K, Compute K;

K := H(Ky, Ky, tr)

11

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
PAKE; PAKE.
R’ broken : R’
— : I
S S

Compute K; Compute K; Compute K, Compute K;

K := H(Ky, Ky, tr)

11

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
PAKE; PAKE.
R’ broken : R’
— : I
S S

Compute0 Compute0 : Computek; Compute K

K := H(0, Ky, tr)

12

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
unif PAKE1 PAKE>
R’ broken : R’
— : I
S’ S'

Compute0 Compute0 : Computek; Compute K

K := H(0, Ky, tr)

12

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
unif PAKE1 PAKE>
R’ broken : R’
-, : D S—
Sl unlf E SI

Compute0 Compute0 : Computek; Compute K

K := H(0, Ky, tr)

12

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
unif PAKE1 PAKE>
R’ broken : R’
— : I
- E -
g’ unif .

L. S
Compute0 Compute0 : Compute[K:] ComputeK;]

K := H(0, Ky, tr)

12

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
unif PAKE1 PAKE>
R’ broken : R’
— : I
- E -
g’ unif .

L. S
Compute0 Compute0 : Compute[K:] ComputeK;]

K := H(0, [Ky, [tr)

12

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
unif PAKE1 PAKE>
R’ broken : R’
— : I
- E -
g’ unif .

L. S
Compute0 Compute0 : Compute[K:] ComputeK;]

K= H(0,|Ky, Jtr)

12

Building ParComb

Requirement: PAKE; and PAKE;
are statistically password-

hiding
e PAKE; | PAKE;
R’ broken : R’
—_— 5 —_—
«—, : —
g’ unif :

L. S
Compute0 Compute0 : Compute[K:] ComputeK;]

K= H(0,|Ky, Jtr)

PAKE is still secure

12

PAKE, PAKE;

R R
Properties of ParComb — - —

Compute K1 ComputeK; : Compute K, Compute K;
K := H(K+, Ky, tr)

13

PAKE, PAKE;

Properties of ParComb . . =

S .. L. S

Compute K1 ComputeK; : Compute K, Compute K;
K := H(K+, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then

13

PAKE, PAKE;

Properties of ParComb . . =

S .. L. S

Compute K1 ComputeK; : Compute K, Compute K;
K := H(K+, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake

13

PAKE, PAKE;

Properties of ParComb . . =

S .. L. S

Compute K1 ComputeK; : Compute K, Compute K;
K := H(K+, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake
2. PAKE, IS QGZPAKE = ParComb[PAKE1, PAKEz] IS LOZPA|<E

13

PAKE, PAKE;

Properties of ParComb . . =

S .. L. S

Compute K1 ComputeK; : Compute K, Compute K;
K := H(K+, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake
2. PAKE, IS QGZPAKE = ParComb[PAKE1, PAKEz] IS LOZPA|<E

EKE

13

PAKE, PAKE;

R' E R'
® — ——
Properties of ParComb — L
Compute K; Compute K; Compute K; Compute K
K := H(K4, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake

2. PAKE, IS QGZPAKE = ParComb[PAKE1, PAKEz] IS LO/TPAKE

No 1-round statistically password-
hiding PQ scheme realizing # paxe exists

EKE

13

PAKE, PAKE;

R' E R'
® — ——
Properties of ParComb — L
Compute K; Compute K; Compute K; Compute K
K := H(K4, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake

2. PAKE, IS QGZPAKE = ParComb[PAKE1, PAKEz] IS LO/TPAKE

No 1-round statistically password-
Theorem 2: hiding PQ scheme realizing F pake exists

EKE

13

PAKE, PAKE;

R' E R'
® — ——
Properties of ParComb — L
Compute K; Compute K; Compute K; Compute K
K := H(K4, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake

2. PAKE, IS QGZPAKE = ParComb[PAKE1, PAKEz] IS LO/TPAKE

No 1-round statistically password-
Theorem 2: hiding PQ scheme realizing F pake exists

1. PAKE is F epake = ParComb[PAKE1, PAKE;] is F (epake

EKE

13

PAKE, PAKE;

R' E R'
® — ——
Properties of ParComb — L
Compute K; Compute K; Compute K; Compute K
K := H(K4, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake

2. PAKE, IS gGZpAKE = ParComb[PAKE1, PAKEz] IS LO/TPAKE

No 1-round statistically password-
Theorem 2: hiding PQ scheme realizing F pake exists

1. PAKE1is & epake = ParComb|[PAKE1, PAKE;] iS F \epakEe
2. PAKE; 1S gG/T[epAKE = ParComb[PAI<E1, PAKEz] IS gzlepAKE

EKE

13

PAKE, PAKE;

R' E R'
® — ——
Properties of ParComb — L
Compute K; Compute K; Compute K; Compute K
K := H(K4, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake

2. PAKE, IS QGZPAKE = ParComb[PAKE1, PAKEz] IS LO/TPAKE

No 1-round statistically password-
Theorem 2: hiding PQ scheme realizing F pake exists

1. PAKE; 1S LO/T lePAKE = ParComb[PAI<E1, PAKEz] 1S LO/V’ lePAKE SPAKEZ,
2. PAKE> 1S g[epA|(E = ParComb[PAI<E1, PAKEz] IS glePAKE CPace

EKE

13

PAKE, PAKE;

R' E R'
® — ——
Properties of ParComb — L
Compute K; Compute K; Compute K; Compute K
K := H(K4, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake

2. PAKE, IS 97,PAKE = ParComb[PAKE1, PAKEz] IS LO/V'pAKE

No 1-round statistically password-
Theorem 2: hiding PQ scheme realizing F pake exists

1. PAKE1 is F tepake = ParComb[PAKE,, PAKE;] is F iepake SPAKE?2,

2. PAKE> 1S QO/T[epAKE = ParComb[PAKE1, PAKEz] IS glePAKE CPace
Bonus lemma: either & piepake = Z blePAKE

EKE

13

PAKE, PAKE;

R' E R'
® — ——
Properties of ParComb — L
Compute K; Compute K; Compute K; Compute K
K := H(K4, Ky, tr)

Theorem 1: Let PAKE; and PAKE; be 1-round statistically password-hiding, then
1. PAKEq is F pace = ParComb[PAKE,, PAKE;] is F pake

2. PAKE, IS gpAKE = ParComb[PAKE1, PAKEz] IS LO/V'pAKE

No 1-round statistically password-
Theorem 2: hiding PQ scheme realizing F pake exists

1. PAKE1 is F tepake = ParComb[PAKE,, PAKE;] is F iepake SPAKE?2,

2. PAKE> 1S g[epA|(E = ParComb[PAKE1, PAKEz] IS glePAKE CPace
Bonus lemma: either & piepake = Z blePAKE

Theorem 3: X-GA-PAKE (CSIDH-based) is a statistically pw-hiding 1-round blePAKE

13

EKE

Building SeqComb

Building SeqComb

PAKE;

Building SeqComb

Building SeqComb

PAKE;

Building SeqComb

PAKE;

Building SeqComb

PAKE;

14

Building SeqComb

PW PW
—_— —
K1 K1
— —
K1 K1
—_— —
K PAKE, K
— —

K := H(Ky, Ky, tr)

14

Building SeqComb

pw pw
— e
<, |PAKE[
— —
PAKE can have
the T problem K; K-

— —
Ky Ky
— — 5

K := H(Ky, Ky, tr)

15

Building SeqComb

stat. pw-hiding

pw pw
— e
<, |PAKE[
— —
PAKE can have
the T problem K; K-

— —
Ky Ky
— — 5

K := H(Ky, Ky, tr)

15

Building SeqComb

stat. pw-hiding

PW PW
—_— —
K1 K1
— —
K1 K1
—_— —
K PAKE, K
— —

K := H(Ky, Ky, tr)

15

Building SeqComb

stat. pw-hiding
pW pW

— e
. |PAKE|
—

broken
K K1

— —
Ky Ky
— — 5

K := H(Ky, Ky, tr)

15

Building SeqComb

stat. pw-hiding
pW pW

— e
0 PAKE; 0
— e

broken
0 0

— —
Ky Ky
— — 5

K := H(0, Ky, tr)

16

Building SeqComb

stat. pw-hiding
pw pw

— e
o |PAKE|
— e

broken

0, —
0] g
K := H(0, [Ka] tr)

16

Building SeqComb

stat. pw-hiding
pw pw

— e
o |PAKE|
— e

broken

0 <
K[| g
K]- Ho [

16

Building SeqComb

Session key is
predictable!

stat. pw-hiding
pw pw

— e
o |PAKE|
— e

broken

o <0
k(e o
KJ- Ho [

16

Building SeqComb

Session key is
predictable!

Input more into
PAKE

stat. pw-hiding
pw pw

— e
o |PAKE|
— e

broken

o <0
k(e o
KJ- Ho [

16

Building SeqComb

stat. pw-hiding

PW PW
—_— —
K1 K1
— —
K1 K1
—_— —
K PAKE, K
— —

K := H(Ky, Ky, tr)

17

Building SeqComb

stat. pw-hiding

pW pwW
— e
K1 K1
— —
Z := H(pw, Ky, tr) Z := H(pw, Ky, tr)
Z Z

— ——
¢, |PAKE|
— e

K := H(Ky, Ky, tr)

18

Building SeqComb

stat. pw-hiding

pw pw
— e
K1 K1
— —
Z := H(pw, Ky, tr) Z := H(pw, K, tr)
/ /
ﬁ _
¢, |PAKE|
— —

K := H(Ky, Ky, tr)

19

Building SeqComb

stat. pw-hiding
pw pw

— —
K1 K1
— —

broken
Z := H(pw, Ky, tr) Z := H(pw, K, tr)

/ /
ﬁ _

K5 K2
_ ﬁ

K := H(Ky, Ky, tr)

19

Building SeqComb

stat. pw-hiding
pw pw

— e
0[]
— e

broken
Z := H(pw, 0, tr) Z := H(pw, 0, tr)

/ /
ﬁ _

K5 K2
_ ﬁ

K := H(Ky, Ky, tr)

20

Building SeqComb

stat. pw-hiding
pw pw

— e
o |PAKE|
— e

broken
Z := H{pw] 0, tr) Z := H{pw] 0, tr)
Z

/
—_— —
K> K2
— —_—

K := H(Ky, Ky, tr)

20

Building SeqComb

stat. pw-hiding
pw pw

— e
o |PAKE|
— e

broken
1Z]= H{pw) 0, tr) 1Z]= H{pw)0, tr)

/ /
ﬁ _

K5 K2
_ ﬁ

K := H(Ky, Ky, tr)

20

Building SeqComb

stat. pw-hiding
pw pw

— e
o |PAKE|
— e

broken

1Z]= H{pw) 0, tr) 1Z]= H{pw)0, tr)
_Z, PR
] g

K := H(Ky, [K2] tr)

20

Building SeqComb

stat. pw-hiding
pw pw

— e
o |PAKE|
— e

broken

1Z]= H{pw) 0, tr) 1Z]= H{pw)0, tr)
_Z, PR
] g

= H(K, |Kz] tr)

20

Building SeqComb

stat. pw-hiding

pw pw
Combined PAKE is o |PAKE:l
still secure! broken

1Z]= H{pw) 0, tr) 1Z]= H{pw)0, tr)
_Z, PR
] g

= H(K, |Kz] tr)

20

Building SeqComb

stat. pw-hiding

pw pw
— e
K1 K1
— —
Z := H(pw, Ky, tr) Z := H(pw, K, tr)
/ /
ﬁ _
¢, |PAKE|
— —

K := H(Ky, Ky, tr)

21

Building SeqComb

stat. pw-hiding
pw pw

— —
K1 K1
— —

Z := H(pw, Ky, tr) Z := H(pw, K, tr)
/ /

— —
Ky Ky
— —

broken
K := H(K1, Ky, tr)

21

Building SeqComb

stat. pw-hiding

pW pW
— e
el

Z := H(pw, Ky, tr) Z := H(pw, K, tr)
/ /

— —
Ky Ky
— —

broken

K := H{Kq] Ko, tr)

21

Building SeqComb

stat. pw-hiding

pW pW
— e
el

Z := H(pw, Ky, tr) Z := H(pw, K, tr)
/ /

— —
Ky Ky
— —

broken

= H Ky, tr)

21

Building SeqComb

Session key is secure stat. pw-hiding

pW pW
— e
el

Z := H(pw, K, tr) Z := H(pw, K, tr)
/ /

— —
Ky Ky
— —

broken

= H Ky, tr)

21

Building SeqComb

Session key is secure stat. pw-hiding

W W
If Z leaks, the p—) (p_
success of PAKE, . PAKE+ .
leaks

Z := H(pw, K, tr) Z := H(pw, K, tr)
/ /
Ky K5
— —_—

broken

= H Ky, tr)

21

Building SeqComb

Session key is secure stat. pw-hiding
W W
If Z leaks, the p—) (p_
success of PAKE; ;| |PAKEs] |
leaks
New PAKE, property: Z:=H(pw, K, tr) Z := Hlpw, Ky, tr)
statistical preshared .
key equality hiding. ‘
K> K2
— —_—
broken

= H Ky, tr)

21

Building SeqComb

Session key is secure stat. pw-hiding
W W
If Z leaks, the L) (p_
success of PAKE; . PAKE+ .
leaks
New PAKE; property: Z:= H(pw, Ky, tr) Z:= H(pw, Ki, tr)

statistical preshared .

key equality hiding.
K K
If Inputs are high — —

entropy, their equality broken
1S statis:cically hidden = H Kz, tr)

21

Building SeqComb

Session key is secure stat. pw-hiding
W W
If Z leaks, the L) (p_
success of PAKE; . .
leaks
New PAKE, property: Z:=H(pw, K, tr) Z := H(pw, Ki, tr)

statistical preshared .

key equality hiding.
K K
If Inputs are high — —

entropy, their equality broken
1S statis:cically hidden = H Kz, tr)

EKE-PRF and CAKE are stat. PSK-equality-hiding

21

Properties of SeqComb

22

—
Z := H(pw, Ki, tr) Z := H(pw, Ki, tr)
/ /
— —
«— —

K := H(K4, K, tr)

Properties of SeqComb

Theorem 4: Let PAKE+ be 1-round stat. pw-hiding, and
PAKE; be stat. PSK equality-hiding. Then

22

—
:= H(pw, K, tr) Z := H(pw, Ki, tr)
/ /
— —
«— —

K := H(K4, K, tr)

Properties of SeqComb

Theorem 4: Let PAKE+ be 1-round stat. pw-hiding, and
PAKE; be stat. PSK equality-hiding. Then

1.

PAKE: is F pake = SeqComb[PAKE+, PAKE;] is F pake

22

—
:= H(pw, K, tr) Z := H(pw, Ki, tr)
/ /
— —
«— —
K := H(K1, Ky, tr)

Properties of SeqComb

Theorem 4: Let PAKE+ be 1-round stat. pw-hiding, and
PAKE; be stat. PSK equality-hiding. Then
1. PAKEqis F paxe = Sequmb[PAKE1, PAKE:] is F PAKE
F

2. PAKE: is F paxe = SeqComb[PAKE,, PAKE:] is F paxe

22

—
:= H(pw, K, tr) Z := H(pw, Ki, tr)
/ /
— —
«— —
K := H(K1, Ky, tr)

o [me]

o K K1
Properties of SeqComb —

Z := H(pw, Ki, tr) Z := H(pw, Ki, tr)

Z 7

Theorem 4: Let PAKE; be 1-round stat. pw-hiding, and) ’ E|<2
PAKE, be stat. PSK equality-hiding. Then —

K= H(KG, Ko, t)

1. PAKE1 is F pake = SeqComb[PAKE,, PAKE:] is F pake
2. PAKE: is F paxe = SeqComb[PAKE,, PAKE:] is F paxe

Bonus lemma: PAKE| & 1epakE = F rlePAKE

22

I T
o K K1
Properties of SeqComb —
Z := H(pw, Ki, tr) Z := H(pw, Ki, tr)
Z Z
Theorem 4: Let PAKE; be 1-round stat. pw-hiding, and) ’ P
Lo [P ke

PAKE; be stat. PSK equality-hiding. Then

1. PAKE1 is F pake = SeqComb[PAKE,, PAKE:] is F pake
2. PAKE: is F paxe = SeqComb[PAKE,, PAKE:] is F paxe

K := H(K4, K, tr)

Bonus lemma: PAKE| & 1epakE = F rlePAKE

Theorem 5: Let PAKE; be 1-round stat. pw-hiding, and PAKE; be any PAKE. Then

22

I T
o K K1
Properties of SeqComb —
Z := H(pw, Ki, tr) Z := H(pw, Ki, tr)
Z Z
Theorem 4: Let PAKE; be 1-round stat. pw-hiding, and) ’ P
PAKE, be stat. PSK equality-hiding. Then

| | K := H(Ks, Ko, tr)
1. PAKE: is Fpace = SeqComb[PAKE:, PAKE,] is F paxe r

2. PAKE: is F paxe = SeqComb[PAKE,, PAKE:] is F paxe

Bonus lemma: PAKE| & 1epakE = F rlePAKE

Theorem 5: Let PAKE; be 1-round stat. pw-hiding, and PAKE; be any PAKE. Then
1. PAKEq is F pake = Sequmb[PAKE1, PAKE-] nearly UC-realizes F pake

22

I T
o K K1
Properties of SeqComb —
Z := H(pw, Ki, tr) Z := H(pw, Ki, tr)
Z Z
Theorem 4: Let PAKE; be 1-round stat. pw-hiding, and) ’ P
PAKE, be stat. PSK equality-hiding. Then

| | K := H(Ks, Ko, tr)
1. PAKE: is Fpace = SeqComb[PAKE:, PAKE,] is F paxe r

2. PAKE: is F paxe = SeqComb[PAKE,, PAKE:] is F paxe

Bonus lemma: PAKE| & 1epakE = F rlePAKE

Theorem 5: Let PAKE; be 1-round stat. pw-hiding, and PAKE; be any PAKE. Then
1. PAKE- 1S LO/TPAKE = Sequmb[PAI<E1, PAKEz] nearly UC-realizes QOIPAKE
2. PAKE> 1S QG/TPAKE = Seq Comb[PAKE1, PAKEz] nearly UC-realizes aO/TPAKE

22

I T
o K K1
Properties of SeqComb —
Z := H(pw, Ki, tr) Z := H(pw, Ki, tr)
Z Z
Theorem 4: Let PAKE; be 1-round stat. pw-hiding, and) ’ P
PAKE, be stat. PSK equality-hiding. Then

| | K := H(Ks, Ko, tr)
1. PAKE: is Fpace = SeqComb[PAKE:, PAKE,] is F paxe r

2. PAKE: is F paxe = SeqComb[PAKE,, PAKE:] is F paxe

Bonus lemma: PAKE| & 1epakE = F rlePAKE

Theorem 5: Let PAKE; be 1-round stat. pw-hiding, and PAKE; be any PAKE. Then
1. PAKEq is F pake = Sequmb[PAKE1, PAKE-] nearly UC-realizes F pake
2. PAKE; is F paxe = Seq Comb[PAKE1, PAKE:] nearly UC-realizes F pace in QROM

22

Conclusion

Conclusion
First construction of a hybrid PAKE

Conclusion
First construction of a hybrid PAKE

Presented two methods, parallel and
sequential

Conclusion
First construction of a hybrid PAKE

Presented two methods, parallel and
sequential

Sequential has mild assumptions,
working with efficient existing PAKEs

Conclusion
First construction of a hybrid PAKE

Combiner | PAKE; PAKE, Combined Model

FoaetPH F page+PH F PAKE ROM
Presented two methods, parallel and FoiernketPH FlepacetPH Fpepaie RO
>€(uential FoaetPH FpaetPEH Fpake ROM

SeqComb [FepaxetPH FoncetPEH F riepaxe ROM

ParComb

Sequential has mild assumptions, i ™ i
working with efficient existing PAKES FoetPH Fee (Fee) QROM

+PH means stat. pw-hiding
+PEH means stat. PSK-equality-hiding

() means nearly UC-realizes

Conclusion

First construction of a hybrid PAKE Combiner | PAKE; PAKE, Combined Model

FoaetPH F page+PH F PAKE ROM
Presented two methods, parallel and FoiernketPH FlepacetPH Fpepaie RO
>€(uential FoaetPH FpaetPEH Fpake ROM

SeqComb [FepaxetPH FoncetPEH F riepaxe ROM

ParComb

Sequential has mild assumptions, i ™ i
working with efficient existing PAKES FoetPH Fee (Fee) QROM

+PH means stat. pw-hiding
+PEH means stat. PSK-equality-hiding

() means nearly UC-realizes

https:/ /www.ietf.org/archive/id/
draft-vos-cfrg-pqgpake-00.html

Conclusion

First construction of a hybrid PAKE PAKE: PAKE, Combined Mode

FoaetPH F page+PH F PAKE ROM
Presented two methods, parallel and FoiernketPH FlepacetPH Fpepaie RO
>€(uential FonetPEH Fpake ROM

' - ! FonetPEH F ROM
Sequential has mild assumptions, PAKE rlePAKE

working with efficient existing PAKEs Foue (Feme) QROM

+PH means stat. pw-hiding
+PEH means stat. PSK-equality-hiding

() means nearly UC-realizes

https:/ /www.ietf.org/archive/id/
draft-vos-cfrg-pqgpake-00.html

1a.cr/2024/1621
la.cr/2024/1630

