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What is a PAKE
Two parties use a password to 
establish a secure shared secret

1. A passive adversary cannot derive K

2. An active adversary has only 1 pw 
guess per session

A PAKE combiner takes 2 PAKEs and 
produces a new PAKE
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Weird! Cryptographic statements where 
nothing is high entropy!

TestPwd(pw’)
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But the PQ ones are new
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Recommended by French ANSSI and German BSI

How do you make a hybrid PAKE?
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Our Contributions

Hybrid: can plug in an existing classical and PQ PAKEs

Cheap: overhead of at most 2 hashes

Yields other PAKE flavors: PAKE ⇒ aPAKE, iPAKE

Parallel combiner (ParComb) Sequential combiner (SeqComb)
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