
You Lyu
Shanghai Jiao Tong University, China

Shengli Liu

Hybrid Password Authentication Key Exchange in the UC
Framework

Julia Hesse1 Michael Rosenberg2

1 IBM Research Europe — Zurich 2 Cloudflare

Merged talk based on concurrent works by

PAKE Combiners and Efficient Post-Quantum Instantiations

Combining PAKEs for hybrid security

ia.cr/2024/{1621,1630}

What is a PAKE

What is a PAKE
Two parties use a password to
establish a secure shared secret

pw

PAKE
pw

K K

What is a PAKE
Two parties use a password to
establish a secure shared secret

1. A passive adversary cannot derive K

pw

PAKE
pw

K K

What is a PAKE
Two parties use a password to
establish a secure shared secret

1. A passive adversary cannot derive K

2. An active adversary has only 1 pw
guess per session

pw

PAKE
pw

K K

TestPwd(pw’)

What is a PAKE
Two parties use a password to
establish a secure shared secret

1. A passive adversary cannot derive K

2. An active adversary has only 1 pw
guess per session

A PAKE combiner takes 2 PAKEs and
produces a new PAKE

pw

PAKE
pw

K K

Weird! Cryptographic statements where
nothing is high entropy!

TestPwd(pw’)

Problem Statement

3

Problem Statement
We have classical and PQ PAKEs

3

Problem Statement
We have classical and PQ PAKEs

But the PQ ones are new

3

Problem Statement
We have classical and PQ PAKEs

But the PQ ones are new

3

Problem Statement
We have classical and PQ PAKEs

But the PQ ones are new

We can hedge with hybrid

3

Problem Statement
We have classical and PQ PAKEs

But the PQ ones are new

We can hedge with hybrid

Recommended by French ANSSI and German BSI

3

Problem Statement
We have classical and PQ PAKEs

But the PQ ones are new

We can hedge with hybrid

Recommended by French ANSSI and German BSI

How do you make a hybrid PAKE?

3

Our Contributions

4

Our Contributions
Parallel combiner (ParComb)

pw

PAKE1

K

PAKE2

pw

1-round PAKE + 1-round PAKE ⇒ 1-round PAKE

4

Our Contributions
Parallel combiner (ParComb) Sequential combiner (SeqComb)

pw

PAKE1

K

PAKE2

pw pw PAKE1

K

PAKE2

pw

1-round PAKE + 1-round PAKE ⇒ 1-round PAKE 1-round PAKE + N-round PAKE ⇒ (N+1)-round PAKE

4

Our Contributions

Hybrid: can plug in an existing classical and PQ PAKEs

Parallel combiner (ParComb) Sequential combiner (SeqComb)
pw

PAKE1

K

PAKE2

pw pw PAKE1

K

PAKE2

pw

1-round PAKE + 1-round PAKE ⇒ 1-round PAKE 1-round PAKE + N-round PAKE ⇒ (N+1)-round PAKE

4

Our Contributions

Hybrid: can plug in an existing classical and PQ PAKEs

Cheap: overhead of at most 2 hashes

Parallel combiner (ParComb) Sequential combiner (SeqComb)
pw

PAKE1

K

PAKE2

pw pw PAKE1

K

PAKE2

pw

1-round PAKE + 1-round PAKE ⇒ 1-round PAKE 1-round PAKE + N-round PAKE ⇒ (N+1)-round PAKE

4

Our Contributions

Hybrid: can plug in an existing classical and PQ PAKEs

Cheap: overhead of at most 2 hashes

Yields other PAKE flavors: PAKE ⇒ aPAKE, iPAKE

Parallel combiner (ParComb) Sequential combiner (SeqComb)
pw

PAKE1

K

PAKE2

pw pw PAKE1

K

PAKE2

pw

1-round PAKE + 1-round PAKE ⇒ 1-round PAKE 1-round PAKE + N-round PAKE ⇒ (N+1)-round PAKE

4

How not to make a hybrid PAKE

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf.

5

Diffie-Hellman with
pw-encrypted shares

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽
EKE w/ key conf.

5

Diffie-Hellman with
pw-encrypted shares

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽
EKE w/ key conf.

5

Diffie-Hellman with
pw-encrypted shares

keyed permutation

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R'

EKE w/ key conf.

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')

EKE w/ key conf.

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)

EKE w/ key conf.

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)

EKE w/ key conf.

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)

S'

EKE w/ key conf.

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)

S'
S := Decpw(S')

EKE w/ key conf.

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)

S'
S := Decpw(S')
K1 := DH(r, S)

EKE w/ key conf.

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)

EKE w/ key conf.

5

key confirmation

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)

EKE w/ key conf.

, τ

5

key confirmation

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ

EKE w/ key conf.

, τ

5

key confirmation

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ

EKE w/ key conf.

, τ

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

, τ

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

, τ

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

, τ

5

Same thing but using
KEM instead of DH

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

, τ

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

K := H(K1, K2)

, τ

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ If dlog is easy, τ lets you

guess/check pw

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

K := H(K1, K2)

, τ

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ If dlog is easy, τ lets you

guess/check pw

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

K := H(K1, K2)
Ditto if KEM is broken

, τ

5

How not to make a hybrid PAKE
KEM combiners: just run 2 KEMs and hash the outputs

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ← 𝔽
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)S'

S := Decpw(S')
K1 := DH(r, S)
Verify τ If dlog is easy, τ lets you

guess/check pw

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

K := H(K1, K2)
Ditto if KEM is broken

This hybrid is the WEAKER of the two!

, τ

5

How else not to make a hybrid PAKE

6

How else not to make a hybrid PAKE

(sk, pk) ← Keygen()

R' := Encpw(pk) R'
pk := Decpw(R')

(ct, K2) ← Encap(pk)

S' := Encpw(ct)

τ := MAC(K2, 0)S', τ
ct := Decpw(S')

K2 := Decap(sk, ct)

Verify τ

CAKE (KEM-based) with key conf.

6

How else not to make a hybrid PAKE

(sk, pk) ← Keygen()

R' := Encpw(pk) R'
pk := Decpw(R')

(ct, K2) ← Encap(pk)

S' := Encpw(ct)

τ := MAC(K2, 0)S', τ
ct := Decpw(S')

K2 := Decap(sk, ct)

Verify τ

CAKE (KEM-based) with key conf.CAKE is KEM-based. Just use
a hybrid KEM

6

How else not to make a hybrid PAKE

(sk, pk) ← Keygen()

R' := Encpw(pk) R'
pk := Decpw(R')

(ct, K2) ← Encap(pk)

S' := Encpw(ct)

τ := MAC(K2, 0)S', τ
ct := Decpw(S')

K2 := Decap(sk, ct)

Verify τ

CAKE (KEM-based) with key conf.CAKE is KEM-based. Just use
a hybrid KEM

pk1 || pk2

6

How else not to make a hybrid PAKE

(sk, pk) ← Keygen()

R' := Encpw(pk) R'
pk := Decpw(R')

(ct, K2) ← Encap(pk)

S' := Encpw(ct)

τ := MAC(K2, 0)S', τ
ct := Decpw(S')

K2 := Decap(sk, ct)

Verify τ

CAKE (KEM-based) with key conf.CAKE is KEM-based. Just use
a hybrid KEM

Encpw(pk1) || Encpw(pk2)

pk1 || pk2

6

How else not to make a hybrid PAKE

(sk, pk) ← Keygen()

R' := Encpw(pk) R'
pk := Decpw(R')

(ct, K2) ← Encap(pk)

S' := Encpw(ct)

τ := MAC(K2, 0)S', τ
ct := Decpw(S')

K2 := Decap(sk, ct)

Verify τ

CAKE (KEM-based) with key conf.CAKE is KEM-based. Just use
a hybrid KEM

Suppose pk1 is an LWE
sample

Encpw(pk1) || Encpw(pk2)

pk1 || pk2

6

How else not to make a hybrid PAKE

(sk, pk) ← Keygen()

R' := Encpw(pk) R'
pk := Decpw(R')

(ct, K2) ← Encap(pk)

S' := Encpw(ct)

τ := MAC(K2, 0)S', τ
ct := Decpw(S')

K2 := Decap(sk, ct)

Verify τ

CAKE (KEM-based) with key conf.CAKE is KEM-based. Just use
a hybrid KEM

Suppose pk1 is an LWE
sample

Encpw(pk1) || Encpw(pk2)

pk1 || pk2

With an LWE oracle, Encpw(pk1)
lets you guess/check pw

6

How else not to make a hybrid PAKE

(sk, pk) ← Keygen()

R' := Encpw(pk) R'
pk := Decpw(R')

(ct, K2) ← Encap(pk)

S' := Encpw(ct)

τ := MAC(K2, 0)S', τ
ct := Decpw(S')

K2 := Decap(sk, ct)

Verify τ

CAKE (KEM-based) with key conf.CAKE is KEM-based. Just use
a hybrid KEM

Suppose pk1 is an LWE
sample

Encpw(pk1) || Encpw(pk2)

pk1 || pk2

With an LWE oracle, Encpw(pk1)
lets you guess/check pw

This hybrid is only as secure as LWE!

6

Building ParComb

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)

𝔽

S'
S := Decpw(S')
K1 := DH(r, S)
Verify τ

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

K := H(K1, K2)

, τ

7

Building ParComb

r ←
R' := Encpw(rG)

𝔽 R' R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)

𝔽

S'
S := Decpw(S')
K1 := DH(r, S)
Verify τ

(sk, pk) ← Keygen()
R' := Encpw(pk) R'

pk := Decpw(R')
(ct, K2) ← Encap(pk)
S' := Encpw(ct)
τ := MAC(K2, 0)S', τct := Decpw(S')

K2 := Decap(sk, ct)
Verify τ

EKE w/ key conf. CAKE (KEM-based) w/ key conf.

K := H(K1, K2)

, τ

7

r ←
R' := Encpw(rG)

𝔽
R'

S', τ

EKE w/ key conf.

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)

𝔽

S := Decpw(S')
K1 := DH(r, S)
Verify τ

Building ParComb

8

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S', τ

EKE w/ key conf.

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)

𝔽

S := Decpw(S')
K1 := DH(r, S)
Verify τ

Building ParComb

8

r ←
R' := Encpw(rG)

𝔽
R'

S', τ
S := Decpw(S')
K1 := DH(r, S)
Verify τ

EKE w/ key conf.

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)
τ := MAC(K1, 0)

𝔽

Building ParComb

Observation: it seems τ was the
only issue with the parallel
example

9

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S'
S := Decpw(S')
K1 := DH(r, S)

EKE

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)

𝔽

Building ParComb

10

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S'
S := Decpw(S')
K1 := DH(r, S)

EKE

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)

𝔽

Building ParComb

10

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S'
S := Decpw(S')
K1 := DH(r, S)

EKE

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)

𝔽

Building ParComb

10

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S'
S := Decpw(S')
K1 := DH(r, S)

EKE

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)

𝔽

Building ParComb

10

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S'
S := Decpw(S')
K1 := DH(r, S)

EKE

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)

𝔽
unif

Building ParComb

10

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S'
S := Decpw(S')
K1 := DH(r, S)

EKE

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)

𝔽
unif

unif

Building ParComb

10

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S'
S := Decpw(S')
K1 := DH(r, S)

EKE

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)

𝔽
unif

unif

Building ParComb

We'll call this statistical
password hiding, or (full) DH-
type PAKE

10

Observation: it seems τ was the
only issue with the parallel
example

r ←
R' := Encpw(rG)

𝔽
R'

S'
S := Decpw(S')
K1 := DH(r, S)

EKE

R := Decpw(R')
s ←
K1 := DH(s, R)
S' := Encpw(sG)

𝔽
unif

unif

Building ParComb

We'll call this statistical
password hiding, or (full) DH-
type PAKE

EKE, SPAKE2, CPace are stat. pw-hiding
10

Building ParComb

R'

S'...
Compute K1

...
Compute K1

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(K1, K2, tr)

11

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

Building ParComb

R'

S'...
Compute K1

...
Compute K1

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(K1, K2, tr)

11

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

Building ParComb

R'

S'...
Compute K1

...
Compute K1

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(K1, K2, tr)

broken

11

R'

S'...
Compute 0

...
Compute 0

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(0, K2, tr)

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

broken

Building ParComb

12

R'

S'...
Compute 0

...
Compute 0

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(0, K2, tr)

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

broken

Building ParComb

unif

12

R'

S'...
Compute 0

...
Compute 0

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(0, K2, tr)

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

broken

Building ParComb

unif

unif

12

R'

S'...
Compute 0

...
Compute 0

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(0, K2, tr)

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

broken

Building ParComb

unif

unif

12

R'

S'...
Compute 0

...
Compute 0

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(0, K2, tr)

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

broken

Building ParComb

unif

unif

12

R'

S'...
Compute 0

...
Compute 0

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(0, K2, tr)

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

broken

Building ParComb

unif

unif

12

R'

S'...
Compute 0

...
Compute 0

PAKE1
R'

S'...
Compute K2

...
Compute K2

PAKE2

K := H(0, K2, tr)

Requirement: PAKE1 and PAKE2
are statistically password-
hiding

broken

Building ParComb

unif

unif

PAKE is still secure

12

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

EKE

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

No 1-round statistically password-
hiding PQ scheme realizing PAKE existsℱ

EKE

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

No 1-round statistically password-
hiding PQ scheme realizing PAKE existsℱTheorem 2:

EKE

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

No 1-round statistically password-
hiding PQ scheme realizing PAKE existsℱTheorem 2:

1. PAKE1 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ

EKE

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

No 1-round statistically password-
hiding PQ scheme realizing PAKE existsℱTheorem 2:

1. PAKE1 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ
2. PAKE2 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ

EKE

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

No 1-round statistically password-
hiding PQ scheme realizing PAKE existsℱTheorem 2:

1. PAKE1 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ
2. PAKE2 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ

EKE

SPAKE2,
CPace

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

No 1-round statistically password-
hiding PQ scheme realizing PAKE existsℱTheorem 2:

1. PAKE1 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ
2. PAKE2 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ

EKE

SPAKE2,
CPace

Bonus lemma: either blePAKE ⇒ blePAKEℱ ℱ

13

R'

S'...
Compute K1

...
Compute K1

PAKE1

K := H(K1, K2, tr)

R'

S'...
Compute K2

...
Compute K2

PAKE2

Properties of ParComb

Theorem 1: Let PAKE1 and PAKE2 be 1-round statistically password-hiding, then
1. PAKE1 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ ParComb[PAKE1, PAKE2] is PAKEℱ ℱ

No 1-round statistically password-
hiding PQ scheme realizing PAKE existsℱTheorem 2:

1. PAKE1 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ
2. PAKE2 is lePAKE ⇒ ParComb[PAKE1, PAKE2] is lePAKEℱ ℱ

Theorem 3: X-GA-PAKE (CSIDH-based) is a statistically pw-hiding 1-round blePAKE

EKE

SPAKE2,
CPace

Bonus lemma: either blePAKE ⇒ blePAKEℱ ℱ

13

Building SeqComb

14

Building SeqComb

PAKE2

PAKE1

14

Building SeqComb

PAKE2

PAKE1

pw pw

14

Building SeqComb

PAKE2

PAKE1

pw pw

K1 K1

14

Building SeqComb

PAKE2

K1 K1

PAKE1

pw pw

K1 K1

14

Building SeqComb

PAKE2

K1 K1

K2 K2

PAKE1

pw pw

K1 K1

14

Building SeqComb

PAKE2

K1 K1

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

14

Building SeqComb

PAKE2

K1 K1

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

PAKE1 can have
the τ problem

15

Building SeqComb

PAKE2

K1 K1

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

PAKE1 can have
the τ problem

stat. pw-hiding

15

Building SeqComb

PAKE2

K1 K1

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

15

Building SeqComb

PAKE2

K1 K1

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

broken

15

Building SeqComb

PAKE2

0 0

K2 K2

K := H(0, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

broken

16

Building SeqComb

PAKE2

0 0

K2 K2

K := H(0, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

broken

16

Building SeqComb

PAKE2

0 0

K2 K2

K := H(0, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

broken

16

Building SeqComb

PAKE2

0 0

K2 K2

K := H(0, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

brokenSession key is
predictable!

16

Building SeqComb

PAKE2

0 0

K2 K2

K := H(0, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

brokenSession key is
predictable!

Input more into
PAKE2

16

Building SeqComb

PAKE2

K1 K1

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

17

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

18

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

19

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)
broken

19

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

Z := H(pw, 0, tr) Z := H(pw, 0, tr)
broken

20

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

Z := H(pw, 0, tr) Z := H(pw, 0, tr)
broken

20

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

Z := H(pw, 0, tr) Z := H(pw, 0, tr)
broken

20

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

Z := H(pw, 0, tr) Z := H(pw, 0, tr)
broken

20

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

Z := H(pw, 0, tr) Z := H(pw, 0, tr)
broken

20

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

0 0

stat. pw-hiding

Z := H(pw, 0, tr) Z := H(pw, 0, tr)
broken

Combined PAKE is
still secure!

20

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

21

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

broken

21

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

broken

21

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

broken

21

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

broken

Session key is secure

21

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

broken

If Z leaks, the
success of PAKE1
leaks

Session key is secure

21

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

broken

If Z leaks, the
success of PAKE1
leaks

New PAKE2 property:
statistical preshared
key equality hiding.

Session key is secure

21

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

broken

If Z leaks, the
success of PAKE1
leaks

New PAKE2 property:
statistical preshared
key equality hiding.

If inputs are high
entropy, their equality
is statistically hidden

Session key is secure

21

Building SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

stat. pw-hiding

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

broken

If Z leaks, the
success of PAKE1
leaks

New PAKE2 property:
statistical preshared
key equality hiding.

If inputs are high
entropy, their equality
is statistically hidden

Session key is secure

EKE-PRF and CAKE are stat. PSK-equality-hiding
21

Properties of SeqComb

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

22

Properties of SeqComb

Theorem 4: Let PAKE1 be 1-round stat. pw-hiding, and
PAKE2 be stat. PSK equality-hiding. Then

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

22

Properties of SeqComb

Theorem 4: Let PAKE1 be 1-round stat. pw-hiding, and
PAKE2 be stat. PSK equality-hiding. Then

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

22

1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ

Properties of SeqComb

Theorem 4: Let PAKE1 be 1-round stat. pw-hiding, and
PAKE2 be stat. PSK equality-hiding. Then

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

22

1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ

Properties of SeqComb

Theorem 4: Let PAKE1 be 1-round stat. pw-hiding, and
PAKE2 be stat. PSK equality-hiding. Then

Bonus lemma: PAKE1 lePAKE ⇒ rlePAKEℱ ℱ

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

22

1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ

Properties of SeqComb

Theorem 4: Let PAKE1 be 1-round stat. pw-hiding, and
PAKE2 be stat. PSK equality-hiding. Then

Bonus lemma: PAKE1 lePAKE ⇒ rlePAKEℱ ℱ

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

Theorem 5: Let PAKE1 be 1-round stat. pw-hiding, and PAKE2 be any PAKE. Then

22

1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ

Properties of SeqComb

Theorem 4: Let PAKE1 be 1-round stat. pw-hiding, and
PAKE2 be stat. PSK equality-hiding. Then

Bonus lemma: PAKE1 lePAKE ⇒ rlePAKEℱ ℱ

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

Theorem 5: Let PAKE1 be 1-round stat. pw-hiding, and PAKE2 be any PAKE. Then
1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] nearly UC-realizes PAKEℱ ℱ

22

1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ

Properties of SeqComb

Theorem 4: Let PAKE1 be 1-round stat. pw-hiding, and
PAKE2 be stat. PSK equality-hiding. Then

Bonus lemma: PAKE1 lePAKE ⇒ rlePAKEℱ ℱ

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

Theorem 5: Let PAKE1 be 1-round stat. pw-hiding, and PAKE2 be any PAKE. Then
1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] nearly UC-realizes PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ SeqComb[PAKE1, PAKE2] nearly UC-realizes PAKEℱ ℱ

22

1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ

Properties of SeqComb

Theorem 4: Let PAKE1 be 1-round stat. pw-hiding, and
PAKE2 be stat. PSK equality-hiding. Then

Bonus lemma: PAKE1 lePAKE ⇒ rlePAKEℱ ℱ

PAKE2

Z Z

K2 K2

K := H(K1, K2, tr)

PAKE1

pw pw

K1 K1

Z := H(pw, K1, tr) Z := H(pw, K1, tr)

Theorem 5: Let PAKE1 be 1-round stat. pw-hiding, and PAKE2 be any PAKE. Then
1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] nearly UC-realizes PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ SeqComb[PAKE1, PAKE2] nearly UC-realizes PAKEℱ ℱ in QROM

22

1. PAKE1 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ
2. PAKE2 is PAKE ⇒ SeqComb[PAKE1, PAKE2] is PAKEℱ ℱ

Conclusion

Conclusion
First construction of a hybrid PAKE

Conclusion
First construction of a hybrid PAKE

Presented two methods, parallel and
sequential

Conclusion
First construction of a hybrid PAKE

Presented two methods, parallel and
sequential

Sequential has mild assumptions,
working with efficient existing PAKEs

Conclusion
First construction of a hybrid PAKE

Presented two methods, parallel and
sequential

Sequential has mild assumptions,
working with efficient existing PAKEs

Combiner

PAKE+PHℱ

PAKE1 PAKE2 Combined Model

ParComb

SeqComb
PAKE+PEHℱ PAKEℱ ROM

lePAKE+PHℱ PAKE+PEHℱ rlePAKEℱ ROM

PAKE+PHℱ PAKEℱ (PAKE)ℱ QROM

PAKE+PHℱ PAKEℱ ROM

blePAKE+PHℱ blePAKEℱ ROM

+PH means stat. pw-hiding
+PEH means stat. PSK-equality-hiding
() means nearly UC-realizesℱ

PAKE+PHℱ
lePAKE+PHℱ

Conclusion
First construction of a hybrid PAKE

Presented two methods, parallel and
sequential

Sequential has mild assumptions,
working with efficient existing PAKEs

Combiner

PAKE+PHℱ

PAKE1 PAKE2 Combined Model

ParComb

SeqComb
PAKE+PEHℱ PAKEℱ ROM

lePAKE+PHℱ PAKE+PEHℱ rlePAKEℱ ROM

PAKE+PHℱ PAKEℱ (PAKE)ℱ QROM

PAKE+PHℱ PAKEℱ ROM

blePAKE+PHℱ blePAKEℱ ROM

+PH means stat. pw-hiding
+PEH means stat. PSK-equality-hiding
() means nearly UC-realizesℱ

PAKE+PHℱ
lePAKE+PHℱ

https://www.ietf.org/archive/id/
draft-vos-cfrg-pqpake-00.html

Conclusion
First construction of a hybrid PAKE

Presented two methods, parallel and
sequential

Sequential has mild assumptions,
working with efficient existing PAKEs

ia.cr/2024/1621
ia.cr/2024/1630Come find us!

Combiner

PAKE+PHℱ

PAKE1 PAKE2 Combined Model

ParComb

SeqComb
PAKE+PEHℱ PAKEℱ ROM

lePAKE+PHℱ PAKE+PEHℱ rlePAKEℱ ROM

PAKE+PHℱ PAKEℱ (PAKE)ℱ QROM

PAKE+PHℱ PAKEℱ ROM

blePAKE+PHℱ blePAKEℱ ROM

+PH means stat. pw-hiding
+PEH means stat. PSK-equality-hiding
() means nearly UC-realizesℱ

PAKE+PHℱ
lePAKE+PHℱ

https://www.ietf.org/archive/id/
draft-vos-cfrg-pqpake-00.html

