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A PAKE combiner takes 2 PAKEs and
produces a new PAKE

Weird! Cryptographic statements where
nothing is high entropy!
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How do you make a hybrid PAKE?
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Our Contributions

Parallel combiner (ParComb) Sequential combiner (SeqComb)

PW pw
N —— ~ pPw—> | paKE, | <PV

PAKE, *
| | PAKE,

K K
1-round PAKE + 1-round PAKE = 1-round PAKE 1-round PAKE + N-round PAKE = (N+1)-round PAKE

Hybrid: can plug in an existing classical and PQ PAKEs
Cheap: overhead of at most 2 hashes

Yields other PAKE flavors: PAKE = aPAKE, iPAKE

4
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Verify T

K := H(K1, K2)



Building ParComb

EKE w/ key conf.

Kq := DH(s, R)
S' := Encpu(SG)

S = Decy(S) <L 1= MAC(Ky, 0)
S pw

Ks := DH(r, S)
Verify T



Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE w/ key conf.

Kq := DH(s, R)
S' := Encpu(SG)

5= Decyu(s) < T~ ALK O

Ks := DH(r, S)
Verify T



Building ParComb

Observation: it seems T was the

only issue with the parallel
example

Kq := DH(s, R)
S' := Encpu(SG)
S . —0)

S:=Decpu(S) €
Kq := DH(r, S)
Very-+



Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE

K1 := DH(s, R)

S' := Encpu(SG)
Sl
S:=DecpulS) €

Ky := DH(r, S)

10



Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE

K1 := DH(s, R)

S' := Encpu(SG)
SI
S:=DecpulS) €

Ky := DH(r, S)

10



Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE

K1 := DH(s, R)

S' := Encpu(SG)
SI
S:=DecpulS) €

Ky := DH(r, S)

10



Building ParComb

EKE
F
.= .
o Rl:= EncorG) R := Decpu(R')
Observation: it seems T was the c e [
only issue with the parallel
example K1 := DH(s, R)

S' := Encpu(SG)
SI
S:=Decpu(S') €

Ky := DH(r, S)

10



Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE
r < [F
R' := EnCpu(rG) # R := Decpu(R')
s « [F
K1 := DH(s, R)
S':= Encpu(SG)
S

S:=Decpu(S) €

Ky := DH(r, S)

10



Building ParComb

Observation: it seems T was the

only issue with the parallel
example

EKE
r < [F
R' := EnCpu(rG) # R := Decpu(R')
s « [F
K1 := DH(s, R)
S':= Encpu(SG)
S

S:=DecpulS) o

unif
Kq 2= DH(r, S)

10



Building ParComb

Observation: it seems T was the

only issue with the parallel
example

We'll call this statistical

password hiding, or (full) DH-
type PAKE

EKE
r< [F
R := Encou(rG) _R |
i > R:=Decpul(R')
s « [
Ks := DH(s, R)
S' := Encpu(SG)
SI
S = DEpr(SI) (unT
Kq := DH(r, S)

10



Building ParComb

EKE
r< [F
- R
- R := EncpulrG —> R:= Decpu(R)
Observation: it seems T was the c e [
only issue with the parallel
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EKE, SPAKE2, CPace are stat. pw-hiding
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