Combining PAKEs for hybrid security

Merged talk based on concurrent works by

PAKE Combiners and Efficient Post-Quantum Instantiations Julia Hesse¹ Michael Rosenberg²

¹ IBM Research Europe — Zurich ² Cloudflare

You Lyu

Shanghai Jiao Tong University, China

Hybrid Password Authentication Key Exchange in the UC Framework

Shengli Liu

ia.cr/2024/{1621,1630}

Two parties use a password to establish a secure shared secret

Two parties use a password to establish a secure shared secret

1. A passive adversary cannot derive K

Two parties use a password to establish a secure shared secret

- 1. A passive adversary cannot derive K
- 2. An active adversary has only 1 pw guess per session

Two parties use a password to establish a secure shared secret

- 1. A passive adversary cannot derive K
- 2. An active adversary has only 1 pw guess per session

A PAKE combiner takes 2 PAKEs and produces a new PAKE

Weird! Cryptographic statements where nothing is high entropy!

We have classical and PQ PAKEs

We have classical and PQ PAKEs

But the PQ ones are new

We have classical and PQ PAKEs

But the PQ ones are new

note

```
(Appx. A.1)
   result incorrect
 (Sects. 3.2 and 3.3,
     Appx. A.4)
   result incorrect
      (Sect. 3.2)
  and Appx. A.4)
 result ambiguous,
unclear if OEKE-PRF
   or OEKE-RO;
   security proof
incorrect (Sect. 3.1);
either way result also
incorrect (Appx. A.3)
```

result incorrect (Sect. 3.3, Appxs. A.1 and A.3)

- We have classical and PQ PAKEs
- But the PQ ones are new
- We can **hedge with hybrid**

note

```
(Appx. A.1)
   result incorrect
 (Sects. 3.2 and 3.3,
     Appx. A.4)
   result incorrect
      (Sect. 3.2)
  and Appx. A.4)
 result ambiguous,
unclear if OEKE-PRF
   or OEKE-RO;
   security proof
incorrect (Sect. 3.1);
either way result also
incorrect (Appx. A.3)
```

result incorrect (Sect. 3.3, Appxs. A.1 and A.3)

- We have classical and PQ PAKEs
- But the PQ ones are new
- We can **hedge with hybrid**

Recommended by French ANSSI and German BSI

note

(Appx. A.1) result incorrect (Sects. 3.2 and 3.3, Appx. A.4) result incorrect (Sect. 3.2and Appx. A.4) result ambiguous, unclear if OEKE-PRF or OEKE-RO; security proof incorrect (Sect. 3.1); either way result also incorrect (Appx. A.3)

result incorrect (Sect. 3.3, Appxs. A.1 and A.3)

- We have classical and PQ PAKEs
- But the PQ ones are new
- We can **hedge with hybrid**

Recommended by French ANSSI and German BSI

How do you make a hybrid PAKE?

note

result incorrect (Sects. 3.2 and 3.3, Appx. A.4) result incorrect (Sect. 3.2and Appx. A.4) result ambiguous, unclear if OEKE-PRF or OEKE-RO; security proof incorrect (Sect. 3.1); either way result also incorrect (Appx. A.3)

result incorrect (Sect. 3.3, Appxs. A.1 and A.3)

Parallel combiner (ParComb)

1-round PAKE + 1-round PAKE \Rightarrow 1-round PAKE

Parallel combiner (ParComb)

1-round PAKE + 1-round PAKE \Rightarrow 1-round PAKE

Sequential combiner (SeqComb)

Parallel combiner (ParComb)

1-round PAKE + 1-round PAKE \Rightarrow 1-round PAKE

Hybrid: can plug in an existing classical and PQ PAKEs

Sequential combiner (SeqComb)

Parallel combiner (ParComb)

1-round PAKE + 1-round PAKE \Rightarrow 1-round PAKE

Cheap: overhead of at most 2 hashes

Sequential combiner (SeqComb)

Hybrid: can plug in an existing classical and PQ PAKEs

Parallel combiner (ParComb)

1-round PAKE + 1-round PAKE \Rightarrow 1-round PAKE

Cheap: overhead of at most 2 hashes

Sequential combiner (SeqComb)

- Hybrid: can plug in an existing classical and PQ PAKEs
- **Yields other PAKE flavors:** PAKE \Rightarrow aPAKE, iPAKE

How not to make a hybrid PAKE

EKE w/ key conf.

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

EKE w/ key conf. Diffie-Hellman with pw-encrypted shares

EKE w/ key conf. **Diffie-Hellman with** r←ℾ R' := Enc_{pw}(rG) **pw-encrypted shares**

How not to make a hybrid PAKE

KEM combiners: just run 2 KEMs and hash the outputs

 $r \leftarrow \mathbb{F}$ $R' := Enc_{pw}(rG)$ $\frac{EKE w/key conf.}{Diffie-Hellman with}$ $\frac{F}{R' := Enc_{pw}(rG)}$

 $r \leftarrow \mathbb{F} \qquad R' := Enc_{pw}(rG) \xrightarrow{R'}$

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R')

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S' := Enc_{pw}(sG)

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S' := Enc_{pw}(sG) S'

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S' := Enc_{pw}(sG) $S := Dec_{pw}(S') \leftarrow S'$

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S' := Enc_{pw}(sG) $S := Dec_{pw}(S') \leftarrow S'$

 $K_1 := DH(r, S)$

 $r \leftarrow \mathbb{F}$ R':= Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S' := Enc_{pw}(sG) $S := Dec_{pw}(S') \stackrel{S'}{\longleftarrow} \tau := MAC(K_1, 0)$ K₁ := DH(r, S) key confirmation

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ $S := Dec_{pw}(S') \xleftarrow{S', \tau} \tau := MAC(K_1, 0)$ $K_1 := DH(r, S) \xleftarrow{S', \tau} \tau := MAC(K_1, 0)$

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S := Dec_{pw}(S') \leftarrow S', τ S' := Enc_{pw}(sG) τ := MAC(K₁, 0) K₁ := DH(r, S) key confirmation Verify T

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S := $Dec_{pw}(S') \leftarrow S', \tau$ $\tau := MAC(K_1, 0)$ $K_1 := DH(r, S)$ Verify τ
$r \leftarrow \mathbb{F}$ $R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$ $s \leftarrow \mathbb{F}$ $K_1 := DH(s, R)$ $S' := Enc_{pw}(sG)$ T := DH(r, S) $Verify \tau$

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S' := Enc_{pw}(sG) $S := Dec_{pw}(S') \xleftarrow{S', \tau} \tau := MAC(K_1, 0)$ $K_1 := DH(r, S)$ Verify T

CAKE (KEM-based) w/ key conf. (sk, pk) ← Keygen() R' R' := Enc_{pw}(pk) $pk := Dec_{pw}(R')$ $(ct, K_2) \leftarrow Encap(pk)$ $S' := Enc_{pw}(ct)$ $\tau := MAC(K_2, 0)$ **S', τ** ct := Dec_{pw}(S') K₂ := Decap(sk, ct) Verify T

 $r \leftarrow \mathbb{F}$ $R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$ $s \leftarrow \mathbb{F}$ $K_1 := DH(s, R)$ $S' := Enc_{pw}(sG)$ $S := Dec_{pw}(S') \xleftarrow{S', \tau} \tau := MAC(K_1, 0)$ $K_1 := DH(r, S)$ Verify τ

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S' := Enc_{pw}(sG) $S := Dec_{pw}(S') \xleftarrow{S', \tau} \tau := MAC(K_1, 0)$ $K_1 := DH(r, S)$ Verify T

CAKE (KEM-based) w/ key conf. (sk, pk) ← Keygen() R' R' := Enc_{pw}(pk) $pk := Dec_{pw}(R')$ $(ct, K_2) \leftarrow Encap(pk)$ $S' := Enc_{pw}(ct)$ $\tau := MAC(K_2, 0)$ **S', τ** ct := Dec_{pw}(S') K₂ := Decap(sk, ct) Verify T

 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S' := Enc_{pw}(sG) $S := Dec_{pw}(S') \xleftarrow{S', \tau} \tau := MAC(K_1, 0)$ $K_1 := DH(r, S)$ Verify T

```
CAKE (KEM-based) w/ key conf.
         (sk, pk) ← Keygen()
                                 R'
        R' := Enc<sub>pw</sub>(pk)
                                           pk := Dec_{pw}(R')
                                            (ct, K_2) \leftarrow Encap(pk)
                                            S' := Enc_{pw}(ct)
                                            \tau := MAC(K_2, 0)
                             S', τ
          ct := Dec<sub>pw</sub>(S')
           K<sub>2</sub> := Decap(sk, ct)
           Verify T
K := H(K_1, K_2)
```


 $r \leftarrow \mathbb{F}$ R' := Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S := $Dec_{pw}(S')$ \leftarrow S', τ T := $Enc_{pw}(SG)$ τ := MAC(K₁, 0) $K_1 := DH(r, S)$ Verify τ If dlog is easy, τ lets you guess/check pw

```
CAKE (KEM-based) w/ key conf.
          (sk, pk) ← Keygen()
                                 R'→
         R' := Enc<sub>pw</sub>(pk)
                                            pk := Dec_{pw}(R')
                                             (ct, K_2) \leftarrow Encap(pk)
                                             S' := Enc_{pw}(ct)
                                            \tau := MAC(K_2, 0)
                              S', τ
          ct := Dec<sub>pw</sub>(S')
           K<sub>2</sub> := Decap(sk, ct)
           Verify \tau
K := H(K_1, K_2)
```


 $r \leftarrow \mathbb{F}$ R':= Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S := $Dec_{pw}(S')$ \leftarrow S', τ T := $Enc_{pw}(SG)$ τ := MAC(K₁, 0) $K_1 := DH(r, S)$ Verify τ If dlog is easy, τ lets you guess/check pw

```
CAKE (KEM-based) w/ key conf.
         (sk, pk) ← Keygen()
                                R'→
         R' := Enc<sub>pw</sub>(pk)
                                           pk := Dec_{pw}(R')
                                            (ct, K_2) \leftarrow Encap(pk)
                                            S' := Enc_{pw}(ct)
                                  S', \tau = MAC(K_2, 0)
          ct := Dec<sub>pw</sub>(S')
           K<sub>2</sub> := Decap(sk, ct)
           Verify \tau
                           Ditto if KEM is broken
K := H(K_1, K_2)
```


 $r \leftarrow \mathbb{F}$ R':= Enc_{pw}(rG) $\xrightarrow{R'}$ R := Dec_{pw}(R') s ← F $K_1 := DH(s, R)$ S := $Dec_{pw}(S')$ \leftarrow S', τ T := $Enc_{pw}(SG)$ τ := MAC(K₁, 0) $K_1 := DH(r, S)$ Verify τ If dlog is easy, τ lets you guess/check pw $K := H(K_1, K_2)$

```
CAKE (KEM-based) w/ key conf.
                         (sk, pk) ← Keygen()
                                              R'→
                         R' := Enc<sub>pw</sub>(pk)
                                                         pk := Dec_{pw}(R')
                                                         (ct, K_2) \leftarrow Encap(pk)
                                                         S' := Enc_{pw}(ct)
                                                 S', \tau = MAC(K_2, 0)
                          ct := Dec<sub>pw</sub>(S')
                          K<sub>2</sub> := Decap(sk, ct)
                          Verify \tau
                                          Ditto if KEM is broken
This hybrid is the WEAKER of the two!
```


How else not to make a hybrid PAKE

How else not to make a hybrid PAKE

CAKE (KEM-based) with key conf.

 $(sk, pk) \leftarrow Keygen()$ $R' := Enc_{pw}(pk) \xrightarrow{R'} pk := Dec_{pw}(R')$ $(ct, K_2) \leftarrow Encap(pk)$ $S' := Enc_{pw}(ct)$ ct := $Dec_{pw}(S')$ $\leftarrow S', \tau$ $\tau := MAC(K_2, 0)$ K₂ := Decap(sk, ct) Verify T

How else not to make a hybrid PAKE

CAKE is KEM-based. Just use a hybrid KEM

CAKE (KEM-based) with key conf.

 $(sk, pk) \leftarrow Keygen()$ $R' := Enc_{pw}(pk) \xrightarrow{R'} pk := Dec_{pw}(R')$ $(ct, K_2) \leftarrow Encap(pk)$ $S' := Enc_{pw}(ct)$ ct := $Dec_{pw}(S')$ $\leftarrow S', \tau$ $\tau := MAC(K_2, 0)$ K₂ := Decap(sk, ct) Verify T

How else not to make a hybrid PAKE CAKE (KEM-based) with key conf. CAKE is KEM-based. Just use **pk**₁ || **pk**₂ a hybrid KEM (sk, pk) ← Keygen() $R' := Enc_{pw}(pk) \xrightarrow{R'} pk := Dec_{pw}(R')$ $(ct, K_2) \leftarrow Encap(pk)$ $S' := Enc_{pw}(ct)$ ct := $Dec_{pw}(S')$ $\leftarrow S', \tau$ $\tau := MAC(K_2, 0)$ K₂ := Decap(sk, ct) Verify T

How else not to make a hybrid PAKE CAKE (KEM-based) with key conf. CAKE is KEM-based. Just use **pk**₁ || **pk**₂ a hybrid KEM $(sk, pk) \leftarrow Keygen()$ $R' := Enc_{pw}(pk) \xrightarrow{R'} pk := Dec_{pw}(R')$ $Enc_{pw}(pk_1) || Enc_{pw}(pk_2)$ $(ct, K_2) \leftarrow Encap(pk)$ $S' := Enc_{pw}(ct)$ ct := $Dec_{pw}(S')$ $\leftarrow S', \tau$ $\tau := MAC(K_2, 0)$ K₂ := Decap(sk, ct) Verify T

How else not to make a hybrid PAKE CAKE (KEM-based) with key conf. CAKE is KEM-based. Just use **pk**₁ || **pk**₂ a hybrid KEM $(sk, pk) \leftarrow Keygen()$ Suppose pk₁ is an LWE $R' := Enc_{pw}(pk) \xrightarrow{R'} pk := Dec_{pw}(R')$ $Enc_{pw}(pk_1) || Enc_{pw}(pk_2)$ sample $(ct, K_2) \leftarrow Encap(pk)$ $S' := Enc_{pw}(ct)$ $ct := Dec_{pw}(S') \quad \overleftarrow{S', \tau}$ $\tau := MAC(K_2, 0)$ K₂ := Decap(sk, ct) Verify T

How else not to make a hybrid PAKE CAKE (KEM-based) with key conf. CAKE is KEM-based. Just use **pk**₁ || **pk**₂ a hybrid KEM $(sk, pk) \leftarrow Keygen()$ Suppose pk₁ is an LWE $R' := Enc_{pw}(pk) \xrightarrow{R'} pk := Dec_{pw}(R')$ $Enc_{pw}(pk_1) || Enc_{pw}(pk_2)$ sample $(ct, K_2) \leftarrow Encap(pk)$ With an LWE oracle, Enc_{pw}(pk₁) $S' := Enc_{pw}(ct)$ lets you guess/check pw ct := $Dec_{pw}(S') \leftarrow S', \tau$ $\tau := MAC(K_2, 0)$ K₂ := Decap(sk, ct) Verify T

How else not to make a hybrid PAKE CAKE (KEM-based) with key conf. CAKE is KEM-based. Just use **pk**₁ || **pk**₂ a hybrid KEM $(sk, pk) \leftarrow Keygen()$ Suppose pk₁ is an LWE $R' := Enc_{pw}(pk) \xrightarrow{R'} pk := Dec_{pw}(R')$ $Enc_{pw}(pk_1) || Enc_{pw}(pk_2)$ sample $(ct, K_2) \leftarrow Encap(pk)$ With an LWE oracle, Enc_{pw}(pk₁) $S' := Enc_{pw}(ct)$ lets you guess/check pw ct := $Dec_{pw}(S') \leftarrow S', \tau$ $\tau := MAC(K_2, 0)$ This hybrid is only as secure as LWE! K₂ := Decap(sk, ct) Verify T

EKE w/ key conf.

 $r \leftarrow \mathbb{F}$ $R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$ $s \leftarrow \mathbb{F}$ $K_1 := DH(s, R)$ $S' := Enc_{pw}(sG)$ T := DH(r, S) $Verify \tau$

K := H(

$$CAKE (KEM-based) w/ key co$$

$$(sk, pk) \leftarrow Keygen()$$

$$R' := Enc_{pw}(pk) \xrightarrow{R'} pk := Dec_{pw}(R')$$

$$(ct, K_2) \leftarrow Encap()$$

$$S' := Enc_{pw}(ct)$$

$$Ct := Dec_{pw}(S') \xleftarrow{S', \tau} \tau := MAC(K_2, 0)$$

$$K_2 := Decap(sk, ct)$$

$$Verify \tau$$

$$K_1, K_2)$$

K := H

$$CAKE (KEM-based) w/ key consistent of the second structure of the second str$$

EKE w/ key conf. r ← F $R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$ s ← F $K_1 := DH(s, R)$ $S' := Enc_{pw}(sG)$ $S := Dec_{pw}(S') \leftarrow S', \tau$ τ := MAC(K₁, 0) $K_1 := DH(r, S)$ Verify τ

Observation: it seems **τ was the only issue** with the parallel example

EKE w/ key conf. r ← F $R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$ s ← F $K_1 := DH(s, R)$ $S' := Enc_{pw}(sG)$ S := $Dec_{pw}(S') \leftarrow S', \tau$ τ := MAC(K₁, 0) $K_1 := DH(r, S)$ Verify T

Observation: it seems **τ was the only issue** with the parallel example

EKE w/ key conf. r ← F $R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$ s ← F $K_1 := DH(s, R)$ $S' := Enc_{pw}(sG)$ $\overset{\mathsf{S'}, \mathsf{T}}{\longleftarrow} = \mathsf{MAC}(\mathsf{K}_1, \mathbf{0})$ S := Dec_{pw}(S') $K_1 := DH(r, S)$ Verify **⊤**

Observation: it seems **τ was the only issue** with the parallel example

r ← F $R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$ s ← F $K_1 := DH(s, R)$ $S' := Enc_{pw}(sG)$ S' $S := Dec_{pw}(S')$ $K_1 := DH(r, S)$

Observation: it seems **τ was the only issue** with the parallel example

$$\mathbf{r} \leftarrow \mathbb{F}$$

$$\mathbf{R}' := \operatorname{Enc}_{pw}(\mathbf{r}G) \xrightarrow{\mathbf{R}'} \mathbf{R} := \operatorname{Dec}_{pw}(\mathbf{R}')$$

$$\mathbf{s} \leftarrow \mathbb{F}$$

$$K_1 := \operatorname{DH}(\mathbf{s}, \mathbf{R})$$

$$\mathbf{S}' := \operatorname{Enc}_{pw}(\mathbf{s}G)$$

$$\mathbf{S}' := \operatorname{Dec}_{pw}(\mathbf{s}') \xleftarrow{\mathbf{S}'}$$

$$K_1 := \operatorname{DH}(\mathbf{r}, \mathbf{S})$$

Observation: it seems **τ was the only issue** with the parallel example

$$\mathbf{r} \leftarrow \mathbb{F}$$

$$\mathbf{R}' := \operatorname{Enc}_{pw}(\mathbf{rG}) \xrightarrow{\mathbf{R}'} \mathbf{R} := \operatorname{Dec}_{pw}(\mathbf{R}')$$

$$\mathbf{s} \leftarrow \mathbb{F}$$

$$K_1 := \operatorname{DH}(\mathbf{s}, \mathbf{R})$$

$$\mathbf{S}' := \operatorname{Enc}_{pw}(\mathbf{sG})$$

$$\mathbf{S}' := \operatorname{Enc}_{pw}(\mathbf{sG})$$

$$K_1 := \operatorname{DH}(\mathbf{r}, \mathbf{S})$$

Observation: it seems **τ was the only issue** with the parallel example

$$\mathbf{r} \leftarrow \mathbb{F}$$

$$\mathbf{R}' := \operatorname{Enc}_{pw}(\mathbf{rG}) \xrightarrow{\mathbb{R}'} \operatorname{R} := \operatorname{Dec}_{pw}(\mathbb{R}')$$

$$s \leftarrow \mathbb{F}$$

$$K_1 := \operatorname{DH}(s, \mathbb{R})$$

$$S' := \operatorname{Enc}_{pw}(SG)$$

$$K_1 := \operatorname{DH}(r, S)$$

Observation: it seems **τ was the only issue** with the parallel example

$$r \leftarrow \mathbb{F}$$

$$R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$$

$$s \leftarrow \mathbb{F}$$

$$K_1 := DH(s, R)$$

$$S' := Enc_{pw}(sG)$$

$$K_1 := DH(r, S)$$

Observation: it seems **τ was the only issue** with the parallel example

$$r \leftarrow \mathbb{F}$$

$$R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$$

$$s \leftarrow \mathbb{F}$$

$$K_1 := DH(s, R)$$

$$S' := Enc_{pw}(SG)$$

$$S' := Dec_{pw}(S') \xrightarrow{S'}$$

$$unif$$

$$K_1 := DH(r, S)$$

Observation: it seems **τ was the only issue** with the parallel example

We'll call this **statistical password hiding**, or (full) DHtype PAKE

$$r \leftarrow \mathbb{F}$$

$$R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$$

$$s \leftarrow \mathbb{F}$$

$$K_1 := DH(s, R)$$

$$S' := Enc_{pw}(SG)$$

$$S' := Dec_{pw}(S') \xrightarrow{S'}$$

$$unif$$

$$K_1 := DH(r, S)$$

Observation: it seems **T** was the only issue with the parallel example

We'll call this statistical password hiding, or (full) DHtype PAKE

EKE, SPAKE2, CPace are stat. pw-hiding

$$r \leftarrow \mathbb{F}$$

$$R' := Enc_{pw}(rG) \xrightarrow{R'} R := Dec_{pw}(R')$$

$$s \leftarrow \mathbb{F}$$

$$K_1 := DH(s, R)$$

$$S' := Enc_{pw}(sG)$$

$$K_1 := DH(r, S)$$

 $K := H(K_1, K_2, tr)$

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

 $K := H(K_1, K_2, tr)$

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

 $K := H(K_1, K_2, tr)$

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

 $K := H(0, K_2, tr)$

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

 $K := H(0, K_2, tr)$

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

 $K := H(0, K_2, tr)$

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

Building ParComb

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

Building ParComb

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

Building ParComb

Requirement: PAKE₁ and PAKE₂ are statistically passwordhiding

PAKE is still secure

Theorem 1: Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then

Theorem 1: Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE} 1.

- **Theorem 1:** Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

- **Theorem 1:** Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

- **Theorem 1:** Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

No 1-round statistically password-hiding PQ scheme realizing $\mathcal{F}_{\text{PAKE}}$ exists

- **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE} 1.
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

Theorem 2:

Theorem 1: Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then

No 1-round statistically passwordhiding PQ scheme realizing \mathcal{F}_{PAKE} exists

- **Theorem 1:** Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

Theorem 2:

1. **PAKE**₁ is $\mathcal{F}_{lePAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{lePAKE}

No 1-round statistically passwordhiding PQ scheme realizing \mathcal{F}_{PAKE} exists PAKE₂] is \mathcal{F}_{IePAKE}

- **Theorem 1:** Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

Theorem 2:

- 1. **PAKE**₁ is $\mathcal{F}_{lePAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{lePAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{lePAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{lePAKE}

No 1-round statistically passwordhiding PQ scheme realizing $\mathcal{F}_{\text{PAKE}}$ exists

- **Theorem 1:** Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

Theorem 2:

- 1. **PAKE**₁ is $\mathcal{F}_{lePAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{lePAKE} **SPAKE2**,
- 2. **PAKE**₂ is $\mathcal{F}_{lePAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{lePAKE} **CPace**

No 1-round statistically passwordhiding PQ scheme realizing $\mathcal{F}_{\text{PAKE}}$ exists

- **Theorem 1:** Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

Theorem 2:

- 1. **PAKE**₁ is $\mathcal{F}_{lePAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{lePAKE} **SPAKE2**,
- 2. **PAKE**₂ is $\mathscr{F}_{lePAKE} \Rightarrow$ ParComb[PAKE₁, PAKE₂] is \mathscr{F}_{lePAKE} **CPace Bonus lemma: either** $\mathscr{F}_{blePAKE} \Rightarrow \mathscr{F}_{blePAKE}$

No 1-round statistically passwordhiding PQ scheme realizing \mathcal{F}_{PAKE} exists

- **Theorem 1:** Let PAKE₁ and PAKE₂ be 1-round statistically password-hiding, then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

Theorem 2:

- 1. **PAKE**₁ is $\mathcal{F}_{lePAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{lePAKE} **SPAKE2,**
- 2. **PAKE**₂ is $\mathcal{F}_{lePAKE} \Rightarrow ParComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{lePAKE} **CPace Bonus lemma: either** $\mathcal{F}_{blePAKE} \Rightarrow \mathcal{F}_{blePAKE}$ **Theorem 3:** X-GA-PAKE (CSIDH-based) is a statistically pw-hiding 1-round blePAKE

No 1-round statistically passwordhiding PQ scheme realizing \mathcal{F}_{PAKE} exists

PAKE₁

K := H(0, K₂, tr)

Session key is predictable! Input more into **PAKE**₂

 $Z := H(pw, K_1, tr)$

Z := H(pw, K₁, tr)

 $K := H(K_1, K_2, tr)$

 $K := H(K_1, K_2, tr)$

Combined PAKE is still secure!

 $Z := H(pw, K_1, tr)$

 $K := H(K_1, K_2, tr)$

Session key is secure

 $Z := H(pw, K_1, tr)$

Session key is secure If Z leaks, the **success of PAKE**₁ leaks

- - New PAKE₂ property: Z := H(pw, K₁, tr) statistical preshared Z key equality hiding.

Session key is secure If Z leaks, the success of PAKE₁ leaks

is statistically hidden

- **Session key is secure** If Z leaks, the success of PAKE₁ leaks
 - New PAKE₂ property: Z := H(pw, K₁, tr) statistical preshared key equality hiding. **K**₂
 - If inputs are high entropy, their equality is statistically hidden

EKE-PRF and CAKE are stat. PSK-equality-hiding

pw

22

Theorem 4: Let PAKE₁ be 1-round stat. pw-hiding, and PAKE₂ be stat. PSK equality-hiding. Then

22

Theorem 4: Let PAKE₁ be 1-round stat. pw-hiding, and PAKE₂ be stat. PSK equality-hiding. Then

- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

- **Theorem 4:** Let PAKE₁ be 1-round stat. pw-hiding, and PAKE₂ be stat. PSK equality-hiding. Then
 - 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

K := H(K₁, K₂, tr)

- **Theorem 4:** Let PAKE₁ be 1-round stat. pw-hiding, and PAKE₂ be stat. PSK equality-hiding. Then
 - 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
 - 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

 $K := H(K_1, K_2, tr)$

Bonus lemma: PAKE₁ $\mathcal{F}_{\text{lePAKE}} \Rightarrow \mathcal{F}_{\text{rlePAKE}}$

- **Theorem 4:** Let PAKE₁ be 1-round stat. pw-hiding, and PAKE₂ be stat. PSK equality-hiding. Then
 - 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

Theorem 5: Let PAKE₁ be 1-round stat. pw-hiding, and **PAKE₂ be any PAKE**. Then

 $K := H(K_1, K_2, tr)$

Bonus lemma: PAKE₁ $\mathcal{F}_{\text{lePAKE}} \Rightarrow \mathcal{F}_{\text{rlePAKE}}$

- **Theorem 4:** Let PAKE₁ be 1-round stat. pw-hiding, and PAKE₂ be stat. PSK equality-hiding. Then
 - 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
 - 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

Theorem 5: Let PAKE₁ be 1-round stat. pw-hiding, and **PAKE₂ be any PAKE**. Then 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow$ SeqComb[PAKE₁, PAKE₂] nearly UC-realizes \mathcal{F}_{PAKE}

 $K := H(K_1, K_2, tr)$

Bonus lemma: $PAKE_1 \mathcal{F}_{lePAKE} \Rightarrow \mathcal{F}_{rlePAKE}$

- **Theorem 4:** Let PAKE₁ be 1-round stat. pw-hiding, and PAKE₂ be stat. PSK equality-hiding. Then
 - 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
 - 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

- **Theorem 5:** Let PAKE₁ be 1-round stat. pw-hiding, and **PAKE₂ be any PAKE**. Then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow$ SeqComb[PAKE₁, PAKE₂] nearly UC-realizes \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow$ SeqComb[PAKE₁, PAKE₂] **nearly UC-realizes** \mathcal{F}_{PAKE}

 $K := H(K_1, K_2, tr)$

Bonus lemma: $PAKE_1 \mathcal{F}_{lePAKE} \Rightarrow \mathcal{F}_{rlePAKE}$

- **Theorem 4:** Let PAKE₁ be 1-round stat. pw-hiding, and PAKE₂ be stat. PSK equality-hiding. Then
 - 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}
 - 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow SeqComb[PAKE_1, PAKE_2]$ is \mathcal{F}_{PAKE}

- **Theorem 5:** Let PAKE₁ be 1-round stat. pw-hiding, and **PAKE₂ be any PAKE**. Then
- 1. **PAKE**₁ is $\mathcal{F}_{PAKE} \Rightarrow$ SeqComb[PAKE₁, PAKE₂] nearly UC-realizes \mathcal{F}_{PAKE}
- 2. **PAKE**₂ is $\mathcal{F}_{PAKE} \Rightarrow$ SeqComb[PAKE₁, PAKE₂] **nearly UC-realizes** \mathcal{F}_{PAKE} **in QROM**

 $K := H(K_1, K_2, tr)$

Bonus lemma: $PAKE_1 \mathcal{F}_{lePAKE} \Rightarrow \mathcal{F}_{rlePAKE}$

First construction of a hybrid PAKE

First construction of a hybrid PAKE

Presented **two methods**, parallel and sequential

First construction of a hybrid PAKE

Presented **two methods**, parallel and sequential

Sequential has **mild assumptions**, working with efficient existing PAKEs

First construction of a **hybrid PAKE**

Presented **two methods**, parallel and sequential

Sequential has **mild assumptions**, working with efficient existing PAKEs

Combiner	PAKE ₁	PAKE ₂	Combined	Мс
ParComb	\mathcal{F}_{PAKE} +PH	\mathcal{F}_{PAKE} +PH	FPAKE	R
	F blePAKE+PH	Flepake+PH	FblePAKE	R
SeqComb	<i>Э_{РАКЕ}+РН</i>	<i> F</i> РАКЕ+РЕН	FPAKE	R
	ℱ _{lePAKE} +PH	<i>Э_{РАКЕ}+РЕН</i>	FrlePAKE	R
	<i></i> F _{РАКЕ} +РН	FPAKE	(F _{PAKE})	Q

+PH means stat. pw-hiding +PEH means stat. PSK-equality-hiding (F) means nearly UC-realizes

First construction of a **hybrid PAKE**

Presented **two methods**, parallel and sequential

Sequential has **mild assumptions**, working with efficient existing PAKEs

Combiner	PAKE ₁	PAKE ₂	Combined	Мс
ParComb	ℱ _{РАКЕ} +РН	<i> F</i> РАКЕ+РН	FPAKE	R
	F blePAKE+PH	Flepake+PH	FblePAKE	R
SeqComb	<i>Э_{РАКЕ}+РН</i>	<i> F</i> РАКЕ+РЕН	FPAKE	R
	ℱ _{lePAKE} +PH	\mathcal{F}_{PAKE} +PEH	FrlePAKE	R
	<i></i> F _{РАКЕ} +РН	FPAKE	(F _{PAKE})	QI

+PH means stat. pw-hiding +PEH means stat. PSK-equality-hiding (F) means nearly UC-realizes

https://www.ietf.org/archive/id/ draft-vos-cfrg-pqpake-00.html

First construction of a **hybrid PAKE**

Presented **two methods**, parallel and sequential

Sequential has mild assumptions, working with efficient existing PAKEs

Come find us!

Combiner	PAKE ₁	PAKE ₂	Combined	Мс
ParComb	ℱ _{РАКЕ} +РН	ℱ _{РАКЕ} +РН	FPAKE	R
	F blePAKE+PH	Flepake+PH	FblePAKE	R
SeqComb	ℱ _{РАКЕ} +РН	<i> F</i> РЕН	FPAKE	R
	Flepake+PH	<i> F</i> _{РАКЕ} +РЕН	FrlePAKE	R
	<i>F</i> _{РАКЕ} +РН	FPAKE	(F _{PAKE})	QF

+PH means stat. pw-hiding +PEH means stat. PSK-equality-hiding (F) means nearly UC-realizes

https://www.ietf.org/archive/id/ draft-vos-cfrg-pqpake-00.html

> ia.cr/2024/1621 ia.cr/2024/1630

