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Introduction



Introduction: Regular Syndrome Decoding

• Syndrome Decoding Problem: given a parity-check matrix H ∈ Fn−k,n and a

syndrome s = He ∈ Fn−k such that hw(e) ≤ w , find e ∈ Fn.

• Regular Syndrome Decoding (RSD) Problem: given a parity-check matrix

H ∈ Fn−k,n and a syndrome s = He ∈ Fn−k such that eT = ((e(1))T, . . . , (e(w))T)

and e(i) ∈ Fb and hw(e(i)) ≤ 1 for all i , find e ∈ Fn.

• Applications of RSD in cryptography: MPC [Haz+18], signatures [CCJ23], Vector

Oblivious Linear Evaluation [Boy+18], Pseudorandom Correlation Generators

[Boy+19].
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Introduction: Cryptanalysis of RSD

• The analysis of the best known attack [BØ23] relies on unproven assumptions.

• Question: Do algebraic attacks on RSD actually work?

Theorem

NO for w = 2, b < k and w = 3, b < 2k/3.

YES for w ·
(b
2

)
> 6 ·

(k+1
2

)
and w ≥ 4 and F large enough.

Here b = block length, w = number of blocks, k = code dimension.
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Introduction: Cryptanalysis of RSD

Main Theorem

Let F be a large enough field. There is a PPT algorithm that can solve RSD

over F with w ≥ 4 blocks and block length b with high probability (over the

randomness of H← Fn−k,n) if

w ·
(
b

2

)
≥ 6 ·

(
k + 1

2

)
.
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Proof Sketch



Recap

Let (H, s = He) ∈ Fn−k,n×Fn−k be a RSD instance.
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Overview
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Dual Model [BØ23]

Let (H, s = He) ∈ Fn−k,n×Fn−k be a RSD instance. Recall that

eT = ((e(1))T, . . . , (e(w))T) and e(i) ∈ Fb and hw(e(i)) ≤ 1 for all i .

Consider:

• n = wb variables for the errors E = (E
(i)
α )α∈[b],i∈[w ] and

• the rows hT1 , . . . ,h
T
n−k of H.
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Let (H, s = He) ∈ Fn−k,n×Fn−k be a RSD instance. Recall that

eT = ((e(1))T, . . . , (e(w))T) and e(i) ∈ Fb and hw(e(i)) ≤ 1 for all i .

Consider:

• n = wb variables for the errors E = (E
(i)
α )α∈[b],i∈[w ] and

• the rows hT1 , . . . ,h
T
n−k of H.

Dual Model:

E (i)
α · E

(i)
β = 0, for i ∈ [w ], 1 ≤ α < β ≤ b,

hj(E ) := hTj · E = sj , for j ∈ [n − k].
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Primal Model [AG11]

The Regular LPN problem: given (G, y = Gx+ e) ∈ Fn,k ×Fn, find x ∈ Fk and

eT = ((e(1))T, . . . , (e(w))T) ∈ Fn where e(i) ∈ Fb and hw(e(i)) ≤ 1.
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Primal Model [AG11]

The Regular LPN problem: given (G, y = Gx+ e) ∈ Fn,k ×Fn, find x ∈ Fk and

eT = ((e(1))T, . . . , (e(w))T) ∈ Fn where e(i) ∈ Fb and hw(e(i)) ≤ 1.

Decompose G into blocks

G =

G(1)

...

G(w)

 of shape b × k where G(i) =


(g

(i)
1 )T

...

(g
(i)
b )T

 .

Decompose yT = ((y(1))T, . . . , (y(w))T) = ((y
(1)
1 , . . . , y

(1)
b ), . . . , (y

(w)
1 , . . . , y

(w)
b )).

Primal Model:

(g (i)
α (X )− y (i)α ) · (g (i)

β (X )− y
(i)
β ) = 0, for i ∈ [w ], 1 ≤ α < β ≤ b

where g
(i)
α (X ) := (g

(i)
α )T · X .
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Proof Strategy

1. The two models are equivalent; they have the same degree of regularity.

2. We want to show that for g
(i)
α (X )← F[X ]=1 for i ∈ [w ], α ∈ [b] it holds with

high probability that∑
i∈[w ]

spanF{g (i)
α (X )g

(i)
β (X ) | 1 ≤ α < β ≤ b} = F[X1, . . . ,Xk ]

=2.

3. Over large fields, it suffices to show existence! There exist g
(i)
α (X ) ∈ F[X ]=1 for

i ∈ [w ], α ∈ [b] such that∑
i∈[w ]

spanF{g (i)
α (X )g

(i)
β (X ) | 1 ≤ α < β ≤ b} = F[X1, . . . ,Xk ]

=2.

4. Result of [Salizzoni23] implies PPT algorithm.
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Learning with Bounded Errors



Learning with Bounded Errors

Learning with Bounded Errors (LWBE) Problem: given a generator matrix G ∈ Fn×k

and b = Gx+ e, where e ∈ {0, . . . , d − 1}n, find x ∈ Fk .

Main Theorem

Let n =
(k+d−1

d

)
and F be large enough with characteristic > d . There is

an algorithm that solves LWBE with high probability (over the randomness of

G← Fn,k) and has time complexity O(dk1+dω).a

aRecall 2 ≤ ω ≤ 2.38.

Learning with Rounding (LWR) with primes q > p can be broken in time

O(qk1+ωq/p/p) when given O(kq/p) samples.
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Cryptanalysis of LWBE

Work Size of Number of Time

Errors Samples n Complexity

AG11 d O
(
log(q) · q · kd

)
O
(
log(q) · q · kωd

)
Steiner 24 d > k O

(
n · d · k · 2O(k)

)
This

d
(k+d−1

d

)
O
(
dk1+dω

)
Work

Table 1: An overview of attacks on LWBE that do not rely on heuristics. Recall 2 ≤ ω ≤ 2.38.
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Conclusion



Conclusion

• Verified some of the assumptions in [BØ23] and obtained a PPT algorithm for

RSD/RLPN when w ·
(b
2

)
≥ 6 ·

(k+1
2

)
.

• We apply the same framework in order to obtain attacks against other problems

like

▶ LWBE with O(kd) samples and in time O(dk1+2.38d),

▶ LWR with O(kq/p) samples and in time O(qk1+2.38q/p/p).
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Thanks

https://eprint.iacr.org/2025/415
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