On the Soundness of Algebraic Attacks against Code-based Assumptions

Miguel Cueto Noval¹ Simon-Philipp Merz² Patrick Stählin² Akin Ünal¹ Eurocrypt 2025

ISTA, Klosterneuburg, Austria

ETH Zurich, Zurich, Switzerland

Introduction

Introduction: Regular Syndrome Decoding

• Syndrome Decoding Problem: given a parity-check matrix $\mathbf{H} \in \mathbb{F}^{n-k,n}$ and a syndrome $\mathbf{s} = \mathbf{H} \mathbf{e} \in \mathbb{F}^{n-k}$ such that $hw(\mathbf{e}) \leq w$, find $\mathbf{e} \in \mathbb{F}^{n}$.

Introduction: Regular Syndrome Decoding

- Syndrome Decoding Problem: given a parity-check matrix $\mathbf{H} \in \mathbb{F}^{n-k,n}$ and a syndrome $\mathbf{s} = \mathbf{H} \mathbf{e} \in \mathbb{F}^{n-k}$ such that $\mathsf{hw}(\mathbf{e}) \leq w$, find $\mathbf{e} \in \mathbb{F}^{n}$.
- Regular Syndrome Decoding (RSD) Problem: given a parity-check matrix
 H ∈ ℝ^{n-k,n} and a syndrome s = He ∈ ℝ^{n-k} such that e^T = ((e⁽¹⁾)^T,...,(e^(w))^T) and e⁽ⁱ⁾ ∈ ℝ^b and hw(e⁽ⁱ⁾) ≤ 1 for all *i*, find e ∈ ℝⁿ.

Introduction: Regular Syndrome Decoding

- Syndrome Decoding Problem: given a parity-check matrix $\mathbf{H} \in \mathbb{F}^{n-k,n}$ and a syndrome $\mathbf{s} = \mathbf{H} \mathbf{e} \in \mathbb{F}^{n-k}$ such that $\mathsf{hw}(\mathbf{e}) \leq w$, find $\mathbf{e} \in \mathbb{F}^{n}$.
- Regular Syndrome Decoding (RSD) Problem: given a parity-check matrix
 H ∈ ℝ^{n-k,n} and a syndrome s = He ∈ ℝ^{n-k} such that e^T = ((e⁽¹⁾)^T,...,(e^(w))^T) and e⁽ⁱ⁾ ∈ ℝ^b and hw(e⁽ⁱ⁾) ≤ 1 for all *i*, find e ∈ ℝⁿ.

 Applications of RSD in cryptography: MPC [Haz+18], signatures [CCJ23], Vector Oblivious Linear Evaluation [Boy+18], Pseudorandom Correlation Generators [Boy+19].

- The analysis of the best known attack [BØ23] relies on unproven assumptions.
- Question: Do algebraic attacks on RSD actually work?

- The analysis of the best known attack [BØ23] relies on unproven assumptions.
- Question: Do algebraic attacks on RSD actually work?

Theorem

NO for
$$w = 2, b < k$$
 and $w = 3, b < 2k/3$.
YES for $w \cdot {b \choose 2} > 6 \cdot {k+1 \choose 2}$ and $w \ge 4$ and \mathbb{F} large enough.
Here $b =$ block length, $w =$ number of blocks, $k =$ code dimension.

Main Theorem

Let \mathbb{F} be a large enough field. There is a PPT algorithm that can solve RSD over \mathbb{F} with $w \ge 4$ blocks and block length *b* with high probability (over the randomness of $\mathbf{H} \leftarrow \mathbb{F}^{n-k,n}$) if

$$w \cdot \binom{b}{2} \ge 6 \cdot \binom{k+1}{2}$$

Proof Sketch

Let $(\mathbf{H}, \mathbf{s} = \mathbf{H}\mathbf{e}) \in \mathbb{F}^{n-k,n} \times \mathbb{F}^{n-k}$ be a RSD instance.

11 / 20

ISTA

Let
$$(\mathbf{H}, \mathbf{s} = \mathbf{H}\mathbf{e}) \in \mathbb{F}^{n-k,n} \times \mathbb{F}^{n-k}$$
 be a RSD instance. Recall that $\mathbf{e}^{\mathsf{T}} = ((\mathbf{e}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{e}^{(w)})^{\mathsf{T}})$ and $\mathbf{e}^{(i)} \in \mathbb{F}^{b}$ and $\mathsf{hw}(\mathbf{e}^{(i)}) \leq 1$ for all *i*.

Let $(\mathbf{H}, \mathbf{s} = \mathbf{H}\mathbf{e}) \in \mathbb{F}^{n-k,n} \times \mathbb{F}^{n-k}$ be a RSD instance. Recall that $\mathbf{e}^{\mathsf{T}} = ((\mathbf{e}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{e}^{(w)})^{\mathsf{T}})$ and $\mathbf{e}^{(i)} \in \mathbb{F}^{b}$ and $\mathsf{hw}(\mathbf{e}^{(i)}) \leq 1$ for all *i*. Consider:

- n = wb variables for the errors $E = (E_{\alpha}^{(i)})_{\alpha \in [b], i \in [w]}$ and
- the rows $\mathbf{h}_1^\mathsf{T}, \ldots, \mathbf{h}_{n-k}^\mathsf{T}$ of \mathbf{H} .

Let $(\mathbf{H}, \mathbf{s} = \mathbf{H}\mathbf{e}) \in \mathbb{F}^{n-k,n} \times \mathbb{F}^{n-k}$ be a RSD instance. Recall that $\mathbf{e}^{\mathsf{T}} = ((\mathbf{e}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{e}^{(w)})^{\mathsf{T}})$ and $\mathbf{e}^{(i)} \in \mathbb{F}^{b}$ and $\mathsf{hw}(\mathbf{e}^{(i)}) \leq 1$ for all *i*. Consider:

- n = wb variables for the errors $E = (E_{\alpha}^{(i)})_{\alpha \in [b], i \in [w]}$ and
- the rows $\mathbf{h}_1^\mathsf{T}, \dots, \mathbf{h}_{n-k}^\mathsf{T}$ of \mathbf{H} .

Dual Model:

 $E_{\alpha}^{(i)} \cdot E_{\beta}^{(i)} = 0, \qquad \text{for } i \in [w], 1 \le \alpha < \beta \le b,$ $h_j(E) := \mathbf{h}_j^{\mathsf{T}} \cdot E = \mathbf{s}_j, \qquad \text{for } j \in [n-k].$

The Regular LPN problem: given $(\mathbf{G}, \mathbf{y} = \mathbf{G}\mathbf{x} + \mathbf{e}) \in \mathbb{F}^{n,k} \times \mathbb{F}^n$, find $\mathbf{x} \in \mathbb{F}^k$ and $\mathbf{e}^{\mathsf{T}} = ((\mathbf{e}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{e}^{(w)})^{\mathsf{T}}) \in \mathbb{F}^n$ where $\mathbf{e}^{(i)} \in \mathbb{F}^b$ and $\mathsf{hw}(\mathbf{e}^{(i)}) \leq 1$.

The Regular LPN problem: given $(\mathbf{G}, \mathbf{y} = \mathbf{G}\mathbf{x} + \mathbf{e}) \in \mathbb{F}^{n,k} \times \mathbb{F}^n$, find $\mathbf{x} \in \mathbb{F}^k$ and $\mathbf{e}^{\mathsf{T}} = ((\mathbf{e}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{e}^{(w)})^{\mathsf{T}}) \in \mathbb{F}^n$ where $\mathbf{e}^{(i)} \in \mathbb{F}^b$ and $\mathsf{hw}(\mathbf{e}^{(i)}) \leq 1$.

The Regular LPN problem: given $(\mathbf{G}, \mathbf{y} = \mathbf{G}\mathbf{x} + \mathbf{e}) \in \mathbb{F}^{n,k} \times \mathbb{F}^n$, find $\mathbf{x} \in \mathbb{F}^k$ and $\mathbf{e}^{\mathsf{T}} = ((\mathbf{e}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{e}^{(w)})^{\mathsf{T}}) \in \mathbb{F}^n$ where $\mathbf{e}^{(i)} \in \mathbb{F}^b$ and $\mathsf{hw}(\mathbf{e}^{(i)}) \leq 1$. Decompose \mathbf{G} into blocks

$$\mathbf{G} = \begin{pmatrix} \mathbf{G}^{(1)} \\ \vdots \\ \mathbf{G}^{(w)} \end{pmatrix} \quad \text{of shape } b \times k \text{ where } \quad \mathbf{G}^{(i)} = \begin{pmatrix} (\mathbf{g}_1^{(i)})^\mathsf{T} \\ \vdots \\ (\mathbf{g}_b^{(i)})^\mathsf{T} \end{pmatrix}.$$

Decompose $\mathbf{y}^{\mathsf{T}} = ((\mathbf{y}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{y}^{(w)})^{\mathsf{T}}) = ((y_1^{(1)}, \dots, y_b^{(1)}), \dots, (y_1^{(w)}, \dots, y_b^{(w)})).$

The Regular LPN problem: given $(\mathbf{G}, \mathbf{y} = \mathbf{G}\mathbf{x} + \mathbf{e}) \in \mathbb{F}^{n,k} \times \mathbb{F}^n$, find $\mathbf{x} \in \mathbb{F}^k$ and $\mathbf{e}^{\mathsf{T}} = ((\mathbf{e}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{e}^{(w)})^{\mathsf{T}}) \in \mathbb{F}^n$ where $\mathbf{e}^{(i)} \in \mathbb{F}^b$ and $\mathsf{hw}(\mathbf{e}^{(i)}) \leq 1$. Decompose \mathbf{G} into blocks

$$\mathbf{G} = \begin{pmatrix} \mathbf{G}^{(1)} \\ \vdots \\ \mathbf{G}^{(w)} \end{pmatrix} \quad \text{of shape } b \times k \text{ where } \quad \mathbf{G}^{(i)} = \begin{pmatrix} (\mathbf{g}_1^{(i)})^\mathsf{T} \\ \vdots \\ (\mathbf{g}_b^{(i)})^\mathsf{T} \end{pmatrix}.$$

Decompose $\mathbf{y}^{\mathsf{T}} = ((\mathbf{y}^{(1)})^{\mathsf{T}}, \dots, (\mathbf{y}^{(w)})^{\mathsf{T}}) = ((y_1^{(1)}, \dots, y_b^{(1)}), \dots, (y_1^{(w)}, \dots, y_b^{(w)})).$ **Primal Model:**

$$(g^{(i)}_{lpha}(X)-y^{(i)}_{lpha})\cdot(g^{(i)}_{eta}(X)-y^{(i)}_{eta})=0, \qquad ext{ for } i\in [w], 1\leq lpha$$

where $g_{\alpha}^{(i)}(X) := (\mathbf{g}_{\alpha}^{(i)})^{\mathsf{T}} \cdot X.$

1. The two models are equivalent; they have the same degree of regularity.

Proof Strategy

- 1. The two models are equivalent; they have the same degree of regularity.
- 2. We want to show that for $g_{\alpha}^{(i)}(X) \leftarrow \mathbb{F}[X]^{=1}$ for $i \in [w], \alpha \in [b]$ it holds with high probability that

$$\sum_{i\in[w]}\operatorname{span}_{\mathbb{F}}\{g_{\alpha}^{(i)}(X)g_{\beta}^{(i)}(X)\mid 1\leq\alpha<\beta\leq b\}=\mathbb{F}[X_{1},\ldots,X_{k}]^{=2}.$$

Proof Strategy

- 1. The two models are equivalent; they have the same degree of regularity.
- 2. We want to show that for $g_{\alpha}^{(i)}(X) \leftarrow \mathbb{F}[X]^{=1}$ for $i \in [w], \alpha \in [b]$ it holds with high probability that

$$\sum_{i\in [w]} \operatorname{span}_{\mathbb{F}} \{ g_{\alpha}^{(i)}(X) g_{\beta}^{(i)}(X) \mid 1 \leq \alpha < \beta \leq b \} = \mathbb{F}[X_1, \ldots, X_k]^{=2}.$$

3. Over large fields, it suffices to show existence! There exist $g_{\alpha}^{(i)}(X) \in \mathbb{F}[X]^{=1}$ for $i \in [w], \alpha \in [b]$ such that

$$\sum_{i\in [w]} \operatorname{span}_{\mathbb{F}}\{g^{(i)}_{\alpha}(X)g^{(i)}_{\beta}(X) \mid 1 \leq \alpha < \beta \leq b\} = \mathbb{F}[X_1,\ldots,X_k]^{=2}.$$

Proof Strategy

- 1. The two models are equivalent; they have the same degree of regularity.
- 2. We want to show that for $g_{\alpha}^{(i)}(X) \leftarrow \mathbb{F}[X]^{=1}$ for $i \in [w], \alpha \in [b]$ it holds with high probability that

$$\sum_{i\in [w]} \operatorname{span}_{\mathbb{F}}\{g^{(i)}_{lpha}(X)g^{(i)}_{eta}(X)\mid 1\leq lpha$$

3. Over large fields, it suffices to show existence! There exist $g_{\alpha}^{(i)}(X) \in \mathbb{F}[X]^{=1}$ for $i \in [w], \alpha \in [b]$ such that

$$\sum_{i\in [w]} \operatorname{span}_{\mathbb{F}} \{ g_{\alpha}^{(i)}(X) g_{\beta}^{(i)}(X) \mid 1 \leq \alpha < \beta \leq b \} = \mathbb{F}[X_1, \ldots, X_k]^{=2}.$$

4. Result of [Salizzoni23] implies PPT algorithm.

Learning with Bounded Errors

Learning with Bounded Errors (LWBE) Problem: given a generator matrix $\mathbf{G} \in \mathbb{F}^{n \times k}$ and $\mathbf{b} = \mathbf{G}\mathbf{x} + \mathbf{e}$, where $\mathbf{e} \in \{0, \dots, d-1\}^n$, find $\mathbf{x} \in \mathbb{F}^k$.

Learning with Bounded Errors (LWBE) Problem: given a generator matrix $\mathbf{G} \in \mathbb{F}^{n \times k}$ and $\mathbf{b} = \mathbf{G}\mathbf{x} + \mathbf{e}$, where $\mathbf{e} \in \{0, \dots, d-1\}^n$, find $\mathbf{x} \in \mathbb{F}^k$.

Main Theorem

Let $n = \binom{k+d-1}{d}$ and \mathbb{F} be large enough with characteristic > d. There is an algorithm that solves LWBE with high probability (over the randomness of $\mathbf{G} \leftarrow \mathbb{F}^{n,k}$) and has time complexity $O(dk^{1+d\omega})$.^a

^aRecall $2 \le \omega \le 2.38$.

Learning with Bounded Errors (LWBE) Problem: given a generator matrix $\mathbf{G} \in \mathbb{F}^{n \times k}$ and $\mathbf{b} = \mathbf{G}\mathbf{x} + \mathbf{e}$, where $\mathbf{e} \in \{0, \dots, d-1\}^n$, find $\mathbf{x} \in \mathbb{F}^k$.

Main Theorem

Let $n = \binom{k+d-1}{d}$ and \mathbb{F} be large enough with characteristic > d. There is an algorithm that solves LWBE with high probability (over the randomness of $\mathbf{G} \leftarrow \mathbb{F}^{n,k}$) and has time complexity $O(dk^{1+d\omega}).^a$

^aRecall $2 \le \omega \le 2.38$.

Learning with Rounding (LWR) with primes q > p can be broken in time $O(qk^{1+\omega q/p}/p)$ when given $O(k^{q/p})$ samples.

Work	Size of	Number of	Time
	Errors	Samples <i>n</i>	Complexity
AG11	d	$O\left(\log(q)\cdot q\cdot k^d\right)$	$O\left(\log(q)\cdot q\cdot k^{\omega d} ight)$
Steiner 24	d	> k	$O\left(n\cdot d\cdot k\cdot 2^{O(k)}\right)$
This Work	d	$\binom{k+d-1}{d}$	$O\left(dk^{1+d\omega} ight)$

Table 1: An overview of attacks on LWBE that do not rely on heuristics. Recall $2 \le \omega \le 2.38$.

Conclusion

- Verified some of the assumptions in [BØ23] and obtained a PPT algorithm for RSD/RLPN when $w \cdot {b \choose 2} \ge 6 \cdot {k+1 \choose 2}$.
- We apply the same framework in order to obtain attacks against other problems like
 - LWBE with $O(k^d)$ samples and in time $O(dk^{1+2.38d})$,
 - LWR with $O(k^{q/p})$ samples and in time $O(qk^{1+2.38q/p}/p)$.

https://eprint.iacr.org/2025/415

