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updatable public-key encryption (upke)
Let (KGen,Enc,Dec) be a correct PKE scheme.

(pk′, up)← UpdPk(pk; ρ )

up

sk′ ← UpdSk(sk, up)

sk′ pk′

• Update correctness: Dec. cor. holds for updated keys (pk′, sk′).
• IND-CR-CPA Security:(

pk,Enc(pk,msg0), pk′, sk′, up
) c≈

(
pk,Enc(pk,msg1), pk′, sk′, up

)
=⇒ “forward secrecy.”
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dual-regev encryption [Reg05, GPV08]

KGen(1λ)
A←$ Zn×k

q

r←$ {±1}n

uT := rT · A mod q
pk := (A,u)
sk := r
return (pk, sk)

Enc(pk,msg ∈ {0, 1})
x←$ Zk

q; e←$ χn; e′ ←$ χ

c0 := A · x + e mod q
c1 := 〈u, x〉+ e′ +

⌊ q
2
⌉
·msg mod q

return ctxt := (c0, c1)

Dec(sk, ctxt)
return

⌊
2
q · (c1 − 〈r, c0〉 mod q)

⌉

• Correctness: r, e, e′ are short enough =⇒ Dual-Regev has decryption correctness.
• Security: LWE assumption =⇒ Dual-Regev is IND-CPA secure.
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prior key-update mechanism [DKW21]

UpdPk(pk)
(A,u)← pk
δ ←$ χn

r

pk′ := (A,uT + δT · A)

up← Enc(pk, δ)
return (pk′, up)

UpdSk(sk, up)

r← sk
δ ← Dec(sk, up)
sk′ := r + δ

return sk′

Issues:
• Updated secret key r′ = r + δ has increased norm.
• To maintain correctness with many updates, either

– restrict number of updates to be fixed a-priori, or
– for poly(λ) many updates, set super-poly. modulus q > λω(1) =⇒ large ctxt.
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What if we rotate keys instead?
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q-ary lattices

A lattice Λ ⊆ Rn is a discrete additive subgroup of Rn, i.e.

Λ = B · Zk

for some basis B ∈ Rn×k where k ≤ n. All bases B,B′ ∈ Rn×k are related by unimodular
U ∈ Zk×k via B′ = B ·U.

Define the Construction A lattice of a full-rank A ∈ Zn×k
q as

Λq(A) = A · Zk + q · Zn.

Note that Λq(A) is q-ary, i.e.
q · Zn ⊆ Λq(A) ⊆ Zn.
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lwe and dual-regev: lattice point of view

LWE assumption: for A←$ Zn×k
q , x←$ Zk

q, e←$ χn, u←$ Zn
q we have

(A,A · x + e mod q) c≈ (A,u) .

Lattice point of view: (A,U(Λq(A)) + χn) c≈
(
A,U(Zn

q)
)
.

A Dual-Regev secret key is a short vector

r ∈ Λu
q(A) :=

{
x ∈ Zn : xT · A = uT mod q

}
which is a random lattice coset (defined by u) of the kernel lattice

Λ⊥
q (A) :=

{
x ∈ Zn : xT · A = 0T mod q

}
.



lattice isomorphism problem (lip)

Lattice Isomorphism: Lattices Λ,Λ′ are isomorphic, denoted Λ ∼ Λ′, if there exists an
orthogonal matrix O ∈ On(R), i.e.

O ∈ Rn×n with OT ·O = In,

such that
Λ′ = O · Λ,

i.e. Λ′ can be obtained by rotating and reflecting Λ. If B and B′ are bases of Λ and Λ′, then it
means B′ = O · B ·U for some unimodular U ∈ Zk×k .

Lattice Isomorphism Problem (∆LIP) [DvW22]: Given lattices Λ0,Λ1,Λ ⊆ Rn, decide if

Λ ∼ Λ0 or Λ ∼ Λ1.
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rotate keys with lip?

The idea, more concretely:
• Rotate the lattice: A 7→ A′ := O · A ·U mod q.
• Rotate the key: r 7→ r′ := O · r mod q.
• Update the syndrome: u 7→ u′ := UT · u mod q, so that:

rT · A = uT =⇒ r′T · A′ = u′T

One can think of it as re-randomising a SIS commitment.

Upshot: ‖r′‖2 =
√
〈O · r,O · r〉 =

√
〈r, r〉 = ‖r‖2.

Issue: Orthogonal O ∈ On(R) are real-valued =⇒ O · A ·U and O · r may not be integral.
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lattice automorphism of Zn

• The automorphism group Aut(Λ) of a lattice Λ is the group of all isomorphisms from Λ to
itself.

• It is well-known that Aut(Zn) = On(Z), i.e. the group of signed permutations

On(Z) = {D · P ; D ∈ diag({±1}n), P ∈ Pn}.

• Since
q · Zn ⊆ Λq(A) ⊆ Zn,

we have
q · Zn ⊆ O · Λq(A) = Λq(O · A) ⊆ Zn,

i.e. rotating Λq(A) by O ∈ On(Z) gives another q-ary lattice.
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coding theory point of view

• The Construction A lattice of A ∈ Zn×k
q defined by Λq(A) = A · Zk + q · Zn is isomorphic

to the [n, k]-linear code C = A · Zk
q over Zq generated by A.

• The (Signed) Permutation Code Equivalence ((S)PCE) problem is to decide if two codes
C and C′ are (signed) permutation equivalent, i.e. whether

C′ = O · C

for some (signed) permutation matrix O ∈ On(Z).

• SPCE is essentially decision LIP with Λ’s restricted to q-ary lattices and O’s restricted to
signed permutations.



coding theory point of view

• The Construction A lattice of A ∈ Zn×k
q defined by Λq(A) = A · Zk + q · Zn is isomorphic

to the [n, k]-linear code C = A · Zk
q over Zq generated by A.

• The (Signed) Permutation Code Equivalence ((S)PCE) problem is to decide if two codes
C and C′ are (signed) permutation equivalent, i.e. whether

C′ = O · C

for some (signed) permutation matrix O ∈ On(Z).

• SPCE is essentially decision LIP with Λ’s restricted to q-ary lattices and O’s restricted to
signed permutations.



coding theory point of view

• The Construction A lattice of A ∈ Zn×k
q defined by Λq(A) = A · Zk + q · Zn is isomorphic

to the [n, k]-linear code C = A · Zk
q over Zq generated by A.

• The (Signed) Permutation Code Equivalence ((S)PCE) problem is to decide if two codes
C and C′ are (signed) permutation equivalent, i.e. whether

C′ = O · C

for some (signed) permutation matrix O ∈ On(Z).

• SPCE is essentially decision LIP with Λ’s restricted to q-ary lattices and O’s restricted to
signed permutations.



pce-based key-update mechanism

UpdPk(pk)
(A,u)← pk
O←$ On(Z)
A′,U := SF(O · A)

pk′ := (A′,uT ·U)

up← Enc(pk,O)

return (pk′, up)

UpdSk(sk, up)

r← sk
O← Dec(sk, up)
sk′ := O · r
return sk′

Update correctness:

r′T · A′ = rT ·OT ·O︸ ︷︷ ︸
In

·A ·U = rT · A︸ ︷︷ ︸
uT

·U = uT ·U = u′T (mod q).



caution – mind the hull

• The hardness of (S)PCE, depends on the hull of the code C = A · Zk
q.

• The hull H(C) := C ∩ C⊥ =
{

x ∈ C : xT · C = 0
}

is a subcode of C.

• Random codes have small hull dimension [Sen97], most likely 0.

• Existing attacks against (S)PCE run in time O
(
qh · poly(n, k)

)
or O

(
nh · poly(n, k, q)

)
,

i.e. efficient when h is small [Sen00, BOST19].

SampleCode(n, k, h, q)
We give an algorithm SampleCode(n, k, h, q) that samples A generating a uniformly random
[n, k]-linear code over Zq with hull dimension h. We call such codes and matrices “h-hollow”.
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hollow lattice problems

Hollow-LWE: A←$ Zn×k
q h-hollow, x←$ Zk

q, e←$ χn, u←$ Zn
q, distinguish

(A,A · x + e) from (A,u) .

Theorem (LWE → Hollow-LWE)
If there exists a (t, ε)-algorithm A for LWEh

k,n,q,χ then there exists a
(t + poly(λ), ε′)-algorithm B for LWEk−h,n,q,χ where

ε′ ≥ ε ·
(

1− 1
q −

1
q2

)
︸ ︷︷ ︸

triv. hull

·
(

1− h
en

)
︸ ︷︷ ︸
sub-sampler

·
k−h∏
i=0

(
1− qi−n)

︸ ︷︷ ︸
full rank

·
h∏

i=1

(
1− qk+i−n

)
︸ ︷︷ ︸

lin. dep. in hull

.



hollow lattice problems

Theorem (Hollow-LHL)
Let n, k, h, q integers with

n ≥ (1 + c) · k · log2(q)︸ ︷︷ ︸
LHL

+ k + h︸ ︷︷ ︸
extra

for a positive real constant c > 0, h ≤ k
2 , and q an odd prime. Let A←$ Zn×k

q h-hollow
matrix, r←$ {±1}n, and u←$ Zk

q. Then the pairs

(A, rT · A) and (A,uT)

are statistically close in k.



a new upke scheme

Our construction is the Dual-Regev PKE with
• A←$ SampleCode(n, k, h, q),
• r←$ {±1}n, and
• the above PCE-based update mechanism.

Theorem
Let n, k, h, q be positive integers parametrised by λ with n ≥ (1 + c) · k · log2(q) + k + h for a
positive real constant c > 0, 2 · h ≤ k and q prime.
Assuming the advantage of any PPT adversary in distinguishing LWEh

k,n,q,χ and in
distinguishing PCEh

n,k,q is negligible in λ, our construction is IND-CR-CPA secure in the ROM.



some parameters and sizes

Table 1: Parameters for the given λ and p with c = 0.25 and s = 8.

λ p n k log2(q) h |ctxt| |up|

128 2 7313 450 13 27 11.6 KiB 1485.7 KiB
128 16 11000 550 16 26 21.5 KiB 687.6 KiB
192 32 20250 900 18 37 44.5 KiB 1708.7 KiB
256 32 29688 1250 19 48 68.9 KiB 3525.6 KiB

[HPS23] with 220 updates

128 – – – 36 – 9.1 KiB 27 KiB



future work

• Replace the Hollow LHL with a computational assumption.

• Switch from LWE to MLWE.

• Consider the model from [AFM24].

• …
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Thank you! Read the full version at ia.cr/2025/340:

https://eprint.iacr.org/2025/340
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