
Gilad Asharov

MPC Resilient to Super-Rushing Adversaries

Peeking Into the Future

Anirudh Chandramouli Ran Cohen Yuval Ishai

“Well, hey, Doc, what’s the harm
in bringing back a little info on
the future? You know, maybe we
could place a couple bets”

Biff’s Attack on the Timeline

Biff’s Attack on the Timeline

2015

Biff steals the almanac

Biff’s Attack on the Timeline

2015

Biff steals the almanac

1955

Gives it to his past self

Biff’s Attack on the Timeline

2015

Biff steals the almanac

1955

Gives it to his past self

Biff gets rich!

Biff’s Attack on the Timeline

2015

Biff steals the almanac

1955

Gives it to his past self

Biff gets rich!

Biff’s Attack on the Timeline

2015

Biff steals the almanac

1955

Gives it to his past self

Biff gets rich!

Biff’s Attack on the Timeline

2015

Biff steals the almanac

1955

Gives it to his past self

Biff gets rich!

“No, Marty, we’ve already agreed that having information
about the future could be extremely dangerous!”

Our Work

Our Work

1. The “Back to the Future” attack is real!

Our Work

1. The “Back to the Future” attack is real!

• Some implementations of synchronous protocols are vulnerable

Our Work

1. The “Back to the Future” attack is real!

• Some implementations of synchronous protocols are vulnerable

2. Our Aim: To understand which protocols are vulnerable to
such an attack

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1 Round 2

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1 Round 2 and so on …

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1 Round 2 and so on …

• Idealized assumption: all round r
messages are delivered before round r+1

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1 Round 2 and so on …

• Idealized assumption: all round r
messages are delivered before round r+1

• Majority of the literature

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1 Round 2 and so on …

• Idealized assumption: all round r
messages are delivered before round r+1

• Majority of the literature

• How to decide the delay?

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1 Round 2 and so on …

• Idealized assumption: all round r
messages are delivered before round r+1

• Majority of the literature

• How to decide the delay?

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1 Round 2 and so on …

• Idealized assumption: all round r
messages are delivered before round r+1

• Majority of the literature

• How to decide the delay?

P1 P3P2

Let there be rounds!

Synchronous Protocols

P1

P2 P3

Round 1 Round 2

• Idealized assumption: all round r
messages are delivered before round r+1

• Majority of the literature

• How to decide the delay?

P1 P3P2

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

 has not yet sent round-1 message to P1 P2

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

P1 P2

 has not yet sent round-1 message to P1 P2

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

P1 P2

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

P3P1 P2

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

P1 P3P2

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

P3

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

 sends round-1 message to P1 P2

P1, P2

Optimistic: Proceed to next round if all messages received

Protocol Implementations

Round 1 Round 2

P1

P2 P3

P3

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

 sends round-1 message to P1 P2

P1, P2

 gets a message from

the future (from)

P1
P3

“Wait a minute. Wait a minute Doc, uh, are you
tellin’ me you built a time machine … out of a
synchronous network?”

No!

Round 1 Round 2

P1

P2 P3

P1 P3P2

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

No!

Round 1 Round 2

P1

P2 P3

P1 P3P2

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

 can “peek” into the future one roundP1

No!

Round 1 Round 2

P1

P2 P3

P1 P3P2

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

 sends round-1 message to P1 P2

P1, P2

 can “peek” into the future one roundP1

No!

Round 1 Round 2

P1

P2 P3

P1 P3P2

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

 sends round-1 message to P1 P2

P1, P2

 can “peek” into the future one roundP1

Note: All-to-all communication Peeking at most 1 round⟹

Peeking Super-Rushing→

Non-Rushing
Adversary sends round- messages
before receiving the honest parties’
round- messages

r

r

Non-Rushing

Rushing

Adversary sends round- messages
before receiving the honest parties’
round- messages

r

r

Adversary can send round- messages
after receiving the honest parties’
round- messages

r

r

Non-Rushing

Rushing

Super-Rushing

Adversary sends round- messages
before receiving the honest parties’
round- messages

r

r

Adversary can send round- messages
after receiving the honest parties’
round- messages

r

r

Adversary can send round- messages
after receiving the honest parties’
round- messages

r

r′ > r

A Gap in the Security Analysis

Theory Practice

A Gap in the Security Analysis

Rushing

Theory Practice

A Gap in the Security Analysis

Rushing Super-Rushing

Theory Practice

A Gap in the Security Analysis

Rushing Super-Rushing

Theory Practice

Question: Are existing synchronous protocols
vulnerable to super-rushing attacks?

Yes! Some protocols are insecure
against super-rushing adversaries

1 corruption, 2 senders, 5 parties

Simultaneous Broadcast [CGMA85]

P2P5

P4 P3

P1

1 corruption, 2 senders, 5 parties

Simultaneous Broadcast [CGMA85]

P2P5

P4 P3

P1

m1

m2

1 corruption, 2 senders, 5 parties

Simultaneous Broadcast [CGMA85]

P2P5

P4 P3

P1(m1, m2)

(m1, m2)

(m1, m2) (m1, m2)

(m1, m2)

A Simple Simultaneous Broadcast Protocol
1 corruption, 2 senders, 5 parties

A Simple Simultaneous Broadcast Protocol

P2P5

P4 P3

P1
m1

m2

1 corruption, 2 senders, 5 parties

A Simple Simultaneous Broadcast Protocol

• Round 1: send input message to P1, P2
P3, P4, P5

P2P5

P4 P3

P1
m1

m2

1 corruption, 2 senders, 5 parties

A Simple Simultaneous Broadcast Protocol

• Round 1: send input message to P1, P2
P3, P4, P5

P2P5

P4 P3

P1
m1

m2(m1
5 , m2

5)

(m1
4 , m2

4) (m1
3 , m2

3)

1 corruption, 2 senders, 5 parties

A Simple Simultaneous Broadcast Protocol

• Round 1: send input message to P1, P2
P3, P4, P5

• Round 2: echo message to all
parties

P3, P4, P5
P2P5

P4 P3

P1

(m1
5 , m2

5)

(m1
4 , m2

4) (m1
3 , m2

3)

1 corruption, 2 senders, 5 parties

A Simple Simultaneous Broadcast Protocol

• Round 1: send input message to P1, P2
P3, P4, P5

• Round 2: echo message to all
parties

P3, P4, P5
P2P5

P4 P3

P1

(m1
5 , m2

5)

(m1
4 , m2

4) (m1
3 , m2

3)

(m1
1 , m2

1)

(m1
2 , m2

2)

1 corruption, 2 senders, 5 parties

A Simple Simultaneous Broadcast Protocol

• Round 1: send input message to P1, P2
P3, P4, P5

• Round 2: echo message to all
parties

P3, P4, P5

• Output: such that at least 2

parties echoed

(m′ 1, m′ 2)
(m′ 1, m′ 2)

P2P5

P4 P3

P1

(m1
5 , m2

5)

(m1
4 , m2

4) (m1
3 , m2

3)

(m1
1 , m2

1)

(m1
2 , m2

2)

1 corruption, 2 senders, 5 parties

A Simple Simultaneous Broadcast Protocol

• Round 1: send input message to P1, P2
P3, P4, P5

• Round 2: echo message to all
parties

P3, P4, P5

• Output: such that at least 2

parties echoed

(m′ 1, m′ 2)
(m′ 1, m′ 2)

P2P5

P4 P3

P1

(m1
5 , m2

5)

(m1
4 , m2

4) (m1
3 , m2

3)

(m1
1 , m2

1)

(m1
2 , m2

2)

1 corruption, 2 senders, 5 parties

Rushing adversary cannot affect majority
decision and cannot bias output

A Super-Rushing Attack

P1

P2

P3P4

P5

P1

A Super-Rushing Attack

P1

P2

P3P4

P5

Attack: Corrupted P1

A Super-Rushing Attack

P1

P2

P3P4

P5
m2

m2 m2

0

Attack: Corrupted P1

• Round 1: sends 0 to only P1 P5

A Super-Rushing Attack

P1

P2

P3P4

P5
m2

m2 m2

0

m2

Attack: Corrupted P1

• Round 1: sends 0 to only P1 P5

• Round 2: (only for) Sends to P5 (0,m2) P1

A Super-Rushing Attack

P1

P2

P3P4

P5
m2

m2 m2

0

m2

Attack: Corrupted P1

• Round 1: sends 0 to only P1 P5

• Round 2: (only for) Sends to P5 (0,m2) P1

• Round 1: sends to P1 m1 = m2 P4, P5

• Round 2: (everyone) echos the remaining
messages

• Output: Everyone outputs (m2, m2)

A Super-Rushing Attack

P1

P2

P3P4

P5
m2

m2 m2

0

m2

Attack: Corrupted P1

• Round 1: sends 0 to only P1 P5

• Round 2: (only for) Sends to P5 (0,m2) P1

• Round 1: sends to P1 m1 = m2 P4, P5

• Round 2: (everyone) echos the remaining
messages

• Output: Everyone outputs (m2, m2)

: Looks like is cheatingP3, P4 P5

[CGMA85] (2,5) Simultaneous Broadcast

Our Results #1

Theorem: There exists a protocol (with two input providers)
that is secure against rushing adversaries but is insecure
against super-rushing adversaries

Which synchronous protocols remain
secure against super-rushing adversaries?

Extension of Rushing

Modeling Super-Rushing

Extension of Rushing

Modeling Super-Rushing

Rushing
Adversary can schedule messages
within a round

Extension of Rushing

Modeling Super-Rushing

Rushing

Super-Rushing

Adversary can schedule messages
within a round

+ Can “pull” future messages from
honest parties (these parties must
have finished all previous rounds!)

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

 provide inputsP1, P2

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

 provide inputsP1, P2 Parties learn the outputs

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

 provide inputsP1, P2 Parties learn the outputs

Adversary peeks into round-2 (’s
round-2 message), learns partial

output (’s input message)

P5

P2

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

P1 P5

 provide inputsP1, P2 Parties learn the outputs

Adversary peeks into round-2 (’s
round-2 message), learns partial

output (’s input message)

P5

P2

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

P1 P5

 provide inputsP1, P2 Parties learn the outputs

Adversary peeks into round-2 (’s
round-2 message), learns partial

output (’s input message)

P5

P2

 picks input message as a
function of honest party’s input

(’s input message)

P1

P2

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

P1 P5

 provide inputsP1, P2 Parties learn the outputs

Adversary peeks into round-2 (’s
round-2 message), learns partial

output (’s input message)

P5

P2

 picks input message as a
function of honest party’s input

(’s input message)

P1

P2

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

P1 P5

 provide inputsP1, P2 Parties learn the outputs

Adversary peeks into round-2 (’s
round-2 message), learns partial

output (’s input message)

P5

P2

 picks input message as a
function of honest party’s input

(’s input message)

P1

P2

1 corruption, 2 senders, 5 parties

Back to the Future: Simultaneous Broadcast

Round 1 Round 2

P1 P5

 provide inputsP1, P2 Parties learn the outputs

Adversary peeks into round-2 (’s
round-2 message), learns partial

output (’s input message)

P5

P2

 picks input message as a
function of honest party’s input

(’s input message)

P1

P2

Super-rushing breaks input independence

What if only one party
provides input?

VSS, Broadcast, …

Super-Rushing Non-Rushing with a single input provider≡
Our Results #2

Theorem: Every protocol for a single input provider that is
secure against non-rushing adversaries is also secure
against super-rushing adversaries

Super-Rushing Non-Rushing with a single input provider≡
Our Results #2

Theorem: Every protocol for a single input provider that is
secure against non-rushing adversaries is also secure
against super-rushing adversaries

We worked too hard to show too little!

The Story So Far
Security of protocols against super-rushing

• Single Input: Super-Rushing Non-Rushing≡

The Story So Far
Security of protocols against super-rushing

• Single Input: Super-Rushing Non-Rushing≡

• Two Input Providers: A protocol that is secure against rushing but not
against super-rushing

The Story So Far
Security of protocols against super-rushing

• Single Input: Super-Rushing Non-Rushing≡

• Two Input Providers: A protocol that is secure against rushing but not
against super-rushing

The Story So Far
Security of protocols against super-rushing

Does not look like secure computation protocols no privacy!→

• Single Input: Super-Rushing Non-Rushing≡

• Two Input Providers: A protocol that is secure against rushing but not
against super-rushing

The Story So Far
Security of protocols against super-rushing

Does not look like secure computation protocols no privacy!→

• Single Input: Super-Rushing Non-Rushing≡

• Two Input Providers: A protocol that is secure against rushing but not
against super-rushing

The Story So Far
Security of protocols against super-rushing

Does not look like secure computation protocols no privacy!→

Round CR

• Single Input: Super-Rushing Non-Rushing≡

• Two Input Providers: A protocol that is secure against rushing but not
against super-rushing

The Story So Far
Security of protocols against super-rushing

Does not look like secure computation protocols no privacy!→

Round CR

Input provision + privacy

Simultaneous Broadcast [GIKR02]
1 corruption, 2 senders, 5 parties + Committal round

Simultaneous Broadcast [GIKR02]

P2P5

P4 P3

P1
m1

m2

1 corruption, 2 senders, 5 parties + Committal round

Simultaneous Broadcast [GIKR02]

• Round 1: perform 1-round VSS of
their inputs

P1, P2

P2P5

P4 P3

P1
m1

m2

1 corruption, 2 senders, 5 parties + Committal round

Simultaneous Broadcast [GIKR02]

• Round 1: perform 1-round VSS of
their inputs

P1, P2

P2P5

P4 P3

P1

(s1
5 , s2

5)

(s1
4 , s2

4) (s1
3 , s2

3)

(s1
1 , s2

1)

(s1
2 , s2

2)

1 corruption, 2 senders, 5 parties + Committal round

Simultaneous Broadcast [GIKR02]

• Round 1: perform 1-round VSS of
their inputs

P1, P2

• Round 2: Parties perform VSS
reconstruction

P2P5

P4 P3

P1

(s1
5 , s2

5)

(s1
4 , s2

4) (s1
3 , s2

3)

(s1
1 , s2

1)

(s1
2 , s2

2)

1 corruption, 2 senders, 5 parties + Committal round

Simultaneous Broadcast [GIKR02]

• Round 1: perform 1-round VSS of
their inputs

P1, P2

• Round 2: Parties perform VSS
reconstruction

P2P5

P4 P3

P1

(s1
5 , s2

5)

(s1
4 , s2

4) (s1
3 , s2

3)

(s1
1 , s2

1)

(s1
2 , s2

2)

1 corruption, 2 senders, 5 parties + Committal round

{(s1
i , s2

i)}5
i=1

Simultaneous Broadcast [GIKR02]

• Round 1: perform 1-round VSS of
their inputs

P1, P2

• Round 2: Parties perform VSS
reconstruction

• Output: from VSS
reconstruction.

(m′ 1, m′ 2)

P2P5

P4 P3

P1

(s1
5 , s2

5)

(s1
4 , s2

4) (s1
3 , s2

3)

(s1
1 , s2

1)

(s1
2 , s2

2)

1 corruption, 2 senders, 5 parties + Committal round

{(s1
i , s2

i)}5
i=1

Super-rushing still breaks
independence of inputs

What are the sufficient conditions for
security against super-rushing adversaries?

All-to-all communication Peeking up to 1 round⟹
Our Sufficient Conditions

All-to-all communication Peeking up to 1 round⟹
Our Sufficient Conditions

Round CR

All-to-all communication Peeking up to 1 round⟹
Our Sufficient Conditions

Round CR

Inputs are committed

All-to-all communication Peeking up to 1 round⟹
Our Sufficient Conditions

Round CR Round ORR

Inputs are committed

All-to-all communication Peeking up to 1 round⟹
Our Sufficient Conditions

Round CR Round ORR

Inputs are committed Parties learn the outputs

All-to-all communication Peeking up to 1 round⟹
Our Sufficient Conditions

Round CR Round ORR

Inputs are committed Parties learn the outputs

> 1

All-to-all communication Peeking up to 1 round⟹
Our Sufficient Conditions

Round CR Round ORR

Inputs are committed Parties learn the outputs

Mitigates Super-Rushing
Peeking into round ORR only possible after all

parties complete round CR

> 1

General Sufficient Conditions

Our Results #3

Theorem: Every protocol that is
1. secure against rushing adversaries
2. has all-to-all communication
3. ORR > CR+1

 is also secure against super-rushing adversaries

*

General Sufficient Conditions

Our Results #3

Theorem: Every protocol that is
1. secure against rushing adversaries
2. has all-to-all communication
3. ORR > CR+1

 is also secure against super-rushing adversaries

*

 security is assumed via compatible simulation (see our paper)*

What if ORR = CR + 1

Extensions

Theorem: Every protocol that is
1. secure against rushing adversaries
2. has all-to-all communication
3. CR is over broadcast or is a synchronization round

 is also secure against super-rushing adversaries

*

 security is assumed via compatible simulation (see our paper)*

Sequential Composition

Our Results #4

Theorem: There exists a protocol (with one input provider)
that is secure against rushing adversaries but is insecure
against super-rushing adversaries when sequentially
composed even once

Sequential Composition

Our Results #4

Theorem: There exists a protocol (with one input provider)
that is secure against rushing adversaries but is insecure
against super-rushing adversaries when sequentially
composed even once

First execution Second execution

Sequential Composition

Our Results #4

Theorem: There exists a protocol (with one input provider)
that is secure against rushing adversaries but is insecure
against super-rushing adversaries when sequentially
composed even once

First execution Second execution

P1 P2

Sequential Composition

Our Results #4

Theorem: There exists a protocol (with one input provider)
that is secure against rushing adversaries but is insecure
against super-rushing adversaries when sequentially
composed even once

First execution Second execution

P1 P2

Perfect Security

Our Results

• Single Input: Super-Rushing Non-Rushing

• Two Input Providers:

• secure against rushing but not against super-rushing

• committal round does not help

• Sequential composition of single input protocols is not secure

• Main Result: Rushing Super-Rushing for protocols with all-to-all communication and
ORR > CR + 1

• Extensions when ORR = CR + 1

≡

⟹

BGW is secure against
super-rushing attacks

No need to reprove security

An Alternate Strategy

Asynchrony admits Super-Rushing Attacks

An Alternate Strategy

Asynchrony admits Super-Rushing Attacks

An Alternate Strategy

• Asynchronous MPC with guaranteed output delivery inevitably ignores
some honest parties’ inputs

Asynchrony admits Super-Rushing Attacks

An Alternate Strategy

• Asynchronous MPC with guaranteed output delivery inevitably ignores
some honest parties’ inputs

• Universally composable protocols [Canetti01] typically settle for security
with abort

Kushilevitz, Lindell, Rabin, STOC ‘06

Alternate Sufficient Conditions

Theorem: Every protocol that is
1. secure against rushing adversaries; and
2. has synchronization steps,

 is also UC-secure [Canetti01]

Kushilevitz, Lindell, Rabin, STOC ‘06

Alternate Sufficient Conditions

Theorem: Every protocol that is
1. secure against rushing adversaries; and
2. has synchronization steps,

 is also UC-secure [Canetti01]

 round complexity and communication complexity× 2 +O(n2)

We require different sufficient conditions

Statistical Security

Theorem: There exists a protocol that is
1. secure against rushing adversaries (with statistical

security)
2. has all-to-all communication
3. ORR > CR+1

 but is insecure against super-rushing adversaries

Conclusion

Conclusion
• Back to the Future attack is real on some implementations

Conclusion
• Back to the Future attack is real on some implementations

Conclusion
• Back to the Future attack is real on some implementations

2015

Biff steals the almanac

Conclusion
• Back to the Future attack is real on some implementations

2015

Biff steals the almanac

1955

Gives it to his past self

Conclusion
• Back to the Future attack is real on some implementations

2015

Biff steals the almanac

1955

Gives it to his past self

Conclusion
• Back to the Future attack is real on some implementations

• ORR > CR + 1 sufficient for Rushing Super-Rushing ⟹

2015

Biff steals the almanac

1955

Gives it to his past self

Conclusion
• Back to the Future attack is real on some implementations

• ORR > CR + 1 sufficient for Rushing Super-Rushing ⟹

2015

Biff steals the almanac

1955

Gives it to his past self

Conclusion
• Back to the Future attack is real on some implementations

• ORR > CR + 1 sufficient for Rushing Super-Rushing ⟹

Conclusion
• Back to the Future attack is real on some implementations

• ORR > CR + 1 sufficient for Rushing Super-Rushing ⟹

Thank you

