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“Well, hey, Doc, what’s the harm 
in bringing back a little info on 
the future? You know, maybe we 
could place a couple bets”
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“No, Marty, we’ve already agreed that having information 
about the future could be extremely dangerous!”
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Our Work

1. The “Back to the Future” attack is real!

• Some implementations of synchronous protocols are vulnerable

2. Our Aim: To understand which protocols are vulnerable to 
such an attack
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Protocol Implementations

Round 1 Round 2

P1

P2 P3

P3

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

 sends round-1 message to P1 P2

P1, P2

 gets a message from 

the future (from )

P1
P3



“Wait a minute. Wait a minute Doc, uh, are you 
tellin’ me you built a time machine … out of a 
synchronous network?”
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No!

Round 1 Round 2

P1

P2 P3

P1 P3P2

 has not yet sent round-1 message to P1 P2

 has finished round-1P3

 sends round-2 messagesP3

 sends round-1 message to P1 P2

P1, P2

 can “peek” into the future one roundP1

Note: All-to-all communication  Peeking at most 1 round⟹
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A Gap in the Security Analysis

Rushing Super-Rushing

Theory Practice

Question: Are existing synchronous protocols 
vulnerable to super-rushing attacks?



Yes! Some protocols are insecure 
against super-rushing adversaries
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A Simple Simultaneous Broadcast Protocol

• Round 1:  send input message to P1, P2
P3, P4, P5

• Round 2:  echo message to all 
parties

P3, P4, P5

• Output:  such that at least 2 

parties echoed 

(m′ 1, m′ 2)
(m′ 1, m′ 2)

P2P5

P4 P3

P1

(m1
5 , m2

5)

(m1
4 , m2

4) (m1
3 , m2

3)

(m1
1 , m2

1)

(m1
2 , m2

2)

1 corruption, 2 senders, 5 parties

Rushing adversary cannot affect majority 
decision and cannot bias output
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Attack: Corrupted P1

• Round 1:  sends 0 to only  P1 P5

• Round 2: (only for ) Sends  to P5 (0,m2) P1

• Round 1:  sends  to P1 m1 = m2 P4, P5

• Round 2: (everyone) echos the remaining 
messages

• Output: Everyone outputs (m2, m2)

: Looks like  is cheatingP3, P4 P5



[CGMA85] (2,5) Simultaneous Broadcast

Our Results #1

Theorem: There exists a protocol (with two input providers) 
that is secure against rushing adversaries but is insecure 
against super-rushing adversaries



Which synchronous protocols remain 
secure against super-rushing adversaries?
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Extension of Rushing

Modeling Super-Rushing

Rushing

Super-Rushing

Adversary can schedule messages 
within a round

+ Can “pull” future messages from 
honest parties (these parties must 
have finished all previous rounds!)
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Super-rushing breaks input independence



What if only one party 
provides input? 

VSS, Broadcast, …
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Our Results #2

Theorem: Every protocol for a single input provider that is 
secure against non-rushing adversaries is also secure 
against super-rushing adversaries

We worked too hard to show too little!
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• Single Input: Super-Rushing  Non-Rushing≡

• Two Input Providers: A protocol that is secure against rushing but not 
against super-rushing

The Story So Far
Security of protocols against super-rushing

Does not look like secure computation protocols  no privacy!→

Round CR

Input provision + privacy
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Simultaneous Broadcast [GIKR02]

• Round 1:  perform 1-round VSS of 
their inputs

P1, P2

• Round 2: Parties perform VSS 
reconstruction

• Output:  from VSS 
reconstruction.
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Super-rushing still breaks 
independence of inputs



What are the sufficient conditions for 
security against super-rushing adversaries?
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All-to-all communication  Peeking up to 1 round⟹
Our Sufficient Conditions

Round CR Round ORR

Inputs are committed Parties learn the outputs

Mitigates Super-Rushing 
Peeking into round ORR only possible after all 

parties complete round CR

> 1
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What if ORR = CR + 1

Extensions

Theorem: Every protocol that is 
1. secure against rushing adversaries  
2. has all-to-all communication 
3. CR is over broadcast or is a synchronization round 

 is also secure against super-rushing adversaries

*

 security is assumed via compatible simulation (see our paper)*
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Perfect Security

Our Results

• Single Input: Super-Rushing  Non-Rushing 

• Two Input Providers: 

• secure against rushing but not against super-rushing 

• committal round does not help 

• Sequential composition of single input protocols is not secure 

• Main Result: Rushing  Super-Rushing for protocols with all-to-all communication and 
ORR > CR + 1 

• Extensions when ORR = CR + 1 

≡

⟹



BGW is secure against 
super-rushing attacks

No need to reprove security
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Asynchrony admits Super-Rushing Attacks

An Alternate Strategy

• Asynchronous MPC with guaranteed output delivery inevitably ignores 
some honest parties’ inputs

• Universally composable protocols [Canetti01] typically settle for security 
with abort 
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Kushilevitz, Lindell, Rabin, STOC ‘06

Alternate Sufficient Conditions

Theorem: Every protocol that is 
1. secure against rushing adversaries; and 
2. has synchronization steps, 

 is also UC-secure [Canetti01]

 round complexity and  communication complexity× 2 +O(n2)



We require different sufficient conditions

Statistical Security

Theorem: There exists a protocol that is 
1. secure against rushing adversaries (with statistical 

security) 
2. has all-to-all communication 
3. ORR > CR+1 

 but is insecure against super-rushing adversaries
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Conclusion
• Back to the Future attack is real on some implementations

• ORR > CR + 1 sufficient for Rushing  Super-Rushing ⟹

Thank you


