Peeking Into the Future MPC Resilient to Super-Rushing Adversaries

Gilad Asharov

<u>Anirudh Chandramouli</u>

Ran Cohen

Yuval Ishai

He was never in time for his classes...

He wasn't in time for his dinner...

Then one day... he wasn't in his time at all.

"Well, hey, Doc, what's the harm in bringing back a little info on the future? You know, maybe we could place a couple bets"

He was never in time for his classes...

He wasn't in time for his dinner...

Then one day... he wasn't in his time at all.

Biff's Attack on the Timeline

Biff's Attack on the Timeline

Biff gets rich!

Biff's Attack op the Timeline

Hill Volley to get Added

State Highway Funds

Hill Valley Man Wins Big At Races

Eisenhower in the second

Khruschev Becomes

New Soviet Premier

Biff gets rich!

Biff's Attack op the Tim

Hill Valley to get Added

State Highway Funds

Hill Valley Man Wins Big At Races

Eisenhower inter

Khruschev Becomes

Bulganin

New Soviet Premier

sulgan Khr

Weiger & Munthy shatter, high, sour terthe data the The stages of provid-man a same new descript inside Therefore - Variable descripted with a high new [9]. Consolary i primero new sampe \$1.00. Databa Fran C.S.

BIFF TANNEN

Vol. XVII, No. 20

A R. & BONG TRAINE

PRUS, CRUMMINE statistic diamate in

A supportion Mail public hearings on applications for timined he and every ala mention was taken under adriversent by the potentiative.

Many pervens five at this stage that some legal active is forthcoming had it dote has dettige summing knew below that there is pressure from the its. side which with Maderially where you the experience of the case,

Of me lass impostancy was the common corrections. alares of the fast that shy mentaria from without to the penale of your purchasely consame of of an and therefore property is a subject for supauturns and cooperation. This was ophyted in the mustruments adopted by the ton Terrenita.

Thus at this spatisteens all our grown highly front there. saling in annuments agreet wood regatiling this undertaking Arrangements for desiring with overland and deputes. betriven fire republics trene Parthas improved.

A miggarhing that public Amarbigs int approximities in temptad to one story at months was taken worker adwhen would be the numerication.

As innediate investigation to annual and indications are that some new light will be shad no the plusion in the . man - Selieva, Atalialde India

BIFF TANNEN

PUBLISHED DAILY

THE ADDRESS OF A DRIVES

FEREN IN CENTS

Tauth Accorded Allen. Wilson Was Summer? From Campurge Supe-

NAME PRODUCT AND ADDRESS. the street senior of the sponts Want part and press of a state of a state of a state of the state of t of managers workings some right. and the local distance of the local distance with a second to be the second of the second a contract of

The polarization advances of Sufficient states party fight arrived of string for any or Westminist The Aller of Source of Sou Intering Mills over-summers

to Start Payroll Tax in 1960

OF say here, hereard true, Mar respired datage. Torus above, of the last Max sepsummer from without he the peacy of new contribution that." nares all 16 he and Overflare property in a solution and comertainin and compression.

Nasser Accuses Reds of **Plotting His Overthrow**

To step ground, sectors presented assertable incontrast ever by time furly become known. the decision of the comparison ALC: N

The Rarts regard Eng the edit. material pression the sizes, shale the path-print. Details onecorrying the action have been State Likely a more detailed study will the True furth have been allowed.

> It would appear that the productory implify lots this studies' has in East, pell advired any of the adver difference. Arrising Drott Flat a Stanform, Ired rother has approvided the moved of ityme patitioning for Routed L.

"Manty mercanic fast of their Shape that some right activity in Kardaneering but it ware but contact communic bearings that these is presented from the restills which will mularisely

The failty reporting his alsnew point forward normed unlist remain the speed, plate what is huped will be a friends. He within the Lotable ora-By monthing of both softwart the cattion farm heat exclusion. This determ has grants have been a protochast meterings. surfacily staved up the beak line hat it is bet that only by makin but though have been a more detailed study will the

Thiss at this conference all the address like house interconnect . and governithmenits Person thermstation is sense the annihilation walves it, unpulses a prement reporting the automorphiting. Arrangementa for desiring with gambelet and disputes intractions. Hint computations many Sarthes Jacjaman.

> The Mourge, parametalis, here - of photogeneously here, a new pro-Clin. on bread his publics. Surground at City Hall confirm that anfor the scenes I have finished, maprivate merilegy internets the street, that the Mapor will Barry an public glassions to Make on the Burlier.

An Invitedials Drivertigitiess to provide the finite state of the more here confidents by the first none are light will be sheed on the attactust in the some Uniary, Available Falls nowm sugar bid, puthasilizes fast that have still disclose some densits of high-log of a and the

Many service Ley M this

"No, Marty, we've already agreed that having information about the future could be extremely dangerous!"

1. The "Back to the Future" attack is real!

1. The "Back to the Future" attack is real!

• Some implementations of synchronous protocols are vulnerable

1. The "Back to the Future" attack is real!

• Some implementations of synchronous protocols are vulnerable

such an attack

2. Our Aim: To understand which protocols are vulnerable to

Idealized assumption: all round r messages are delivered before round r+1

Idealized assumption: all round r messages are delivered before round r+1

Majority of the literature

- Idealized assumption: all round r messages are delivered before round r+1
 - Majority of the literature
- How to decide the delay?

and so on ...

 Idealized assumption: all round r messages are delivered before round r+1

Majority of the literature

How to decide the delay?

and so on ...

 Idealized assumption: all round r messages are delivered before round r+1

Majority of the literature

How to decide the delay?

Round 2

 Idealized assumption: all round r messages are delivered before round r+1

Majority of the literature

How to decide the delay?

- P_1 has not yet sent round-1 message to P_2
- P_3 has finished round-1

- P_1 has not yet sent round-1 message to P_2
- P_3 has finished round-1

- P_1 has not yet sent round-1 message to P_2
- P_3 has finished round-1
- P_3 sends round-2 messages

- P_1 has not yet sent round-1 message to P_2
- P_3 has finished round-1
- P_3 sends round-2 messages
- P_1 sends round-1 message to P_2

synchronous network?"

"Wait a minute. Wait a minute Doc, uh, are you tellin' me you built a time machine ... out of a

- P_1 has not yet sent round-1 message to P_2
- P_3 has finished round-1
- P_3 sends round-2 messages

P_1 can "peek" into the future one round

Round 2

- P_1 has not yet sent round-1 message to P_2
- P_3 has finished round-1
- P_3 sends round-2 messages

P_1 can "peek" into the future one round

Round 2

- P_1 has not yet sent round-1 message to P_2
- P_3 has finished round-1
- P_3 sends round-2 messages
- P_1 sends round-1 message to P_2

P_1 can "peek" into the future one round

Round 2

- P_1 has not yet sent round-1 message to P_2
- P_3 has finished round-1
- P_3 sends round-2 messages
- P_1 sends round-1 message to P_2

Note: All-to-all communication \implies Peeking at most 1 round

Peeking \rightarrow Super-Rushing

Non-Rushing

Adversary sends round-*r* messages **before** receiving the honest parties' round-*r* messages

Non-Rushing

Rushing

Adversary sends round-*r* messages **before** receiving the honest parties' round-*r* messages

Adversary can send round-*r* messages **after** receiving the honest parties' round-*r* messages

Non-Rushing

Rushing

Super-Rushing

Adversary sends round-*r* messages **before** receiving the honest parties' round-*r* messages

Adversary can send round-*r* messages after receiving the honest parties' round-*r* messages

Adversary can send round-*r* messages after receiving the honest parties' round-r' > r messages

Theory

Practice

Theory

Rushing

Practice

Theory

Rushing

Practice

Super-Rushing

Theory

Rushing

<u>Question:</u> Are existing synchronous protocols vulnerable to super-rushing attacks?

Practice

Super-Rushing

Yes! Some protocols are insecure against super-rushing adversaries

Simultaneous Broadcast [CGMA85] 1 corruption, 2 senders, 5 parties

Simultaneous Broadcast [CGMA85] 1 corruption, 2 senders, 5 parties

 m_{γ}

Simultaneous Broadcast [CGMA85] 1 corruption, 2 senders, 5 parties

 $(m_1, m_2) \mid P_1 \mid$

 P_4

 (m_1, m_2)

 P_5

 P_5

- Round 1: P_1, P_2 send input message to P_3, P_4, P_5

$$(m_5^1, m_5^2)$$

 P_5

- Round 1: P_1, P_2 send input message to P_3, P_4, P_5

$$(m_5^1, m_5^2)$$

 P_5

- Round 1: P_1, P_2 send input message to P_3, P_4, P_5
- Round 2: P_3, P_4, P_5 echo message to all parties

$$(m_5^1, m_5^2)$$
 P_5

 $\left[\begin{array}{c} P_2 \end{array} \right] (m_2^1, m_2^2)$

$$\begin{array}{c} P_4 \\ P_3 \\ (m_4^1, m_4^2) \\ (m_3^1, m_3^2) \end{array}$$

- Round 1: P_1, P_2 send input message to P_3, P_4, P_5
- Round 2: P_3, P_4, P_5 echo message to all parties

$$(m_5^1, m_5^2)$$
 P_5

 $\left(\begin{array}{c} P_2 \end{array} \right) (m_2^1, m_2^2)$

$$\begin{array}{c} P_4 \\ P_3 \\ (m_4^1, m_4^2) \\ (m_3^1, m_3^2) \end{array}$$

- Round 1: P_1, P_2 send input message to P_3, P_4, P_5
- Round 2: P_3, P_4, P_5 echo message to all parties
- <u>Output:</u> (m'_1, m'_2) such that at least 2 parties echoed (m'_1, m'_2)

$$(m_5^1, m_5^2)$$

 $\left[\begin{array}{c} P_2 \end{array} \right] (m_2^1, m_2^2)$

$$\begin{array}{c} P_4 \\ P_3 \\ (m_4^1, m_4^2) \\ (m_3^1, m_3^2) \end{array}$$

- Round 1: P_1, P_2 send input message to P_3, P_4, P_5
- Round 2: P_3, P_4, P_5 echo message to all parties
- <u>Output:</u> (m'_1, m'_2) such that at least 2 parties echoed (m'_1, m'_2)

Rushing adversary cannot affect majority decision **and** cannot bias output

<u>Attack:</u> Corrupted P_1

<u>Attack:</u> Corrupted P_1

• Round 1: P_1 sends 0 to only P_5

<u>Attack:</u> Corrupted P_1

- Round 1: P_1 sends 0 to only P_5
- Round 2: (only for P_5) Sends $(0,m_2)$ to P_1

<u>Attack:</u> Corrupted P_1

- Round 1: P_1 sends 0 to only P_5
- Round 2: (only for P_5) Sends $(0,m_2)$ to P_1
- Round 1: P_1 sends $m_1 = m_2$ to P_4, P_5
- <u>Round 2:</u> (everyone) echos the remaining messages
- <u>Output:</u> Everyone outputs (m_2, m_2)

<u>Attack:</u> Corrupted P_1

- Round 1: P_1 sends 0 to only P_5
- Round 2: (only for P_5) Sends $(0,m_2)$ to P_1
- Round 1: P_1 sends $m_1 = m_2$ to P_4, P_5
- <u>Round 2:</u> (everyone) echos the remaining messages
- <u>Output:</u> Everyone outputs (m_2, m_2)

 P_3, P_4 : Looks like P_5 is cheating

Our Results #1 [CGMA85] (2,5) Simultaneous Broadcast

Theorem: There exists a protocol (with two input providers) that is <u>secure</u> against rushing adversaries but is <u>insecure</u> against super-rushing adversaries

Which synchronous protocols remain secure against super-rushing adversaries?

Modeling Super-Rushing Extension of Rushing

Modeling Super-Rushing Extension of Rushing

Adversary can schedule messages within a round

Modeling Super-Rushing Extension of Rushing

Rushing

Super-Rushing

Adversary can schedule messages within a round

+ Can "pull" future messages from honest parties (these parties must have finished all previous rounds!)

 P_1, P_2 provide inputs

 P_1, P_2 provide inputs

 P_1, P_2 provide inputs

Parties learn the outputs

Adversary peeks into round-2 (P_5 's) round-2 message), learns partial output (P_2 's input message)

1 corruption, 2 senders, 5 parties

 P_1, P_2 provide inputs

Parties learn the outputs

Adversary peeks into round-2 (P_5 's) round-2 message), learns partial output (P_2 's input message)

1 corruption, 2 senders, 5 parties P_1

P_1, P_2 provide inputs

Adversary peeks into round-2 (P_5 's) P_1 picks input message as a round-2 message), learns partial function of honest party's input output (P_2 's input message) $(P_2'$ s input message)

P_1, P_2 provide inputs

Adversary peeks into round-2 (P_5 's P_1 picks input message as a round-2 message), learns partial function of honest party's input output (P_2 's input message) $(P_2'$ s input message)

P_1, P_2 provide inputs

Adversary peeks into round-2 (P_5 's P_1 picks input message as a round-2 message), learns partial function of honest party's input $(P_2'$ s input message) output (P_2 's input message)

P_1, P_2 provide inputs

 P_1 picks input message as a function of honest party's input $(P_2'$ s input message)

Super-rushing breaks input independence

Parties learn the outputs

Adversary peeks into round-2 (P_5 's round-2 message), learns partial output (P_2 's input message)

What if only one party provides input?

VSS, Broadcast, ...

Our Results #2 Super-Rushing \equiv Non-Rushing with a single input provider

Theorem: Every protocol for a single input provider that is secure against non-rushing adversaries is also secure against super-rushing adversaries

Our Results #2 Super-Rushing \equiv Non-Rushing with a single input provider

Theorem: Every protocol for a single input provider that is secure against non-rushing adversaries is also secure against super-rushing adversaries

We worked too hard to show too little!

Single Input: Super-Rushing \equiv Non-Rushing

X Two Input Providers: A protocol that is <u>secure</u> against rushing but <u>not</u> against super-rushing

Single Input: Super-Rushing \equiv Non-Rushing

X Two Input Providers: A protocol that is <u>secure</u> against rushing but <u>not</u> against super-rushing

Single Input: Super-Rushing \equiv Non-Rushing

X Two Input Providers: A protocol that is <u>secure</u> against rushing but <u>not</u> against super-rushing

Single Input: Super-Rushing \equiv Non-Rushing

X Two Input Providers: A protocol that is <u>secure</u> against rushing but <u>not</u> against super-rushing

Single Input: Super-Rushing \equiv Non-Rushing

X Two Input Providers: A protocol that is <u>secure</u> against rushing but <u>not</u> against super-rushing

Input provision + privacy

Round CR

 P_5

 P_5

- Round 1: P_1, P_2 perform 1-round VSS of their inputs

$$(s_5^1, s_5^2)$$
 P_5

 P_2 (s_2^1, s_2^2)

- Round 1: P_1, P_2 perform 1-round VSS of their inputs

$$(s_5^1, s_5^2)$$
 P_5

 P_2 (s_2^1, s_2^2)

- Round 1: P_1, P_2 perform 1-round VSS of their inputs
- <u>Round 2:</u> Parties perform VSS reconstruction

 $(s_{5}^{1}, s_{5}^{2}) \begin{bmatrix} P_{5} \\ \{(s_{i}^{1}, s_{i}^{2})\}_{i=1}^{5} \end{bmatrix} \begin{bmatrix} P_{2} \\ (s_{2}^{1}, s_{2}^{2}) \end{bmatrix}$ P_3 P_4 (s_3^1, s_3^2) (s_4^1, s_4^2)

- Round 1: P_1, P_2 perform 1-round VSS of their inputs
- <u>Round 2:</u> Parties perform VSS reconstruction

 $(s_{5}^{1}, s_{5}^{2}) \begin{bmatrix} P_{5} \\ \{(s_{i}^{1}, s_{i}^{2})\}_{i=1}^{5} \end{bmatrix} \begin{bmatrix} P_{2} \\ (s_{2}^{1}, s_{2}^{2}) \end{bmatrix}$ P_4 P_3 (s_4^1, s_4^2) (s_3^1, s_3^2)

- Round 1: P_1, P_2 perform 1-round VSS of their inputs
- <u>Round 2:</u> Parties perform VSS reconstruction
- <u>Output:</u> (m'_1, m'_2) from VSS reconstruction.

Super-rushing still breaks independence of inputs

What are the sufficient conditions for security against super-rushing adversaries?

Round CR

Round CR

Inputs are committed

Round CR

Inputs are committed

Round ORR

Round CR

Inputs are committed

Round ORR

> 1

Round CR

Inputs are committed

Round CR

Inputs are committed

Mitigates Super-Rushing Peeking into round ORR only possible after all parties complete round CR

> 1

Round ORR

Our Results #3 General Sufficient Conditions

Theorem: Every protocol that is secure against rushing adversaries* 1. 2. has all-to-all communication 3. ORR > CR+1is also <u>secure</u> against super-rushing adversaries
Our Results #3 General Sufficient Conditions

Theorem: Every protocol that is <u>secure</u> against rushing adversaries* 2. has all-to-all communication 3. ORR > CR+1is also <u>secure</u> against super-rushing adversaries

* security is assumed via compatible simulation (see our paper)

Extensions What if ORR = CR + 1

Theorem: Every protocol that is <u>secure</u> against rushing adversaries* 2. has all-to-all communication is also <u>secure</u> against super-rushing adversaries

- 3. CR is over broadcast or is a synchronization round

* security is assumed via compatible simulation (see our paper)

against super-rushing adversaries when sequentially composed even once

Theorem: There exists a protocol (with one input provider) that is <u>secure</u> against rushing adversaries but is <u>insecure</u>

against super-rushing adversaries when sequentially composed even once

First execution

Theorem: There exists a protocol (with one input provider) that is <u>secure</u> against rushing adversaries but is <u>insecure</u>

Second execution

against super-rushing adversaries when sequentially composed even once

 P_1

Theorem: There exists a protocol (with one input provider) that is <u>secure</u> against rushing adversaries but is <u>insecure</u>

against super-rushing adversaries when sequentially composed even once

 P_1

Theorem: There exists a protocol (with one input provider) that is <u>secure</u> against rushing adversaries but is <u>insecure</u>

Our Results Perfect Security

• Two Input Providers:

<u>Secure</u> against rushing but <u>not</u> against super-rushing

Committal round does not help

X Sequential composition of single input protocols is not secure

Extensions when ORR = CR + 1

BGW is secure against super-rushing attacks

No need to reprove security

An Alternate Strategy

An Alternate Strategy Asynchrony admits Super-Rushing Attacks

An Alternate Strategy Asynchrony admits Super-Rushing Attacks

 Asynchronous MPC with guarante some honest parties' inputs

Asynchronous MPC with guaranteed output delivery inevitably ignores

An Alternate Strategy Asynchrony admits Super-Rushing Attacks

- Asynchronous MPC with guarante some honest parties' inputs
- Universally composable protocols with abort

Asynchronous MPC with guaranteed output delivery inevitably ignores

• Universally composable protocols [CanettiO1] typically settle for security

Alternate Sufficient Conditions Kushilevitz, Lindell, Rabin, STOC '06

Theorem: Every protocol that is secure against rushing adversaries; and 2. has synchronization steps, is also <u>UC-secure</u> [CanettiO1]

Alternate Sufficient Conditions Kushilevitz, Lindell, Rabin, STOC '06

Theorem: Every protocol that is secure against rushing adversaries; and 2. has synchronization steps, is also <u>UC-secure</u> [CanettiO1]

$\times 2$ round complexity and $+O(n^2)$ communication complexity

Statistical Security We require different sufficient conditions

Theorem: There exists a protocol that is secure against rushing adversaries (with statistical security) 2. has all-to-all communication 3. ORR > CR+1but is insecure against super-rushing adversaries

- Back to the Future attack is real on some implementations
- ORR > CR + 1 sufficient for Rushing \implies Super-Rushing

Gives it to his past self

1955

- Back to the Future attack is real on some implementations
- ORR > CR + 1 sufficient for Rushing \implies Super-Rushing

- Back to the Future attack is real on some implementations
- ORR > CR + 1 sufficient for Rushing \implies Super-Rushing

Thank you