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He was never in time
for his classes...

He wasn't in time
for his dinner...

Then one day...
he wasn't in his
time at all.
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“Well, hey, Doc, what's the harm
N bringing back a little info on

the-

uture? You know, maybe we

CcOuU

d place a couple bets”
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‘No, Marty, weve already agreed that having information
about the future could be extremely dangerous!
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Our Work

1. The “Back to the Future” attack is real!

. Some implementations of synchronous protocols are vulnerable

2. Our Aim: To understand which protocols are vulnerable to
such an attack
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Protocol Implementations

Optimistic: Proceed to next round if all messages received

PI’P2 P3
Round 1 Round 2
d )
P P, has not yet sent round-1 message to P,
& v
P5 has finished round-1 P, gets a message from
P sends round-2 messages wthe future (from £)
R O P, sends round-1 message to P,
P2 P3
& J o v




“Wait a minute. Wait a minute Doc, uh, are you
tellin” me you built a time machine ... out of @
synchronous network?”
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P can “peek” into the future one round
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Pl P2 PI’PZ P3
Round 1 Round 2
4 )
P P, has not yet sent round-1 message to P,
& v
P5 has finished round-1
P sends round-2 messages
R O P, sends round-1 message to P,
P2 P3
& _J o v

Note: All-to-all communication = Peeking at most 1 rounad
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Adversary can send round-r messages
after receiving the honest parties'’

round-r’ > r messages
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A Gap in the Security Analysis

Theory Practice

Question: Are existing synchronous protocols
vulnerable to super-rusning attacks?




Yes! Some protocols are insecure
against adversaries
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1 corruption, 2 senders, 5 parties
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» Round 1: Py, P, send input message to
P3, Py, s

» Round 2: P, P,, Ps echo message to all
oarties

. Output: (m;, m,) such that at least 2

parties echoed (my, m,)

Rushing adversary cannot affect majority
decision and cannot bias output
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Attack: Corrupted P,

+ Round 1. P{ sends O to only Ps

. Round 2: (only for Ps) Sends (0,m,) to P,

+ Round 1. P; sends m; = m, to P,, P-

- Round 2: (everyone) echos the remaining
Messages

» Output: Everyone outputs (m,, n,)

P5, P,: Looks like Ps is cheating



Our Results #1
CGMAS8S| (25) Simultaneous Broadcast

Theorem: There exists a protocol (with two input providers)
that is secure against adversaries but is [nsecure
against adversaries




Which syncnhronous protocols remain
secure against adversaries?
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Modeling super-Rushing

Extension of Rushing

Adversary can schedule messages
within a rounao

+ Can “pull” future messages from
honest parties (these parties must
nave finished all previous rounds!)
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Back to the Future: Simultaneous Broadcast

/

1 corruption, 2 senders, 5 parties

P, P.

Py, P, provide inputs Parties learn the outputs

P, picks input message asa  Adversary peeks into round-2 (Ps's
function of honest party’s input round-2 message), learns partial

(P5's input message) output (P,’s input message)

super-rushing breaks input independence




What if only one party
provides input?

VSS, Broadcast, ...
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with a single input provider

Theorem: Every protocol for a single input provider that is
secure against adversaries is also secure
against adversaries

We worked too hard to show too little!
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The Story So Far

Security of protocols against super-rushing

 Single Input: Super-Rushing =

2 Two Input Providers: A protocol that is secure against but Not
against super-rusning

Does not look like secure computation protocols — no privacy!

INnput provision + privacy

< >

T — T — T —
Round CR
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Simultaneous Broadcast | GIKRO2

1 corruption, 2 senders, b parties + Committal round

(515 S7)
( )
P, + Round 1: Py, P, perform 1-round VSS of
D their inputs
( ) a )
(55, 2) P. P, (Sza 2) » Round 2: Parties perform VSS
— N R reconstruction
{( 1’ l )}l_
. Output: (my, m,) from VSS
— — reconstruction.
P, P,
\_ J \_ _J




Super-rushing still breaks
independence of inputs
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Our Sutficient Conditions

All-to-all communication = Peeking up to 1 round

I Iﬁ
I
Round CR > Round ORR
Inputs are committed Parties learn the outputs

Mitigates
Peeking into round ORR only possible after all
oarties complete round CR
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General Sufficient Conditions
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EXtensions
Whatif ORR=CR+1

Theorem: Fvery protocol that is

1. secure against adversaries™

2. has all-to-all communication

3. CRis over broadcast or is a synchronization rounao
IS also secure against adversaries

* security is assumed via compatible simulation (see our paper)
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Our Results #4

Sequential Composition

Theorem: There exists a protocol (with one input provider)
that is secure against aaversaries but is [nsecure

against adversaries when seqguentially
composed even once

Pl P2
|\

First execution N Second execution



Our Results

Perfect Security

« Single Input: Super-Rushing =
. Two Input Providers:
xgecure against but not against super-rushing

¢ committal round does not help

x Sequential composition of single input protocols is not secure

+ Main Result: —> Super-Rushing for protocols with all-to-all coommunication and
ORR > CR +1

 Extensions when ORR = CR +1



BGW is secure against
attacks

NO need to reprove security
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An Alternate Strategy

Asynchrony admits Super-Rushing Attacks

- Asynchronous MPC with guaranteed output delivery inevitably ignores
some honest parties’ inputs

. Universally composable protocols [CanettiOl] typically settle for security
with abort
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Alternate Sufficient Conditions
Kushilevitz Lindell Rapin, STOC 06

Theorem: Fvery protocol that is

1. secure against adversaries; and
2. has synchronization steps,

s also UC-secure |CanettiO1]

X 2 round complexity and +O(n?) communication complexity



Statistical security

We require different sufficient conditions

Theorem: There exists a protocol that is

1. secure against adversaries (with statistical
security)

2. has all-to-all communication

3. ORR > CR+

but is [nsecure against adversaries
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Conclusion

- Back to the Future attack is real on some implementations

« ORR > CR + 1 sufficient for —> Super-Rushing
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