Peeking Into the Future

MPC Resilient to Super-Rushing Adversaries

Gilad Asharov Anirudh Chandramouli Ran Cohen
V. V. s
Bar-llan Bar-llan .
University AA University AA {}nﬁ,"gfé}?;,an

"

Yuval Ishai

V TECHNION QWS

ael Institute
fT chnology

He was never in time
for his classes...

He wasn't in time
for his dinner...

Then one day...
he wasn't in his
time at all.

. “v'

“Well, hey, Doc, what's the harm
N bringing back a little info on

the-

uture? You know, maybe we

CcOuU

d place a couple bets”

He was never in time
for his classes...

He wasn't in time
for his dinner...

Then one day...
he wasn't in his
time at all.

T's Attac.

conthe Time.

ne

T's Attac.

conthe Time.

ne

2015

Biff steals the almanac

‘s Attack on the Time.

ne

2015

Gives it to his past self

Biff steals the almanac

‘s Attac

conthe Time.

Biff gets rich!

‘s Attac

Biff gets rich!

11E

2015

Biff steals the almanac

s Attac

1 .\‘
f
th

\" \' -
R
R N -
W ' ! ! \ \\\
yav —a “'“ ey, A ‘e, Y
AN al W ATy AT W,
[Ly ¥
' o T CTTITY A /B XY/
T CEL L In A A Y
\ ‘|‘ \ | Hh ““"l"
| \ i " ty 4, '/
\ «iill dd s W AV "

Biff gets rich!

T_'%-'f..'t:"'f Htll Halley Celegraph =

BH-'F TANNEN

I.ucklest Man On Earth

" Nasser Accuses Reds of
Plotting His Overthrow

State Likely
to Start

{? Payroll Tax

e in 1960

‘No, Marty, weve already agreed that having information
about the future could be extremely dangerous!

Our Worl

Our Work

1. The “Back to the Future” attack is real!

Our Work

1. The “Back to the Future” attack is real!

. Some implementations of synchronous protocols are vulnerable

Our Work

1. The “Back to the Future” attack is real!

. Some implementations of synchronous protocols are vulnerable

2. Our Aim: To understand which protocols are vulnerable to
such an attack

Synchronous Protocol

[et there be rounds!

Synchronous Protocol

[et there be rounds!

Round 1

Py

/ U v \
a) < ()
P, IE
& _J _ v

Synchronous Protocols

[et there be rounds!

- >
Round 1

Synchronous Protocol

[et there be rounds!

Round 1 Round 2

Py

/ U v \
a) < ()
P, IE
& _J _ v

Synchronous Protocols

[et there be rounds!

Round 1 Round 2 and so on ...

Py

/ U v \
a) < ()
P, IE
& _J _ v

Synchronous Protocols

[et there be rounds!

Round 1 Round 2 and so on ...
Pl . .
N . |dealized assumption: all round r

(

// \\ messages are delivered before round r+1
\4 (")
P, | P,

& _J _

Synchronous Protocols

[et there be rounds!

(

&

&

v

_J

&

3

o

v

Round 2 and so on ...

. |dealized assumption: all round r
messages are delivered before round r+1

Majority of the literature

Synchronous Protocols

[et there be rounds!

(

U

&

v

_J

&

3

o

v

Round 2 and so on ...

. |dealized assumption: all round r
messages are delivered before round r+1

Majority of the literature

- How to decide the delay?

Synchronous Protocols

[et there be rounds!

Round 1 Round 2 and so on ...

P, | .
_ . |dealized assumption: all round r

messages are delivered before round r+1
- Majority of the literature
P, |- f P

| - How to decide the delay?

(

3

U _J _ v

Synchronous Protocols

[et there be rounds!

P, P, P,

Round 1 Round 2 and so on ...

P, | .
_ . |dealized assumption: all round r

messages are delivered before round r+1
- Majority of the literature
P, |- f P

| - How to decide the delay?

(

3

U _J _ v

Synchronous Protocols

[et there be rounds!

P, P, P,

Round 1 Round 2

P, | .
_ . |dealized assumption: all round r

messages are delivered before round r+1
- Majority of the literature
P, |- f P

| - How to decide the delay?

(

3

U _J _ v

Protocol Implementations

Optimistic: Proceed to next round if all messages received

Round 1 Round 2

Protocol Implementations

Optimistic: Proceed to next round if all messages received

Round 1 Round 2

Protocol Implementations

Optimistic: Proceed to next round if all messages received

Round 1 Round 2

P P, has not yet sent round-1 message to P,

Protocol Implementations

Optimistic: Proceed to next round if all messages received

Py P

Round 1 Round 2

P P, has not yet sent round-1 message to P,

Protocol Implementations

Optimistic: Proceed to next round if all messages received

Py P

Round 1 Round 2

P P, has not yet sent round-1 message to P,

P5 has finished round-1

Protocol Implementations

Optimistic: Proceed to next round if all messages received

Py P Ps

Round 1 Round 2

P P, has not yet sent round-1 message to P,

P5 has finished round-1

Protocol Implementations

Optimistic: Proceed to next round if all messages received

Pl P2 P3
Round 1 Round 2
d)
fr P has not yet sent round-1 message to P,

P5 has finished round-1

P sends round-2 messages

Protocol Implementations

Optimistic: Proceed to next round if all messages received

PI’P2 P3
Round 1 Round 2
d)
P P, has not yet sent round-1 message to P,
& v
P5 has finished round-1
P sends round-2 messages
R O P, sends round-1 message to P,
P2 P3
& J o v

Protocol Implementations

Optimistic: Proceed to next round if all messages received

PI’P2 P3
Round 1 Round 2
d)
P P, has not yet sent round-1 message to P,
& v
P5 has finished round-1 P, gets a message from
P sends round-2 messages wthe future (from £)
R O P, sends round-1 message to P,
P2 P3
& J o v

“Wait a minute. Wait a minute Doc, uh, are you
tellin” me you built a time machine ... out of @
synchronous network?”

No

Pl P2 P3
Round 1 Round 2
P P, has not yet sent round-1 message to P,
P5 has finished round-1
P sends round-2 messages
P2 < P3

P can “peek” into the future one round

Pl P2 P3
Round 1 Round 2
P P, has not yet sent round-1 message to P,
P5 has finished round-1
P sends round-2 messages
P2 < P3

No

P can “peek” into the future one round

/\

Pl P2 PI’PZ P3
Round 1 Round 2
d)
P P, has not yet sent round-1 message to P,
& v
P5 has finished round-1
P sends round-2 messages
R O P, sends round-1 message to P,
P2 P3
& J o v

No

P can “peek” into the future one round

/\

Pl P2 PI’PZ P3
Round 1 Round 2
4)
P P, has not yet sent round-1 message to P,
& v
P5 has finished round-1
P sends round-2 messages
R O P, sends round-1 message to P,
P2 P3
& _J o v

Note: All-to-all communication = Peeking at most 1 rounad

Peeking — Super-Rushing

Non-

Rushing

Adversary sends round-r messages

before receiving the
round-r messages

nonest parties’

Adversary sends round-7 messages
before receiving the honest parties’

round-r messages

Adversary can send round-r messages
after receiving the honest parties’

round-r messages

Adversary sends round-7 messages
before receiving the honest parties’

round-r messages

Adversary can send round-r messages
after receiving the honest parties'’

round-r messages

Adversary can send round-r messages
after receiving the honest parties'’

round-r’ > r messages

A Gap in the Security Analysis

Theory Practice

A Gap in the Security Analysis

Theory Practice

A Gap in the Security Analysis

Theory Practice

A Gap in the Security Analysis

Theory Practice

Question: Are existing synchronous protocols
vulnerable to super-rusning attacks?

Yes! Some protocols are insecure
against adversaries

Simultaneous .

1 corruption, 2 senders, 5 parties

Sroadcast

CGMAS8S

Simultaneous .

1 corruption, 2 senders, 5 parties

Sroadcast

CGMAS8S

Simultaneous Broadcast

1 corruption, 2 senders, 5 parties

(ml ’ m2)

(my,my) | Ps

CGMAS8S

(my, my)

Protocol

Sroadcast .

A Simple Simultaneous .

1 corruption, 2 senders, 5 parties

A Simple Simultaneous .

1 corruption, 2 senders, 5 parties

Protocol

Sroadcast .

A Simple Simultaneous Broadcast Protocol

1 corruption, 2 senders, 5 parties

N » Round 1: Py, P, send input message to
m
LPI) 1 P3’ P4, PS

A Simple Simultaneous Broadcast Protocol

1 corruption, 2 senders, 5 parties

X » Round 1: Py, P, send input message to
Pl m P3’ P4, PS

1 2
5’m5)

A Simple Simultaneous Broadcast Protocol

1 corruption, 2 senders, 5 parties

» Round 1: Py, P, send input message to

()
P
P P, P, Ps
- ~ r N . Round ng, P4, PS echo message to all
519m52) P5 P2 |
i ’ .) pCIrtIeS
- D r N
\ Y \ Y

A Simple Simultaneous Broadcast Protocol

1 corruption, 2 senders, 5 parties

12
mi, m |
(fl \1) . Round 1. P;, P, send input message to
s P3, Py, s
L m2) b ”P > (m!. m2) . Round 2: P,, P,, Ps echo message to al
A 2 TR parties
a4) (")
P, P,
. _J \ J

A Simple Simultaneous .

1 corruption, 2 senders, 5 parties

1 .2
(msg, ms)

1 .2
(my, m{)

-

&

P

o

_J

1 2
(mza mz)

Sroadcast Protocol

» Round 1: Py, P, send input message to

Ps, Py, Ps

» Round 2: P, P,, Ps echo message to all

oarties

. Output: (m;, m,) such that at least 2

parties echoed (my, m,)

A Simple Simultaneous Broadcast Protocol

1 corruption, 2 senders, 5 parties

1 .2
(msg, ms)

1 .2
(my, m{)

-

&

P

o

_J

1 2
(mza mz)

» Round 1: Py, P, send input message to
P3, Py, s

» Round 2: P, P,, Ps echo message to all
oarties

. Output: (m;, m,) such that at least 2

parties echoed (my, m,)

Rushing adversary cannot affect majority
decision and cannot bias output

A Super-Rushing Attact

4)
- _J

A Super-Rushing Attack

Attack: Corrupted P,

4)
- _J

Attac.

Attack:

<

+ Round 1. P{ sends O to only Ps

Corrupted P,

Attac.

Attack:

+ Round 1. P{ sends O to only Ps

<

. Round 2: (only for Ps) Sends (0,m,) to P,

Corrupted P,

Attac.

Attack:

<

+ Round 1. P{ sends O to only Ps

. Round 2: (only for Ps) Sends (0,m,) to P,

+ Round 1. P; sends m; = m, to P,, P-

- Round 2: (everyone) echos the remaining

Messages

» Output: Everyone outputs (m,, n,)

Corrupted P,

Attack

Attack: Corrupted P,

+ Round 1. P{ sends O to only Ps

. Round 2: (only for Ps) Sends (0,m,) to P,

+ Round 1. P; sends m; = m, to P,, P-

- Round 2: (everyone) echos the remaining
Messages

» Output: Everyone outputs (m,, n,)

P5, P,: Looks like Ps is cheating

Our Results #1
CGMAS8S| (25) Simultaneous Broadcast

Theorem: There exists a protocol (with two input providers)
that is secure against adversaries but is [nsecure
against adversaries

Which syncnhronous protocols remain
secure against adversaries?

Modeling super-Rusning

Extension of Rushing

Modeling super-Rushing

Extension of Rushing

Adversary can schedule messages
within a rounao

Modeling super-Rushing

Extension of Rushing

Adversary can schedule messages
within a rounao

+ Can “pull” future messages from
honest parties (these parties must
nave finished all previous rounds!)

S3roadcast

Suture: Simultaneous .

Back to the.

1 corruption, 2 senders, 5 parties

S

Round 1 Round 2

Back to the.

Suture: Simultaneous .

1 corruption, 2 senders, 5 parties

S3roadcast

S

Round 1 Round 2

Py, P, provide inputs

Back to the Future: Simultaneous Broadcast

1 corruption, 2 senders, 5 parties

_—
Round 1 Round 2

Py, P, provide inputs Parties learn the outputs

Back to the Future: Simultaneous Broadcast

1 corruption, 2 senders, 5 parties

_—
Round 1 Round 2

Py, P, provide inputs Parties learn the outputs

Adversary peeks into round-2 (Ps's
round-2 message), learns partial

output (P,’s input message)

Back to the Future: Simultaneous Broadcast

1 corruption, 2 senders, 5 parties

P Ps
- o 5
Round 1 Round 2
Py, P, provide inputs Parties learn the outputs

Adversary peeks into round-2 (Ps's
round-2 message), learns partial

output (P,’s input message)

Back to the Future: Simultaneous Broadcast

1 corruption, 2 senders, 5 parties

P Ps
- o 5
Round 1 Round 2
Py, P, provide inputs Parties learn the outputs

P, picks input message asa Adversary peeks into round-2 (Ps's
function of honest party’s input round-2 message), learns partial

(P5's input message) output (P,’s input message)

Back to the Future: Simultaneous Broadcast

1 corruption, 2 senders, 5 parties

P Ps
. I © s
Round 1~ ~ R Round 2
Py, P, provide inputs Parties learn the outputs

P, picks input message asa Adversary peeks into round-2 (Ps's
function of honest party’s input round-2 message), learns partial

(P5's input message) output (P,’s input message)

Back to the Future: Simultaneous Broadcast

/

1 corruption, 2 senders, 5 parties

Py Ps

Py, P, provide inputs Parties learn the outputs

P, picks input message asa Adversary peeks into round-2 (Ps's
function of honest party’s input round-2 message), learns partial

(P5's input message) output (P,’s input message)

Back to the Future: Simultaneous Broadcast

/

1 corruption, 2 senders, 5 parties

P, P.

Py, P, provide inputs Parties learn the outputs

P, picks input message asa Adversary peeks into round-2 (Ps's
function of honest party’s input round-2 message), learns partial

(P5's input message) output (P,’s input message)

super-rushing breaks input independence

What if only one party
provides input?

VSS, Broadcast, ...

our

Results #2

with a single input provider

Theorem: Every protocol for a single input provider that is
secure against adversaries is also secure
against adversaries

our

Results #2

with a single input provider

Theorem: Every protocol for a single input provider that is
secure against adversaries is also secure
against adversaries

We worked too hard to show too little!

The Story So Far

Securlity of protocols against

The Story So Far

Security of protocols against super-rushing

 Single Input: Super-Rushing =

The Story So Far

Security of protocols against super-rushing

 Single Input: Super-Rushing =

2 Two Input Providers: A protocol that is secure against but Not
against super-rusning

The Story So Far

Securlity of protocols against

/ Single Input:

A Two Input Providers: A protocol that is secure against but Not
against

Does not look like secure computation protocols — no privacy!

The Story So Far

Security of protocols against super-rushing

 Single Input: Super-Rushing =

2 Two Input Providers: A protocol that is secure against but Not
against super-rusning

Does not look like secure computation protocols — no privacy!

The Story So Far

Security of protocols against super-rushing

 Single Input: Super-Rushing =

2 Two Input Providers: A protocol that is secure against but Not
against super-rusning

Does not look like secure computation protocols — no privacy!

T — T — T —
Round CR

The Story So Far

Security of protocols against super-rushing

 Single Input: Super-Rushing =

2 Two Input Providers: A protocol that is secure against but Not
against super-rusning

Does not look like secure computation protocols — no privacy!

INnput provision + privacy

< >

T — T — T —
Round CR

Sroadcast

Simultaneous .

GIK.

02

1 corruption, 2 senders, b parties + Committal round

Simu.

taneous Broadcast

GIK.

ROZ

1 corruption, 2 senders, b parties + Committal round

Simultaneous Broadcast | GIKRO2

1 corruption, 2 senders, b parties + Committal round

P, | M + Round 1: Py, P, perform 1-round VSS of
their inputs

Simultaneous Broadcast | GIKRO2

1 corruption, 2 senders, b parties + Committal round

(51, 57)
(")
P, + Round 1: Py, P, perform 1-round VSS of
D their inputs
1 2 () () 1 2
(85,55) kPSJ kPZJ(Sz,Sz)
a4) (")
P, P,
. _J \ J

Simultaneous Broadcast | GIKRO2

1 corruption, 2 senders, b parties + Committal round

(515 57)
(" N
P, + Round 1: Py, P, perform 1-round VSS of
— their inputs
() a)
(s5,52) | Ps P, | (s,,5%) . Round 2: Parties perform VSS
— — reconstruction
("~) (")
P, P,
- _J - J

Simultaneous Broadcast | GIKRO2

1 corruption, 2 senders, b parties + Committal round

(515 57)
P, + Round 1: Py, P, perform 1-round VSS of
— their inputs
(s5,52) | Ps P, | (s,,5%) . Round 2: Parties perform VSS
— — reconstruction
{(Sl ? l)}l_
P, P,

Simultaneous Broadcast | GIKRO2

1 corruption, 2 senders, b parties + Committal round

(515 S7)
()
P, + Round 1: Py, P, perform 1-round VSS of
D their inputs
() a)
(55, 2) P. P, (Sza 2) » Round 2: Parties perform VSS
— N R reconstruction
{(1’ l)}l_
. Output: (my, m,) from VSS
— — reconstruction.
P, P,
_ J _ _J

Super-rushing still breaks
independence of inputs

What are the sulficient conditions for
security against adversaries?

Our Sutficient Conditions

All-to-all communication = Peeking up to 1 round

Our Sutficient Conditions

All-to-all communication = Peeking up to 1 round

- >
Round CR

Our Sutficient Conditions

All-to-all communication = Peeking up to 1 round

- -
Round CR

Inputs are committed

Our Sutficient Conditions

All-to-all communication = Peeking up to 1 round

- -
Round CR Round ORR

Inputs are committed

Our Sutficient Conditions

All-to-all communication = Peeking up to 1 round

- >
Round CR Round ORR

Inputs are committed Parties learn the outputs

Our Sutficient Conditions

All-to-all communication = Peeking up to 1 round

[Iﬁ
[
Round CR > 1 Round ORR

Inputs are committed Parties learn the outputs

Our Sutficient Conditions

All-to-all communication = Peeking up to 1 round

I Iﬁ
I
Round CR > Round ORR
Inputs are committed Parties learn the outputs

Mitigates
Peeking into round ORR only possible after all
oarties complete round CR

Our Resul

[S:

|

1

3

General Sufficient Conditions

3. O

Theorem:

Q

R>C

7. has all-to-o

R+

1. secure agai

-very protocol that is

NSt adversaries™

communication

IS also secure against

adversaries

Our Results #3

General Sufficient Conditions

Theorem: Fvery protocol that is

1. secure against adversaries™

2. has all-to-all communication

3. ORR > CR+

IS also secure against adversaries

* security is assumed via compatible simulation (see our paper)

EXtensions
Whatif ORR=CR+1

Theorem: Fvery protocol that is

1. secure against adversaries™

2. has all-to-all communication

3. CRis over broadcast or is a synchronization rounao
IS also secure against adversaries

* security is assumed via compatible simulation (see our paper)

Our Results #4

Sequential Composition

Theorem: There exists a protocol (with one input provider)
that is secure against aaversaries but is [nsecure

against adversaries when seqguentially
composed even once

Our Results #4

Sequential Composition

Theorem: There exists a protocol (with one input provider)
that is secure against aaversaries but is [nsecure

against adversaries when seqguentially
composed even once

. T ——————————————

First execution Second execution

Our Results #4

Sequential Composition

Theorem: There exists a protocol (with one input provider)
that is secure against aaversaries but is [nsecure

against adversaries when seqguentially
composed even once

Pl P2
-

First execution Second execution

Our Results #4

Sequential Composition

Theorem: There exists a protocol (with one input provider)
that is secure against aaversaries but is [nsecure

against adversaries when seqguentially
composed even once

Pl P2
|\

First execution N Second execution

Our Results

Perfect Security

« Single Input: Super-Rushing =
. Two Input Providers:
xgecure against but not against super-rushing

¢ committal round does not help

x Sequential composition of single input protocols is not secure

+ Main Result: —> Super-Rushing for protocols with all-to-all coommunication and
ORR > CR +1

 Extensions when ORR = CR +1

BGW is secure against
attacks

NO need to reprove security

An A

fernate Strategy

An Alternate Strategy

Asynchrony admits Super-Rushing Attacks

An Alternate Strategy

Asynchrony admits Super-Rushing Attacks

- Asynchronous MPC with guaranteed output delivery inevitably ignores
some honest parties’ inputs

An Alternate Strategy

Asynchrony admits Super-Rushing Attacks

- Asynchronous MPC with guaranteed output delivery inevitably ignores
some honest parties’ inputs

. Universally composable protocols [CanettiOl] typically settle for security
with abort

Alternate Sufficient Conditions
Kushilevitz Lindell Rapin, STOC 06

Theorem: Fvery protocol that is

1. secure against adversaries; and
2. has synchronization steps,

s also UC-secure |CanettiO1]

Alternate Sufficient Conditions
Kushilevitz Lindell Rapin, STOC 06

Theorem: Fvery protocol that is

1. secure against adversaries; and
2. has synchronization steps,

s also UC-secure |CanettiO1]

X 2 round complexity and +O(n?) communication complexity

Statistical security

We require different sufficient conditions

Theorem: There exists a protocol that is

1. secure against adversaries (with statistical
security)

2. has all-to-all communication

3. ORR > CR+

but is [nsecure against adversaries

Conclusion

Conclusion

- Back to the Future attack is real on some implementations

Conclusion

- Back to the Future attack is real on some implementations

Conclusion

- Back to the Future attack is real on some implementations

2015
- O+ >

Biff steals the almanac

Conclusion

- Back to the Future attack is real on some implementations

1900 2010
S T

Gives it to his past self Biff steals the almanac

Conclusion

- Back to the Future attack is real on some implementations

AN Biff steals the almanac

Conclusion

- Back to the Future attack is real on some implementations

« ORR > CR + 1 sufficient for —> Super-Rushing

1905 2015

AN Biff steals the almanac

Conclusion

- Back to the Future attack is real on some implementations

« ORR > CR +1 sufficient for —> Super-Rushing

1900 2010
S T

Gives it to his past self Biff steals the almanac

Conclusion

- Back to the Future attack is real on some implementations

« ORR > CR + 1 sufficient for —> Super-Rushing

J Qe -
i"’ A

!
N

7

o 1
/'!‘:‘-\: . ' X :
£44 . U PN
=y 2
’ .
-~
i

Conclusion

- Back to the Future attack is real on some implementations

« ORR > CR + 1 sufficient for —> Super-Rushing

TV T -~
4 s R —
e o > 3
b ’ R I
i
¢]«
X Tl
0y
=
e s
b Bhcs i)
-
Lot

7

."::
4 /‘:"\ ' B - ¥
A -
: ,.:,‘g: "
' J ‘;.
’ .
-~
i

| o
Thank YOou

