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A bit of context...

2022: module-LIP and Hawk (Ducas, Postlethwaite, Pulles, van Woerden, [2]).

• NIST candidate (additional call for signatures)
• based on module-LIP over cyclotomic fields
• efficient and compact

2023: Heuristic poly-time algorithm solving module-LIP over totally real fields (M.,
Pellet-Mary, Pliatsok, Wallet, [4] at Eurocrypt 2024). Does not break Hawk!

This talk: Poly-time reduction from rank-2 module-LIP over CM fields (includes
Hawk) to a problem on ideals in a quaternion algebra [1]. Does not break Hawk!
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The module-Lattice Isomorphism
Problem (module-LIP)



The module-Lattice Isomorphism Problem

The Lattice Isomorphism Problem (LIP) asks to compute an isometry between
isomorphic lattices: L and L′ = Θ · L, where Θ is orthogonal (i.e., ΘTΘ = Id).

b1

b2

Θ · b1

Θ · b2

c1

c2

Input: Bases B and C
Goal: Compute Θ orthogonal or U ∈ GLn(Z) such that C = ΘBU.
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The module-Lattice Isomorphism Problem

For efficiency and compactness, we use module-lattices. That is, we consider

L = b1ZK + · · ·+ bnZK,

where K is a number field, ZK its ring of integers and b1, . . . ,bn ∈ Kn are K-linearly
independent. B = (b1| · · · |bn) is a basis of L.

Example: K = Q[X]/(X2m + 1) and ZK = Z[X]/(X2m + 1) a power-of-two cyclotomic
number field. It is equipped with an automorphism a 7→ a “complex conjugation”.

Remark: Consider only power-of-two cyclotomic fields in the talk. Everything
works for a larger family of fields (CM number fields).
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The module-Lattice Isomorphism Problem

The module-Lattice Isomorphism Problem (module-LIP) asks for a “K-isometry”
between isomorphic module-lattices: C = ΘBU, where U ∈ GLn(ZK) and Θ∗Θ = Id.

Example: With the module-lattice H =
( 1
0
)
ZK +

( 0
1
)
ZK as in Hawk and B = Id2.

An input of module-LIP is a basis C of a module-lattice L ' H.

Remark: The security of Hawk is related to the hardness of module-LIP on H.

−→ In the following, we focus on the module-lattice H.
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A reduction from Hawk to nrdPIP

• K power-of-two cyclo, B = Id2 basis of H =
( 1
0
)
ZK +

( 0
1
)
ZK and C = ΘBU.

• Bases B and C are public, Θ orthogonal and U ∈ GL2(ZK) are secret.

Idea: Get information on U from the Gram matrix H = C∗C. One has:

H = U∗ (Θ∗Θ)︸ ︷︷ ︸
=Id

U = U∗U =

(
x y
z t

)(
x z
y t

)
=

(
xx+ yy xz+ yt
xz+ yt zz+ tt

)
.

Diagonal coefficients of H are invariant under complex conjugation. They belong
to the totally real subfield F of K (think of K = Q(i) with i2 = −1, then F = Q).

Fact: K = F+ F · i and ZK = ZF + ZF · i, where i2 = −1.
Put x = x1 + ix2, y = y1 + iy2, first coefficient of H is a sum of four squares in ZF:

xx+ yy = x21 + x22 + y21 + y22.
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A reduction from Hawk to nrdPIP

Introduce the quaternion algebra

A = F+ F · i+ F · j+ F · ij,

with basis {1, i, j, ij} and rules i2 = j2 = −1, ji = −ij.

• Non-commutative F-algebra containing K = F+ F · i.
• Has complex conjugation α 7→ α extending the one on K.
• The reduced norm of α = x+ yi+ zj+ tij is nrd(α) := αα = x2 + y2 + z2 + t2.

See the column
( x
y
)
∈ Z2K of the secret matrix U as a quaternion α = x+ y · j ∈ A.

Its reduced norm is nrd(α) = x21 + x22 + y21 + y22, the first coefficient of H.

−→ Compute all solutions α ∈ ZK + ZK · j to nrd(α) = q to recover U.
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A reduction from Hawk to nrdPIP

Remark: In a previous work [4], for rank-2 module-LIP over a totally real field
(when L,L′ ⊂ F2), we solved nrd(α) = q with α ∈ ZK = ZF + ZF · i.

Issue: Equations nrd(α) = q have too many solutions in ZK + ZK · j to enumerate
them all + we don’t know how to compute them...

−→ Use extra information on H to reduce the solution space.
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A reduction from Hawk to nrdPIP

Denote H =

(
q1 q2
q2 q3

)
and U =

(
x z
y t

)
. Set α = x+ y · j and β = z+ t · j ∈ A.

We prove: U∗U = H⇐⇒

{
nrd(α) = q1
αβ−1 = q−13 (q2 − j)

• Proof is direct computation.
• From H (public), can compute αβ−1 (α and β fully determine a solution).
• Only need to compute α ∈ ZK + ZK · j.

Question: Can we retrieve α from αβ−1?
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A reduction from Hawk to nrdPIP

Example: Let a,b ∈ Z, b 6= 0. Suppose gcd(a,b) = 1. Can we get a from a
b?

Build
the ideal of Z:

I =
a
bZ ∩ Z = aZ,

and then take a generator→ get a up to sign.

The same works with quaternions! Put O = ZK + ZK · j,1 then one can build the
ideal of O:

I = αβ−1O ∩O = αO.

The “gcd” of α and β is 1, morally because α ↔
( x
y
)
and β ↔

( z
t
)
generate Z2K.

1Precisely, take a maximal order containing it.
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A reduction from Hawk to nrdPIP

Sum-up:

• Columns of the secret matrix U↔ secret quaternions α, β ∈ A.

• From the public Gram matrix H, compute αβ−1.

• Use αβ−1 to build the principal ideal I = αO.

We have reduced to the reduced norm Principal Ideal Problem (nrdPIP):
Input: A (right) O-ideal I of A and q ∈ F.
Goal: A (left) generator α of I with nrd(α) = q, if it exists.

−→ We obtain a polynomial-time reduction from module-LIP on H to nrdPIP in O.

−→ Can be adapted to any rank-2 moduleM ⊂ K2.
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A reduction from Hawk to nrdPIP

About nrdPIP:

• State-of-the-art: compute a shortest vector in I (rank-2dimQ(K) lattice) [3].

• When I is an ideal of K (commutative) and q ∈ F, ∃ poly-time algorithm
(Gentry & Szydlo) to compute g ∈ K such that I = gZK and gg = q (if it exists).

• Open question: is there a “Gentry & Szydlo algorithm” for quaternions?

Conclusion:

• New angle of attack on module-LIP and Hawk.
• Connection between a lattice problem and the world of quaternions.
• A lot to do on nrdPIP. Any improvements would impact Hawk.

Thanks a lot! Any questions?
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