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Input: Bases Band C
Goal: Compute © orthogonal or U € GLy(Z) such that C = ©BU.
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For efficiency and compactness, we use module-lattices. That is, we consider
L=b1Zg+ -+ bnZ,

where K is a number field, Z its ring of integers and by, ..., b, € K" are K-linearly
independent. B = (bq|---|by) is a basis of L.

Example: K = Q[X]/(X*" + 1) and Zx = Z[X]/(X*" + 1) a power-of-two cyclotomic
number field. It is equipped with an automorphism a — a “complex conjugation”.

Remark: Consider only power-of-two cyclotomic fields in the talk. Everything
works for a larger family of fields (CM number fields).
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The module-Lattice Isomorphism Problem

The module-Lattice Isomorphism Problem (module-LIP) asks for a “K-isometry”
between isomorphic module-lattices: C = ©BU, where U € GL,(Zk) and ©*© = 1d.

Example: With the module-lattice # = ({)Zk + (%)Z as in Hawk and B = Id,.
An input of module-LIP is a basis C of a module-lattice £ ~ H.

Remark: The security of Hawk is related to the hardness of module-LIP on H.
— In the following, we focus on the module-lattice H.
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- K power-of-two cyclo, B = Id, basis of H = () Zx + (9)Zx and C = ©BU.
- Bases B and C are public, © orthogonal and U € GL,(Z) are secret.

Idea: Get information on U from the Gram matrix H = C*C. One has:
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Diagonal coefficients of H are invariant under complex conjugation. They belong
to the totally real subfield F of K (think of K = Q(i) with i? = —1, then F = Q).

x|

H=U*(©"0)U =U"U= (
=ldl

NI

Fact: K=F+F-iand Zx = Zr + Z¢ - i, where > = —1.
Put x = X1 + iX, y = Y1 + iy, first coefficient of H is a sum of four squares in Z:

XX+ Yy =X+ %3 +y2 +y3
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Introduce the quaternion algebra
A=F+F-i4+F-j+F-i,
with basis {1,1,j,ij} and rules > = j2 = —1, ji = —ij.

- Non-commutative F-algebra containing K=F+ F - |.
- Has complex conjugation a — @ extending the one on K.
- The reduced norm of o = x + yi + zj + tij is nrd(a) := a@ = x> + y?> + 22 + 2.

See the column (§) € Z of the secret matrix U as a quaternion a =x+y-j € A.
Its reduced norm is nrd(a) = X3 + x5 + y2 + y3, the first coefficient of H.

— Compute all solutions « € Zg + Zg - j to nrd(a)) = g to recover U.
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Remark: In a previous work [4], for rank-2 module-LIP over a totally real field
(when £, L' c F?), we solved nrd(a) = q with a € Zg = Z¢ + Z¢ - i.

Issue: Equations nrd(a) = g have too many solutions in Zg + Zg - j to enumerate
them all + we don’t know how to compute them...

— Use extra information on H to reduce the solution space.
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ar @

DenoteH=|[ __
4> Q3

)andU: <§ i),Setoz=X+)/'jandﬁ:Z+t'j€A~

We prove: U*U=H <= nrd_(?) :?11 .
af™ =05 (q2—))
- Proof is direct computation.
- From H (public), can compute o~ (o and 3 fully determine a solution).
- Only need to compute « € Zg + Zg - J.

Question: Can we retrieve o from a3~1?
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Example: Let a,b € Z, b # 0. Suppose gcd(a, b) = 1. Can we get a from §? Build
the ideal of Z: q
b
and then take a generator — get a up to sign.

I=_7ZNnZ=aZ,

The same works with quaternions! Put O = Zg + Z - j,' then one can build the

ideal of O:
I=aB7'0N0O = 0.

The “gcd” of awand S is 1, morally because a <+ (§) and 3 <+ (%) generate Z§.

"Precisely, take a maximal order containing it.
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A reduction from Hawk to nrdPIP

Sum-up:

- Columns of the secret matrix U < secret quaternions «, 8 € A.
- From the public Gram matrix H, compute a8~".
- Use aB~" to build the principal ideal Z = aO.

We have reduced to the reduced norm Principal Ideal Problem (nrdPIP):
Input: A (right) O-ideal Z of Aand g € F.
Goal: A (left) generator o of Z with nrd(a) = g, if it exists.

— We obtain a polynomial-time reduction from module-LIP on H to nrdPIP in O.
— Can be adapted to any rank-2 module M C K.
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About nrdPIP:

- State-of-the-art: compute a shortest vector in Z (rank-2dimg(K) lattice) [3].

- When T is an ideal of K (commutative) and g € F, 3 poly-time algorithm
(Gentry & Szydlo) to compute g € K such that T = gZg and gg = q (if it exists).

- Open question: is there a “Gentry & Szydlo algorithm” for quaternions?

Conclusion:

- New angle of attack on module-LIP and Hawk.
- Connection between a lattice problem and the world of quaternions.
- A lot to do on nrdPIP. Any improvements would impact Hawk.

Thanks a lot! Any questions?

1



References i

@ C Chevignard, P-A. Fouque, G. Mureau, A. Pellet-Mary, and A. Wallet.
A reduction from hawk to the principal ideal problem in a quaternion
algebra.
Cryptology ePrint Archive, 2024.

[ L Ducas, E. W. Postlethwaite, L. N. Pulles, and W. v. Woerden.
Hawk: Module lip makes lattice signatures fast, compact and simple.
In International Conference on the Theory and Application of Cryptology and
Information Security, pages 65-94. Springer, 2022.

@ M. Kirschmer and ). Voight.
Algorithmic enumeration of ideal classes for quaternion orders.
SIAM Journal on Computing, 39(5), 1714-1747, 2010.



References ii

B G. Mureau, A. Pellet-Mary, G. Pliatsok, and A. Wallet.
Cryptanalysis of rank-2 module-lip in totally real number fields.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 226-255. Springer, 2024.



	The module-Lattice Isomorphism Problem (module-LIP)
	  A reduction from Hawk to nrdPIP
	Appendix

