

A reduction from Hawk to the principal ideal problem in a quaternion algebra

May 5th, Eurocrypt 2025, Madrid

Clémence Chevignard, <u>Guilhem Mureau</u>, Thomas Espitau, Alice Pellet-Mary, Heorhii Pliatsok and Alexandre Wallet

- NIST candidate (additional call for signatures)
- based on module-LIP over cyclotomic fields
- efficient and compact

- NIST candidate (additional call for signatures)
- based on module-LIP over cyclotomic fields
- $\boldsymbol{\cdot}$ efficient and compact

2023: Heuristic poly-time algorithm solving module-LIP over **totally real** fields (M., Pellet-Mary, Pliatsok, Wallet, [4] at Eurocrypt 2024). Does **not** break Hawk!

- NIST candidate (additional call for signatures)
- based on module-LIP over cyclotomic fields
- efficient and compact

2023: Heuristic poly-time algorithm solving module-LIP over **totally real** fields (M., Pellet-Mary, Pliatsok, Wallet, [4] at Eurocrypt 2024). Does **not** break Hawk!

This talk: Poly-time reduction from rank-2 module-LIP over CM fields (includes Hawk) to a problem on ideals in a quaternion algebra [1].

- NIST candidate (additional call for signatures)
- based on module-LIP over cyclotomic fields
- efficient and compact

2023: Heuristic poly-time algorithm solving module-LIP over **totally real** fields (M., Pellet-Mary, Pliatsok, Wallet, [4] at Eurocrypt 2024). Does **not** break Hawk!

This talk: Poly-time reduction from rank-2 module-LIP over CM fields (includes Hawk) to a problem on ideals in a quaternion algebra [1]. Does not break Hawk!

The module-Lattice Isomorphism Problem (module-LIP)

The module-Lattice Isomorphism Problem

The Lattice Isomorphism Problem (LIP) asks to compute an isometry between isomorphic lattices: \mathcal{L} and $\mathcal{L}' = \Theta \cdot \mathcal{L}$, where Θ is orthogonal (*i.e.*, $\Theta^T \Theta = \text{Id}$).

The module-Lattice Isomorphism Problem

The Lattice Isomorphism Problem (LIP) asks to compute an isometry between isomorphic lattices: \mathcal{L} and $\mathcal{L}' = \Theta \cdot \mathcal{L}$, where Θ is orthogonal (*i.e.*, $\Theta^T \Theta = \text{Id}$).

The module-Lattice Isomorphism Problem

The Lattice Isomorphism Problem (LIP) asks to compute an isometry between isomorphic lattices: \mathcal{L} and $\mathcal{L}' = \Theta \cdot \mathcal{L}$, where Θ is orthogonal (*i.e.*, $\Theta^T \Theta = \text{Id}$).

Input: Bases **B** and **C Goal:** Compute Θ orthogonal or $U \in GL_n(\mathbb{Z})$ such that $C = \Theta BU$. For efficiency and compactness, we use module-lattices. That is, we consider

$$\mathcal{L} = b_1 \mathbb{Z}_{\mathcal{K}} + \cdots + b_n \mathbb{Z}_{\mathcal{K}},$$

where K is a number field, \mathbb{Z}_K its ring of integers and $\mathbf{b}_1, \ldots, \mathbf{b}_n \in K^n$ are K-linearly independent. $\mathbf{B} = (\mathbf{b}_1 | \cdots | \mathbf{b}_n)$ is a basis of \mathcal{L} .

For efficiency and compactness, we use module-lattices. That is, we consider

$$\mathcal{L} = b_1 \mathbb{Z}_{\mathcal{K}} + \cdots + b_n \mathbb{Z}_{\mathcal{K}},$$

where K is a number field, \mathbb{Z}_K its ring of integers and $\mathbf{b}_1, \ldots, \mathbf{b}_n \in K^n$ are K-linearly independent. $\mathbf{B} = (\mathbf{b}_1 | \cdots | \mathbf{b}_n)$ is a basis of \mathcal{L} .

Example: $K = \mathbb{Q}[X]/(X^{2^m} + 1)$ and $\mathbb{Z}_K = \mathbb{Z}[X]/(X^{2^m} + 1)$ a **power-of-two cyclotomic** number field. It is equipped with an automorphism $a \mapsto \overline{a}$ "complex conjugation".

For efficiency and compactness, we use module-lattices. That is, we consider

$$\mathcal{L} = b_1 \mathbb{Z}_{\mathcal{K}} + \cdots + b_n \mathbb{Z}_{\mathcal{K}},$$

where K is a number field, \mathbb{Z}_K its ring of integers and $\mathbf{b}_1, \ldots, \mathbf{b}_n \in K^n$ are K-linearly independent. $\mathbf{B} = (\mathbf{b}_1 | \cdots | \mathbf{b}_n)$ is a basis of \mathcal{L} .

Example: $K = \mathbb{Q}[X]/(X^{2^m} + 1)$ and $\mathbb{Z}_K = \mathbb{Z}[X]/(X^{2^m} + 1)$ a **power-of-two cyclotomic** number field. It is equipped with an automorphism $a \mapsto \overline{a}$ "complex conjugation".

Remark: Consider only power-of-two cyclotomic fields in the talk. Everything works for a larger family of fields (**CM** number fields).

Example: With the module-lattice $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ as in Hawk and **B** = Id₂.

Example: With the module-lattice $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ as in Hawk and **B** = Id₂. An input of module-LIP is a basis **C** of a module-lattice $\mathcal{L} \simeq \mathcal{H}$.

Example: With the module-lattice $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ as in Hawk and **B** = Id₂. An input of module-LIP is a basis **C** of a module-lattice $\mathcal{L} \simeq \mathcal{H}$.

Remark: The security of Hawk is related to the hardness of module-LIP on \mathcal{H} . \longrightarrow In the following, we focus on the module-lattice \mathcal{H} .

• *K* power-of-two cyclo, **B** = Id₂ basis of $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ and **C** = Θ BU.

- *K* power-of-two cyclo, **B** = Id₂ basis of $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ and **C** = Θ BU.
- Bases **B** and **C** are public, Θ orthogonal and $U \in GL_2(\mathbb{Z}_K)$ are secret.

- *K* power-of-two cyclo, **B** = Id₂ basis of $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ and **C** = Θ BU.
- Bases **B** and **C** are public, Θ orthogonal and $U \in GL_2(\mathbb{Z}_K)$ are secret.

Idea: Get information on U from the Gram matrix H = C*C.

- *K* power-of-two cyclo, **B** = Id₂ basis of $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ and **C** = Θ BU.
- Bases **B** and **C** are public, Θ orthogonal and $U \in GL_2(\mathbb{Z}_K)$ are secret.

Idea: Get information on **U** from the Gram matrix **H** = **C*****C**. One has:

$$\mathsf{H} = \mathsf{U}^* \underbrace{(\Theta^* \Theta)}_{=\mathrm{Id}} \mathsf{U} = \mathsf{U}^* \mathsf{U} = \begin{pmatrix} \overline{x} & \overline{y} \\ \overline{z} & \overline{t} \end{pmatrix} \begin{pmatrix} x & z \\ y & t \end{pmatrix} = \begin{pmatrix} x\overline{x} + y\overline{y} & \overline{x}z + \overline{y}t \\ x\overline{z} + y\overline{t} & z\overline{z} + t\overline{t} \end{pmatrix}.$$

- *K* power-of-two cyclo, **B** = Id₂ basis of $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ and **C** = Θ BU.
- Bases **B** and **C** are public, Θ orthogonal and $U \in GL_2(\mathbb{Z}_K)$ are secret.

Idea: Get information on **U** from the Gram matrix **H** = **C*****C**. One has:

$$\mathsf{H} = \mathsf{U}^* \underbrace{(\Theta^* \Theta)}_{=\mathrm{Id}} \mathsf{U} = \mathsf{U}^* \mathsf{U} = \begin{pmatrix} \overline{x} & \overline{y} \\ \overline{z} & \overline{t} \end{pmatrix} \begin{pmatrix} x & z \\ y & t \end{pmatrix} = \begin{pmatrix} x\overline{x} + y\overline{y} & \overline{x}z + \overline{y}t \\ x\overline{z} + y\overline{t} & z\overline{z} + t\overline{t} \end{pmatrix}.$$

Diagonal coefficients of **H** are invariant under complex conjugation. They belong to the **totally real subfield** *F* of *K* (think of $K = \mathbb{Q}(i)$ with $i^2 = -1$, then $F = \mathbb{Q}$).

- *K* power-of-two cyclo, **B** = Id₂ basis of $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ and **C** = Θ BU.
- Bases **B** and **C** are public, Θ orthogonal and $U \in GL_2(\mathbb{Z}_K)$ are secret.

Idea: Get information on **U** from the Gram matrix **H** = **C*****C**. One has:

$$\mathsf{H} = \mathsf{U}^* \underbrace{(\Theta^* \Theta)}_{=\mathrm{Id}} \mathsf{U} = \mathsf{U}^* \mathsf{U} = \begin{pmatrix} \overline{x} & \overline{y} \\ \overline{z} & \overline{t} \end{pmatrix} \begin{pmatrix} x & z \\ y & t \end{pmatrix} = \begin{pmatrix} x\overline{x} + y\overline{y} & \overline{x}z + \overline{y}t \\ x\overline{z} + y\overline{t} & z\overline{z} + t\overline{t} \end{pmatrix}.$$

Diagonal coefficients of **H** are invariant under complex conjugation. They belong to the **totally real subfield** *F* of *K* (think of $K = \mathbb{Q}(i)$ with $i^2 = -1$, then $F = \mathbb{Q}$).

Fact: $K = F + F \cdot i$ and $\mathbb{Z}_K = \mathbb{Z}_F + \mathbb{Z}_F \cdot i$, where $i^2 = -1$.

- K power-of-two cyclo, **B** = Id₂ basis of $\mathcal{H} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mathbb{Z}_{K} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mathbb{Z}_{K}$ and **C** = Θ BU.
- Bases **B** and **C** are public, Θ orthogonal and $U \in GL_2(\mathbb{Z}_K)$ are secret.

Idea: Get information on **U** from the Gram matrix **H** = **C*****C**. One has:

$$\mathsf{H} = \mathsf{U}^* \underbrace{(\Theta^* \Theta)}_{=\mathrm{Id}} \mathsf{U} = \mathsf{U}^* \mathsf{U} = \begin{pmatrix} \overline{x} & \overline{y} \\ \overline{z} & \overline{t} \end{pmatrix} \begin{pmatrix} x & z \\ y & t \end{pmatrix} = \begin{pmatrix} x\overline{x} + y\overline{y} & \overline{x}z + \overline{y}t \\ x\overline{z} + y\overline{t} & z\overline{z} + t\overline{t} \end{pmatrix}.$$

Diagonal coefficients of **H** are invariant under complex conjugation. They belong to the **totally real subfield** *F* of *K* (think of $K = \mathbb{Q}(i)$ with $i^2 = -1$, then $F = \mathbb{Q}$).

Fact: $K = F + F \cdot i$ and $\mathbb{Z}_K = \mathbb{Z}_F + \mathbb{Z}_F \cdot i$, where $i^2 = -1$. Put $x = \mathbf{x}_1 + \mathbf{i}\mathbf{x}_2$, $y = \mathbf{y}_1 + \mathbf{i}\mathbf{y}_2$, first coefficient of **H** is a **sum of four squares** in \mathbb{Z}_F : $x\overline{x} + v\overline{y} = \mathbf{x}_1^2 + \mathbf{x}_2^2 + \mathbf{y}_1^2 + \mathbf{y}_2^2$.

Introduce the quaternion algebra

$$\mathcal{A} = F + F \cdot i + F \cdot j + F \cdot ij,$$

with basis $\{1, i, j, ij\}$ and rules $i^2 = j^2 = -1$, ji = -ij.

Introduce the quaternion algebra

$$\mathcal{A} = F + F \cdot i + F \cdot j + F \cdot ij,$$

with basis $\{1, i, j, ij\}$ and rules $i^2 = j^2 = -1$, ji = -ij.

- Non-commutative *F*-algebra containing $K = F + F \cdot i$.
- Has complex conjugation $\alpha \mapsto \overline{\alpha}$ extending the one on K.
- The reduced norm of $\alpha = x + yi + zj + tij$ is $nrd(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + z^2 + t^2$.

Introduce the quaternion algebra

 $\mathcal{A} = F + F \cdot i + F \cdot j + F \cdot ij,$

with basis $\{1, i, j, ij\}$ and rules $i^2 = j^2 = -1$, ji = -ij.

- Non-commutative *F*-algebra containing $K = F + F \cdot i$.
- Has complex conjugation $\alpha \mapsto \overline{\alpha}$ extending the one on *K*.
- The reduced norm of $\alpha = x + yi + zj + tij$ is $nrd(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + z^2 + t^2$.

See the column $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{Z}_{K}^{2}$ of the secret matrix **U** as a quaternion $\alpha = x + y \cdot j \in \mathcal{A}$. Its reduced norm is $\operatorname{nrd}(\alpha) = x_{1}^{2} + x_{2}^{2} + y_{1}^{2} + y_{2}^{2}$, the first coefficient of **H**. Introduce the quaternion algebra

 $\mathcal{A} = F + F \cdot i + F \cdot j + F \cdot ij,$

with basis $\{1, i, j, ij\}$ and rules $i^2 = j^2 = -1$, ji = -ij.

- Non-commutative *F*-algebra containing $K = F + F \cdot i$.
- Has complex conjugation $\alpha \mapsto \overline{\alpha}$ extending the one on *K*.
- The reduced norm of $\alpha = x + yi + zj + tij$ is $nrd(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + z^2 + t^2$.

See the column $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{Z}_{K}^{2}$ of the secret matrix **U** as a quaternion $\alpha = x + y \cdot j \in \mathcal{A}$. Its reduced norm is $\operatorname{nrd}(\alpha) = x_{1}^{2} + x_{2}^{2} + y_{1}^{2} + y_{2}^{2}$, the first coefficient of **H**.

 \longrightarrow Compute **all** solutions $\alpha \in \mathbb{Z}_{K} + \mathbb{Z}_{K} \cdot j$ to $\operatorname{nrd}(\alpha) = q$ to recover **U**.

Remark: In a previous work [4], for rank-2 module-LIP over a totally real field (when $\mathcal{L}, \mathcal{L}' \subset F^2$), we solved $\operatorname{nrd}(\alpha) = q$ with $\alpha \in \mathbb{Z}_K = \mathbb{Z}_F + \mathbb{Z}_F \cdot i$.

Remark: In a previous work [4], for rank-2 module-LIP over a totally real field (when $\mathcal{L}, \mathcal{L}' \subset F^2$), we solved $\operatorname{nrd}(\alpha) = q$ with $\alpha \in \mathbb{Z}_K = \mathbb{Z}_F + \mathbb{Z}_F \cdot i$.

Issue: Equations $\operatorname{nrd}(\alpha) = q$ have too many solutions in $\mathbb{Z}_{K} + \mathbb{Z}_{K} \cdot j$ to enumerate them all + we don't know how to compute them...

Remark: In a previous work [4], for rank-2 module-LIP over a totally real field (when $\mathcal{L}, \mathcal{L}' \subset F^2$), we solved $\operatorname{nrd}(\alpha) = q$ with $\alpha \in \mathbb{Z}_K = \mathbb{Z}_F + \mathbb{Z}_F \cdot i$.

Issue: Equations $\operatorname{nrd}(\alpha) = q$ have too many solutions in $\mathbb{Z}_{K} + \mathbb{Z}_{K} \cdot j$ to enumerate them all + we don't know how to compute them...

 \longrightarrow Use extra information on H to reduce the solution space.

Denote
$$\mathbf{H} = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 and $\mathbf{U} = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$. Set $\alpha = x + y \cdot j$ and $\beta = z + t \cdot j \in \mathcal{A}$.

Denote
$$\mathbf{H} = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 and $\mathbf{U} = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$. Set $\alpha = x + y \cdot j$ and $\beta = z + t \cdot j \in \mathcal{A}$.
We prove: $\mathbf{U}^*\mathbf{U} = \mathbf{H} \iff \begin{cases} \operatorname{nrd}(\alpha) = q_1 \\ \alpha\beta^{-1} = q_3^{-1}(\overline{q_2} - j) \end{cases}$

Denote
$$\mathbf{H} = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 and $\mathbf{U} = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$. Set $\alpha = x + y \cdot j$ and $\beta = z + t \cdot j \in \mathcal{A}$.
We prove: $\mathbf{U}^*\mathbf{U} = \mathbf{H} \iff \begin{cases} \operatorname{nrd}(\alpha) = q_1 \\ \alpha\beta^{-1} = q_3^{-1}(\overline{q_2} - j) \end{cases}$

- Proof is direct computation.
- From **H** (public), can compute $\alpha\beta^{-1}$ (α and β fully determine a solution).
- Only need to compute $\alpha \in \mathbb{Z}_{K} + \mathbb{Z}_{K} \cdot j$.

Denote
$$\mathbf{H} = \begin{pmatrix} q_1 & q_2 \\ \overline{q_2} & q_3 \end{pmatrix}$$
 and $\mathbf{U} = \begin{pmatrix} x & z \\ y & t \end{pmatrix}$. Set $\alpha = x + y \cdot j$ and $\beta = z + t \cdot j \in \mathcal{A}$.
We prove: $\mathbf{U}^*\mathbf{U} = \mathbf{H} \iff \begin{cases} \operatorname{nrd}(\alpha) = q_1 \\ \alpha\beta^{-1} = q_3^{-1}(\overline{q_2} - j) \end{cases}$

- Proof is direct computation.
- From **H** (public), can compute $\alpha\beta^{-1}$ (α and β fully determine a solution).
- Only need to compute $\alpha \in \mathbb{Z}_{K} + \mathbb{Z}_{K} \cdot j$.

Question: Can we retrieve α from $\alpha\beta^{-1}$?

Example: Let $a, b \in \mathbb{Z}$, $b \neq 0$. Suppose gcd(a, b) = 1. Can we get a from $\frac{a}{b}$?

¹Precisely, take a **maximal order** containing it.

$$\mathcal{I}=\frac{a}{b}\mathbb{Z}\cap\mathbb{Z}=a\mathbb{Z},$$

and then take a generator \rightarrow get *a* up to sign.

¹Precisely, take a **maximal order** containing it.

$$\mathcal{I}=\frac{a}{b}\mathbb{Z}\cap\mathbb{Z}=a\mathbb{Z},$$

and then take a generator \rightarrow get *a* up to sign.

The same works with quaternions! Put $\mathcal{O} = \mathbb{Z}_K + \mathbb{Z}_K \cdot j_i$

¹Precisely, take a **maximal order** containing it.

$$\mathcal{I}=\frac{a}{b}\mathbb{Z}\cap\mathbb{Z}=a\mathbb{Z},$$

and then take a generator \rightarrow get *a* up to sign.

The same works with quaternions! Put $\mathcal{O} = \mathbb{Z}_{K} + \mathbb{Z}_{K} \cdot j$,¹ then one can build the ideal of \mathcal{O} :

 $\mathcal{I} = \alpha \beta^{-1} \mathcal{O} \cap \mathcal{O} = \alpha \mathcal{O}.$

¹Precisely, take a **maximal order** containing it.

$$\mathcal{I}=\frac{a}{b}\mathbb{Z}\cap\mathbb{Z}=a\mathbb{Z},$$

and then take a generator \rightarrow get *a* up to sign.

The same works with quaternions! Put $\mathcal{O} = \mathbb{Z}_{K} + \mathbb{Z}_{K} \cdot j$,¹ then one can build the ideal of \mathcal{O} :

$$\mathcal{I} = \alpha \beta^{-1} \mathcal{O} \cap \mathcal{O} = \alpha \mathcal{O}.$$

The "gcd" of α and β is 1, morally because $\alpha \leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix}$ and $\beta \leftrightarrow \begin{pmatrix} z \\ t \end{pmatrix}$ generate \mathbb{Z}^2_K .

¹Precisely, take a **maximal order** containing it.

• Columns of the secret matrix $U \leftrightarrow$ secret quaternions $\alpha, \beta \in \mathcal{A}$.

- Columns of the secret matrix $U \leftrightarrow$ secret quaternions $\alpha, \beta \in \mathcal{A}$.
- From the public Gram matrix **H**, compute $\alpha\beta^{-1}$.

- Columns of the secret matrix $U \leftrightarrow$ secret quaternions $\alpha, \beta \in \mathcal{A}$.
- From the public Gram matrix **H**, compute $\alpha\beta^{-1}$.
- Use $\alpha\beta^{-1}$ to build the **principal ideal** $\mathcal{I} = \alpha \mathcal{O}$.

- Columns of the secret matrix $U \leftrightarrow$ secret quaternions $\alpha, \beta \in \mathcal{A}$.
- From the public Gram matrix **H**, compute $\alpha\beta^{-1}$.
- Use $\alpha\beta^{-1}$ to build the **principal ideal** $\mathcal{I} = \alpha \mathcal{O}$.

We have reduced to the reduced norm Principal Ideal Problem (nrdPIP): Input: A (right) \mathcal{O} -ideal \mathcal{I} of \mathcal{A} and $q \in F$. Goal: A (left) generator α of \mathcal{I} with nrd(α) = q, if it exists.

- Columns of the secret matrix $U \leftrightarrow$ secret quaternions $\alpha, \beta \in \mathcal{A}$.
- From the public Gram matrix **H**, compute $\alpha\beta^{-1}$.
- Use $\alpha\beta^{-1}$ to build the **principal ideal** $\mathcal{I} = \alpha \mathcal{O}$.

We have reduced to the reduced norm Principal Ideal Problem (nrdPIP): Input: A (right) \mathcal{O} -ideal \mathcal{I} of \mathcal{A} and $q \in F$. Goal: A (left) generator α of \mathcal{I} with nrd(α) = q, if it exists.

- $\longrightarrow \text{We obtain a polynomial-time reduction from module-LIP on \mathcal{H} to nrdPIP in \mathcal{O}.}$
- \longrightarrow Can be adapted to any rank-2 module $\mathcal{M} \subset \mathcal{K}^2$.

About nrdPIP:

• State-of-the-art: compute a shortest vector in \mathcal{I} (rank-2dim_Q(K) lattice) [3].

About nrdPIP:

- State-of-the-art: compute a shortest vector in \mathcal{I} (rank-2dim_Q(K) lattice) [3].
- When \mathcal{I} is an ideal of K (commutative) and $q \in F$, \exists poly-time algorithm (Gentry & Szydlo) to compute $g \in K$ such that $\mathcal{I} = g\mathbb{Z}_K$ and $g\overline{g} = q$ (if it exists).

About nrdPIP:

- State-of-the-art: compute a shortest vector in \mathcal{I} (rank-2dim_Q(\mathcal{K}) lattice) [3].
- When \mathcal{I} is an ideal of K (commutative) and $q \in F$, \exists poly-time algorithm (Gentry & Szydlo) to compute $g \in K$ such that $\mathcal{I} = g\mathbb{Z}_K$ and $g\overline{g} = q$ (if it exists).
- Open question: is there a "Gentry & Szydlo algorithm" for quaternions?

About nrdPIP:

- State-of-the-art: compute a shortest vector in \mathcal{I} (rank-2dim_Q(K) lattice) [3].
- When \mathcal{I} is an ideal of K (commutative) and $q \in F$, \exists poly-time algorithm (Gentry & Szydlo) to compute $g \in K$ such that $\mathcal{I} = g\mathbb{Z}_K$ and $g\overline{g} = q$ (if it exists).
- Open question: is there a "Gentry & Szydlo algorithm" for quaternions?

Conclusion:

- New angle of attack on module-LIP and Hawk.
- Connection between a lattice problem and the world of quaternions.
- A lot to do on nrdPIP. Any improvements would impact Hawk.

About nrdPIP:

- State-of-the-art: compute a shortest vector in \mathcal{I} (rank-2dim_Q(\mathcal{K}) lattice) [3].
- When \mathcal{I} is an ideal of K (commutative) and $q \in F$, \exists poly-time algorithm (Gentry & Szydlo) to compute $g \in K$ such that $\mathcal{I} = g\mathbb{Z}_K$ and $g\overline{g} = q$ (if it exists).
- Open question: is there a "Gentry & Szydlo algorithm" for quaternions?

Conclusion:

- New angle of attack on module-LIP and Hawk.
- Connection between a lattice problem and the world of quaternions.
- A lot to do on nrdPIP. Any improvements would impact Hawk.

Thanks a lot! Any questions?

References i

C. Chevignard, P.-A. Fouque, G. Mureau, A. Pellet-Mary, and A. Wallet.
 A reduction from hawk to the principal ideal problem in a quaternion algebra.

Cryptology ePrint Archive, 2024.

- L. Ducas, E. W. Postlethwaite, L. N. Pulles, and W. v. Woerden.
 Hawk: Module lip makes lattice signatures fast, compact and simple.
 In International Conference on the Theory and Application of Cryptology and Information Security, pages 65–94. Springer, 2022.
- M. Kirschmer and J. Voight.

Algorithmic enumeration of ideal classes for quaternion orders. SIAM Journal on Computing, 39(5), 1714-1747, 2010.

G. Mureau, A. Pellet-Mary, G. Pliatsok, and A. Wallet. Cryptanalysis of rank-2 module-lip in totally real number fields. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 226–255. Springer, 2024.