Constructing Quantum Implementations with the Minimal *T*-depth or Minimal Width and Their Applications

Zhenyu Huang, Fuxin Zhang, Dongdai Lin

Institute of Information Engeering, Chinease Academy of Sciences University of Chinese Academy of Sciences

Eurocrypt 2025

Outline

2 Implementing Nonlinear Functions with the Minimal *T*-depth

3 Implementing the Multiplicative Inversion in \mathbb{F}_{2^n}

4 Implementing Nonlinear Functions with the Minimal Width

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Outline

2 Implementing Nonlinear Functions with the Minimal *T*-depth

- 3 Implementing the Multiplicative Inversion in \mathbb{F}_{2^n}
- 4 Implementing Nonlinear Functions with the Minimal Width

・ロト・西ト・山田・山田・山下

Motivation

- Quantum Cryptanlysis for Symmetric Ciphers
 - Grover's algorithm: the attacker needs to construct a Grover oracle to search the key.
 - Simon's algorithm (Kuwakado and Mori, ISIT 2010; Kaplan et al. Crypto 2016): The attacker needs to access an online quantum encryption oracle.
 - Offline Simon's algorithm (Bonnetain et al. Asiacrypt 2019): the attacker needs to construct different quantum encryption oracles for different keys.
 - The quantum circuit that implements the cipher is a primary component of the Grover oracle or the quantum encryption oracle.
 - NIST's call for proposals for PQC
 - The complexity of quantum key search circuit for AES is used as a baseline to categorize the post-quantum public-key schemes.

Motivation

- Quantum Cryptanlysis for Symmetric Ciphers
 - Grover's algorithm: the attacker needs to construct a Grover oracle to search the key.
 - Simon's algorithm (Kuwakado and Mori, ISIT 2010; Kaplan et al. Crypto 2016): The attacker needs to access an online quantum encryption oracle.
 - Offline Simon's algorithm (Bonnetain et al. Asiacrypt 2019): the attacker needs to construct different quantum encryption oracles for different keys.
 - The quantum circuit that implements the cipher is a primary component of the Grover oracle or the quantum encryption oracle.
- NIST's call for proposals for PQC
 - The complexity of quantum key search circuit for AES is used as a baseline to categorize the post-quantum public-key schemes.

Circuit Complexity

Cost Metrics:

- Width (the number of qubits); Gate count, especially the *T*-count;
- Depth: The number of layers of the circuit (gates acting on disjoint sets of qubits can be applied in parallel)
- *T*-depth: the number of layers for *T* gates, which dominates the running time of a circuit in fault-tolerant quantum computation (Surface code).

Previous Works (PQCrypto 2016, Asiacrypt 2020, Eurocrypt 2020, Aisacrypt 2022, Asiacrypt 2023, Asiacrypt 2024, etc):

- AES Width: $2953 \rightarrow 512 \rightarrow 374$, *T*-depth: $120 \rightarrow 80 \rightarrow 60$
- Heuristic improvements that are only applicable for AES.

Both *T*-depth and Width have theoretical minimums.

Generic methods for constructing circuits that achieve these minimums?

Circuit Complexity

Cost Metrics:

- Width (the number of qubits); Gate count, especially the *T*-count;
- Depth: The number of layers of the circuit (gates acting on disjoint sets of qubits can be applied in parallel)
- *T*-depth: the number of layers for *T* gates, which dominates the running time of a circuit in fault-tolerant quantum computation (Surface code).

Previous Works (PQCrypto 2016, Asiacrypt 2020, Eurocrypt 2020, Aisacrypt 2022, Asiacrypt 2023, Asiacrypt 2024, etc):

- \blacksquare AES Width: 2953 \rightarrow 512 \rightarrow 374, T-depth: 120 \rightarrow 80 \rightarrow 60
- Heuristic improvements that are only applicable for AES.

Both *T*-depth and Width have theoretical minimums.

Generic methods for constructing circuits that achieve these minimums?

Circuit Complexity

Cost Metrics:

- Width (the number of qubits); Gate count, especially the *T*-count;
- Depth: The number of layers of the circuit (gates acting on disjoint sets of qubits can be applied in parallel)
- *T*-depth: the number of layers for *T* gates, which dominates the running time of a circuit in fault-tolerant quantum computation (Surface code).

Previous Works (PQCrypto 2016, Asiacrypt 2020, Eurocrypt 2020, Aisacrypt 2022, Asiacrypt 2023, Asiacrypt 2024, etc):

- \blacksquare AES Width: 2953 \rightarrow 512 \rightarrow 374, T-depth: 120 \rightarrow 80 \rightarrow 60
- Heuristic improvements that are only applicable for AES.

Both *T*-depth and Width have theoretical minimums.

Generic methods for constructing circuits that achieve these minimums?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Convert Classical Circuits to Quantum Circuits

Boolean Function Implementation Problem

Given a vectorial Boolean function F(x), construct a quantum circuit that maps

- $|x,0\rangle \rightarrow |F(x),0\rangle$: An **in-place** implementation of an invertible *F*.
- |x, y⟩ → |x, y ⊕ F(x)⟩ for any y (sometimes only for y = 0): An out-of-place implementation of F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Convert Classical Circuits to Quantum Circuits

Boolean Function Implementation Problem

Given a vectorial Boolean function F(x), construct a quantum circuit that maps

- $|x,0\rangle \rightarrow |F(x),0\rangle$: An **in-place** implementation of an invertible *F*.
- |x, y⟩ → |x, y ⊕ F(x)⟩ for any y (sometimes only for y = 0): An out-of-place implementation of F.

From classical circuits to quantum circuits:

• Classicial gates: NOT, XOR, AND \Rightarrow NCT gate set: NOT(Pauli-X), CNOT, Toffoli

Clifford+T Implementations for the Toffoli gate

No ancilla qubit:

■ *T*-depth-1:

Design NCT circuits that achieve the minimal Toffoli-depth or minimal width

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - のへで

Clifford+T Implementations for the Toffoli gate

No ancilla qubit:

■ *T*-depth-1:

Design NCT circuits that achieve the minimal Toffoli-depth or minimal width

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Outline

2 Implementing Nonlinear Functions with the Minimal *T*-depth

3 Implementing the Multiplicative Inversion in \mathbb{F}_{2^n}

4 Implementing Nonlinear Functions with the Minimal Width

うせん 前 (中国) (日) (日) (日)

Convert Classical Circuits to NCT Circuits

- Problems of the trivial conversion (XOR→CNOT, AND→Toffoli):
 - Need lots of ancilla qubits.
 - ▶ The depth may change, especially **Toffoli-depth** ≠ **AND-depth** in sometimes.

Figure: Quantum implementations of a classical circuit with AND-depth 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Quantum Circuit with the Minimal Toffoli-depth

Theorem (Asiacrypt 2022, Huang & Sun)

Given a classical circuit with **AND-depth s**, the Toffoli-depth of the quantum circuit implementing all the nodes of the classical circuit **is not smaller than s**. Moreover, **with sufficiently many ancillae**, we can construct a quantum circuit implementing all the nodes of the classical circuit with **Toffoli-depth s**.

1 Construct a classical circuit with the minimal AND-depth $(= \lceil \log_2(D) \rceil)$;

D is the algebraic degree of the vectorial Boolean function F (With an AND-layer, one can mostly double the degree).

- ► AES S-box (degree 7): the minimal AND-depth is 3.
- Convert it to a Toffoli-depth-[log₂(D)] NCT circuit.

Quantum Circuit with the Minimal Toffoli-depth

Theorem (Asiacrypt 2022, Huang & Sun)

Given a classical circuit with **AND-depth s**, the Toffoli-depth of the quantum circuit implementing all the nodes of the classical circuit **is not smaller than s**. Moreover, **with sufficiently many ancillae**, we can construct a quantum circuit implementing all the nodes of the classical circuit with **Toffoli-depth s**.

- **1** Construct a classical circuit with the minimal AND-depth (= $\lceil \log_2(D) \rceil$);
 - D is the algebraic degree of the vectorial Boolean function F (With an AND-layer, one can mostly double the degree).
 - ► AES S-box (degree 7): the minimal AND-depth is 3.

Convert it to a Toffoli-depth-[log₂(D)] NCT circuit.

Quantum Circuit with the Minimal Toffoli-depth

Theorem (Asiacrypt 2022, Huang & Sun)

Given a classical circuit with **AND-depth s**, the Toffoli-depth of the quantum circuit implementing all the nodes of the classical circuit **is not smaller than s**. Moreover, **with sufficiently many ancillae**, we can construct a quantum circuit implementing all the nodes of the classical circuit with **Toffoli-depth s**.

- **1** Construct a classical circuit with the minimal AND-depth (= $\lceil \log_2(D) \rceil$);
 - D is the algebraic degree of the vectorial Boolean function F (With an AND-layer, one can mostly double the degree).
 - ► AES S-box (degree 7): the minimal AND-depth is 3.
- **2** Convert it to a Toffoli-depth- $\lceil \log_2(D) \rceil$ NCT circuit.

Automatic Conversion with Low Quantum Resource Cost

Our idea: Reconstruct the CNOT sub-circuits that connect the Toffoli layers while maintaining the lowest width and a low gate-count.

Inputs and Outputs of the CNOT Sub-circuits

- CNOT gates generate linear expressions.
- A Toffoli layer generates some new Boolean variables.

Let $\{L_1, L_2, \ldots, L_t\}$ and $\{T_1, T_2, \ldots, T_m\}$ be two sequences of linear functions w.r.t Boolean variables x_1, x_2, \ldots, x_n . Suppose the rank of L_1, L_2, \ldots, L_t is n, and the rank of T_1, T_2, \ldots, T_m is k. If $|L_1, L_2, \ldots, L_t\rangle$ is the input of a *t*-qubit register, then to **output the state** $|T_1, T_2, \ldots, T_m\rangle$ using a CNOT circuit, m - k - (t - n) additional qubits are necessary and sufficient. Additionally, if m - k - (t - n) < 0, it means no additional qubits are required. Instead, t - n - m + k qubits can be returned to $|0\rangle$.

Table: Different NCT circuits originated from an AND-depth-4 classical circuit for the AES S-box. Toffoli-depth=2× AND-depth, since uncomputation is included.

Let $\{L_1, L_2, ..., L_t\}$ and $\{T_1, T_2, ..., T_m\}$ be two sequences of linear functions w.r.t Boolean variables $x_1, x_2, ..., x_n$. Suppose the rank of $L_1, L_2, ..., L_t$ is n, and the rank of $T_1, T_2, ..., T_m$ is k. If $|L_1, L_2, ..., L_t\rangle$ is the input of a *t*-qubit register, then to **output the state** $|T_1, T_2, ..., T_m\rangle$ using a CNOT circuit, m - k - (t - n) additional qubits are necessary and sufficient. Additionally, if m - k - (t - n) < 0, it means no additional qubits are required. Instead, t - n - m + k qubits can be returned to $|0\rangle$.

Table: Different NCT circuits originated from an AND-depth-4 classical circuit for the AES S-box. Toffoli-depth= $2 \times$ AND-depth, since uncomputation is included.

Туре	#NOT	#CNOT	#Toffoli	Toffoli-depth	Full Depth	Width	Source
\mathfrak{C}^*	4	312	68	8	78	90	Aisacrypt 2023
\mathfrak{C}^*	4	368	68	8	105	76	Aisacrypt 2023
$\mathfrak{C}^0/\mathfrak{C}^*$	4	227/240	60	8	60	66	This work

Construct Classical Implementations with the Minimal AND-depth

Trivial approach:

. . .

- ▶ 1st AND layer: generate monomials with **degree** 2 simultaneously: $x_1x_2, \ldots, x_{n-1}x_n$;
- 2rd AND layer: generate monomials with degree 3,4 simultaneously;
- ▶ k-th AND layer: generate monomials with degree from $2^{k-1} + 1$ to 2^k ;
- Construct F from these monomials by XOR gates.

 $\chi \text{ function of SHA3}: (f_1, f_2, f_3, f_4, f_5) = (x_1 + (x_2 + 1)x_3, x_2 + (x_3 + 1)x_4, x_3 + (x_4 + 1)x_5, x_4 + (x_5 + 1)x_1, x_5 + (x_1 + 1)x_2).$ Construct $x_2 \cdot x_3, x_3 \cdot x_4, x_4 \cdot x_5, x_5 \cdot x_1, x_1 \cdot x_2$ in **one AND layer**.

Construct Classical Implementations with the Minimal AND-depth

Trivial approach:

. . .

- ▶ 1st AND layer: generate monomials with **degree** 2 simultaneously: $x_1x_2, \ldots, x_{n-1}x_n$;
- 2rd AND layer: generate monomials with degree 3,4 simultaneously;
- ▶ k-th AND layer: generate monomials with degree from $2^{k-1} + 1$ to 2^k ;
- Construct F from these monomials by XOR gates.
- χ function of SHA3 : $(f_1, f_2, f_3, f_4, f_5) = (x_1 + (x_2 + 1)x_3, x_2 + (x_3 + 1)x_4, x_3 + (x_4 + 1)x_5, x_4 + (x_5 + 1)x_1, x_5 + (x_1 + 1)x_2)$. Construct $x_2 \cdot x_3, x_3 \cdot x_4, x_4 \cdot x_5, x_5 \cdot x_1, x_1 \cdot x_2$ in **one AND layer**.

- M_s: Polynomials in layer s. Boolean polynomials with degree in the range [2^{s-1} + 1, 2^s], whose minimal AND-depth is s.
- ▶ $f = f_d + f_{d-1} + \cdots + f_1$, where $f_i \in \mathbb{M}_i$. Generate $f_d \to f_{d-1} \to \cdots$

Compute the max-depth cover $\{C_1, C_2, \ldots, C_k\} \subset \mathbb{M}_d$ of f:

 $f=C_1+C_2+\cdots+C_k+R,$

where $C_i = D_{i,1} \cdot D_{i,2}$, and $D_{i,j}, R \in \mathbb{M}_{d-1}$.

Then recursively compute the covers of these $D_{i,j}$ and R_i .

Trivial cover (all monomials contained in f_d) is equivalent to the trivial approach.

- M_s: Polynomials in layer s. Boolean polynomials with degree in the range [2^{s-1} + 1, 2^s], whose minimal AND-depth is s.
- ▶ $f = f_d + f_{d-1} + \cdots + f_1$, where $f_i \in \mathbb{M}_i$. Generate $f_d \to f_{d-1} \to \cdots$
- Compute the max-depth cover $\{C_1, C_2, \ldots, C_k\} \subset \mathbb{M}_d$ of f:

 $f=C_1+C_2+\cdots+C_k+R,$

where $C_i = D_{i,1} \cdot D_{i,2}$, and $D_{i,j}, R \in \mathbb{M}_{d-1}$.

Then recursively compute the covers of these $D_{i,j}$ and R.

Trivial cover (all monomials contained in f_d) is equivalent to the trivial approach.

- M_s: Polynomials in layer s. Boolean polynomials with degree in the range [2^{s-1} + 1, 2^s], whose minimal AND-depth is s.
- ▶ $f = f_d + f_{d-1} + \cdots + f_1$, where $f_i \in \mathbb{M}_i$. Generate $f_d \to f_{d-1} \to \cdots$
- Compute the max-depth cover $\{C_1, C_2, \ldots, C_k\} \subset \mathbb{M}_d$ of f:

 $f=C_1+C_2+\cdots+C_k+R,$

where $C_i = D_{i,1} \cdot D_{i,2}$, and $D_{i,j}, R \in \mathbb{M}_{d-1}$.

Then recursively compute the covers of these $D_{i,i}$ and R.

Trivial cover (all monomials contained in f_d) is equivalent to the trivial approach.

- M_s: Polynomials in layer s. Boolean polynomials with degree in the range [2^{s-1} + 1, 2^s], whose minimal AND-depth is s.
- ▶ $f = f_d + f_{d-1} + \cdots + f_1$, where $f_i \in \mathbb{M}_i$. Generate $f_d \to f_{d-1} \to \cdots$
- Compute the max-depth cover $\{C_1, C_2, \ldots, C_k\} \subset \mathbb{M}_d$ of f:

 $f=C_1+C_2+\cdots+C_k+R,$

where $C_i = D_{i,1} \cdot D_{i,2}$, and $D_{i,j}$, $R \in \mathbb{M}_{d-1}$.

Then recursively compute the covers of these $D_{i,i}$ and R.

\triangleright Trivial cover (all monomials contained in f_d) is equivalent to the trivial approach.

Construct Nontrivial Covers

Example 1

Let

 $f = x_1 x_2 x_3 x_4 x_5 x_6 + x_1 x_2 x_3 x_4 x_5 + x_1 x_2 x_3 x_4 x_6 + x_1 x_3 x_4 x_5 x_6 + x_1 x_2 x_4 x_5 x_6 + x_1 x_2 x_3 x_5 x_6 + x_2 x_3 x_4 x_5 x_6.$

$$\mathcal{C} = \{(x_1x_2x_3 + x_2x_3 + x_1x_2 + x_1x_3) \cdot (x_4x_5x_6 + x_4x_5 + x_4x_6 + x_5x_6)\}$$

is a max-depth cover of f with size 1.

- Greedy approach: gradually enlarge the monomial sets S_1 , S_2 , such that the product $(\sum_{p_i \in S_1} p_i)(\sum_{q_i \in S_2} q_j)$ covers more monomials in F.
- SAT-based Method: encode the relation $f = \sum_{i=1}^{\kappa} D_i^1 \cdot D_i^2 + R$ to Boolean equations, then solve them by an off-the-shelf SAT-solver.

Construct Nontrivial Covers

Example 1

Let

 $f = x_1 x_2 x_3 x_4 x_5 x_6 + x_1 x_2 x_3 x_4 x_5 + x_1 x_2 x_3 x_4 x_6 + x_1 x_3 x_4 x_5 x_6 + x_1 x_2 x_4 x_5 x_6 + x_1 x_2 x_3 x_5 x_6 + x_2 x_3 x_4 x_5 x_6.$

$$\mathcal{C} = \{(x_1x_2x_3 + x_2x_3 + x_1x_2 + x_1x_3) \cdot (x_4x_5x_6 + x_4x_5 + x_4x_6 + x_5x_6)\}$$

is a max-depth cover of f with size 1.

• Greedy approach: gradually enlarge the monomial sets S_1 , S_2 , such that the product $(\sum_{p_i \in S_1} p_i)(\sum_{q_i \in S_2} q_j)$ covers more monomials in F.

■ SAT-based Method: encode the relation $f = \sum_{i=1}^{\kappa} D_i^1 \cdot D_i^2 + R$ to Boolean equations, then solve them by an off-the-shelf SAT-solver.

Construct Nontrivial Covers

Example 1

Let

 $f = x_1 x_2 x_3 x_4 x_5 x_6 + x_1 x_2 x_3 x_4 x_5 + x_1 x_2 x_3 x_4 x_6 + x_1 x_3 x_4 x_5 x_6 + x_1 x_2 x_4 x_5 x_6 + x_1 x_2 x_3 x_5 x_6 + x_2 x_3 x_4 x_5 x_6.$

$$\mathcal{C} = \{(x_1x_2x_3 + x_2x_3 + x_1x_2 + x_1x_3) \cdot (x_4x_5x_6 + x_4x_5 + x_4x_6 + x_5x_6)\}$$

is a max-depth cover of f with size 1.

- Greedy approach: gradually enlarge the monomial sets S_1 , S_2 , such that the product $(\sum_{p_i \in S_1} p_i)(\sum_{q_i \in S_2} q_j)$ covers more monomials in F.
- SAT-based Method: encode the relation $f = \sum_{i=1}^{k} D_i^1 \cdot D_i^2 + R$ to Boolean equations, then solve them by an off-the-shelf SAT-solver.

- AES S-box (degree 7): AND-depth 3, **AND-count 76**.
 - Asiacrypt 2022: AND-depth 3, AND-count 78, modified from an AND-depth-4 implementation with some heuristics.
- SKINNY S-box (degree 7): AND-depth 3, AND-count 10.
- Top-down approach only needs the ANF (algebraic normal form) of *F*.
- For Boolean functions with specific structure, can we find minimal-AND-depth implementations with lower AND-count?

- AES S-box (degree 7): AND-depth 3, **AND-count 76**.
 - Asiacrypt 2022: AND-depth 3, AND-count 78, modified from an AND-depth-4 implementation with some heuristics.
- SKINNY S-box (degree 7): AND-depth 3, AND-count 10.
- Top-down approach only needs the ANF (algebraic normal form) of F.
- For Boolean functions with specific structure, can we find minimal-AND-depth implementations with lower AND-count?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- AES S-box (degree 7): AND-depth 3, **AND-count 76**.
 - Asiacrypt 2022: AND-depth 3, AND-count 78, modified from an AND-depth-4 implementation with some heuristics.
- SKINNY S-box (degree 7): AND-depth 3, AND-count 10.
- Top-down approach only needs the ANF (algebraic normal form) of *F*.
- For Boolean functions with specific structure, can we find minimal-AND-depth implementations with lower AND-count?

Outline

2 Implementing Nonlinear Functions with the Minimal *T*-depth

3 Implementing the Multiplicative Inversion in \mathbb{F}_{2^n}

4 Implementing Nonlinear Functions with the Minimal Width

Minimal AND-depth for Implementing the Inversion

The problem

- $\alpha \in \mathbb{F}_{2^n}$: $x_1\beta_1 + x_2\beta_2 + \cdots + x_n\beta_n$, where $x_1, \ldots, x_n \in \mathbb{F}_2$.
- α^{-1} can be written as $f_1(x_1, x_2, \dots, x_n)\beta_1 + f_2(x_1, x_2, \dots, x_n)\beta_2 + \dots + f_n(x_1, x_2, \dots, x_n)\beta_n.$
- Goal: implementing $F = (f_1, f_2, \ldots, f_n)$.

It is easy to prove that deg(F) = n - 1.

Theorem

The minimal AND-depth for implementing the multiplicative inversion in \mathbb{F}_{2^n} is $\lceil \log_2(n-1) \rceil$.

Minimal AND-depth for Implementing the Inversion

The problem

- $\alpha \in \mathbb{F}_{2^n}$: $x_1\beta_1 + x_2\beta_2 + \cdots + x_n\beta_n$, where $x_1, \ldots, x_n \in \mathbb{F}_2$.
- α^{-1} can be written as $f_1(x_1, x_2, \dots, x_n)\beta_1 + f_2(x_1, x_2, \dots, x_n)\beta_2 + \dots + f_n(x_1, x_2, \dots, x_n)\beta_n.$
- Goal: implementing $F = (f_1, f_2, \ldots, f_n)$.
- It is easy to prove that deg(F) = n 1.

Theorem

The minimal AND-depth for implementing the multiplicative inversion in \mathbb{F}_{2^n} is $\lceil \log_2(n-1) \rceil$.

• $\alpha^{2^n-2} \cdot \alpha = \alpha^{2^n-1} = 1$, and if $\alpha = 0$, $\alpha^{2^n-2} = 0 \Rightarrow \alpha^{-1} = \alpha^{2^n-2}$.

• Compute
$$\alpha^{-1} = \alpha^{62} \in \mathbb{F}_{2^6}$$
:

 $1_2(1) \xrightarrow{\land 2} 10_2(2) \xrightarrow{\times} 11_2(3) \xrightarrow{\land 2} 110_2(6) \xrightarrow{\times} 111_2(7) \xrightarrow{\land 4} 11100_2(28) \xrightarrow{\times} 11111_2(31) \xrightarrow{\land 2} 111110_2(62)$

- Squaring can be implemented without AND gate, squaring will not change the Hamming weight.
- The change of the Hamming weight: 1
 ightarrow 2
 ightarrow 3
 ightarrow 5
- ▶ 3 additions correspond to 3 multiplications in \mathbb{F}_{2^6} .

Lemma

If $k = 2^r s$, for some positive number r and odd number s, then the multiplication of two elements in \mathbb{F}_{2^k} can be implemented by one AND layer and $\omega(k) = 3^r s^2$ AND gates.

AND-depth 3, AND-count 3 · 27.

- $\alpha^{2^n-2} \cdot \alpha = \alpha^{2^n-1} = 1$, and if $\alpha = 0$, $\alpha^{2^n-2} = 0 \Rightarrow \alpha^{-1} = \alpha^{2^n-2}$.
- Compute $\alpha^{-1} = \alpha^{62} \in \mathbb{F}_{2^6}$: $1_2(1) \xrightarrow{\wedge_2} 10_2(2) \xrightarrow{\times} 11_2(3) \xrightarrow{\wedge_2} 110_2(6) \xrightarrow{\times} 111_2(7) \xrightarrow{\wedge_4} 1110_2(28) \xrightarrow{\times} 11111_2(31) \xrightarrow{\wedge_2} 111110_2(62)$
 - Squaring can be implemented without AND gate, squaring will not change the Hamming weight.
 - \blacktriangleright The change of the Hamming weight: $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$
 - 3 additions correspond to 3 multiplications in F₂₆.

Lemma

If $k = 2^r s$, for some positive number r and odd number s, then the multiplication of two elements in \mathbb{F}_{2^k} can be implemented by **one AND layer and** $\omega(k) = 3^r s^2$ **AND gates**.

AND-depth 3, AND-count 3 · 27.

- $\alpha^{2^n-2} \cdot \alpha = \alpha^{2^n-1} = 1$, and if $\alpha = 0$, $\alpha^{2^n-2} = 0 \Rightarrow \alpha^{-1} = \alpha^{2^n-2}$.
- Compute $\alpha^{-1} = \alpha^{62} \in \mathbb{F}_{2^6}$: $1_2(1) \stackrel{\wedge_2}{\longrightarrow} 10_2(2) \stackrel{\times}{\longrightarrow} 11_2(3) \stackrel{\wedge_2}{\longrightarrow} 111_2(6) \stackrel{\times}{\longrightarrow} 111_2(7) \stackrel{\wedge_4}{\longrightarrow} 11110_2(28) \stackrel{\times}{\longrightarrow} 11111_2(31) \stackrel{\wedge_2}{\longrightarrow} 111110_2(62)$
 - Squaring can be implemented without AND gate, squaring will not change the Hamming weight.
 - \blacktriangleright The change of the Hamming weight: $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$
 - ▶ 3 additions correspond to 3 multiplications in \mathbb{F}_{2^6} .

Lemma

If $k = 2^r s$, for some positive number r and odd number s, then the multiplication of two elements in \mathbb{F}_{2^k} can be implemented by **one AND layer and** $\omega(k) = 3^r s^2$ **AND gates**.

AND-depth 3, AND-count 3 · 27.

- $\alpha^{2^n-2} \cdot \alpha = \alpha^{2^n-1} = 1$, and if $\alpha = 0$, $\alpha^{2^n-2} = 0 \Rightarrow \alpha^{-1} = \alpha^{2^n-2}$.
- Compute $\alpha^{-1} = \alpha^{62} \in \mathbb{F}_{2^6}$: $1_2(1) \stackrel{\wedge_2}{\longrightarrow} 10_2(2) \stackrel{\times}{\longrightarrow} 11_2(3) \stackrel{\wedge_2}{\longrightarrow} 111_2(6) \stackrel{\times}{\longrightarrow} 111_2(7) \stackrel{\wedge_4}{\longrightarrow} 11110_2(28) \stackrel{\times}{\longrightarrow} 11111_2(31) \stackrel{\wedge_2}{\longrightarrow} 111110_2(62)$
 - Squaring can be implemented without AND gate, squaring will not change the Hamming weight.
 - \blacktriangleright The change of the Hamming weight: $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$
 - ▶ 3 additions correspond to 3 multiplications in \mathbb{F}_{2^6} .

Lemma

If $k = 2^r s$, for some positive number r and odd number s, then the multiplication of two elements in \mathbb{F}_{2^k} can be implemented by **one AND layer and** $\omega(k) = 3^r s^2$ **AND gates**.

AND-depth 3, AND-count 3 · 27.

- $\alpha^{2^n-2} \cdot \alpha = \alpha^{2^n-1} = 1$, and if $\alpha = 0$, $\alpha^{2^n-2} = 0 \Rightarrow \alpha^{-1} = \alpha^{2^n-2}$.
- Compute $\alpha^{-1} = \alpha^{62} \in \mathbb{F}_{2^6}$: $1_2(1) \stackrel{\wedge_2}{\longrightarrow} 10_2(2) \stackrel{\times}{\longrightarrow} 11_2(3) \stackrel{\wedge_2}{\longrightarrow} 110_2(6) \stackrel{\times}{\longrightarrow} 111_2(7) \stackrel{\wedge_4}{\longrightarrow} 1110_2(28) \stackrel{\times}{\longrightarrow} 11111_2(31) \stackrel{\wedge_2}{\longrightarrow} 111110_2(62)$
 - Squaring can be implemented without AND gate, squaring will not change the Hamming weight.
 - \blacktriangleright The change of the Hamming weight: $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$
 - ▶ 3 additions correspond to 3 multiplications in \mathbb{F}_{2^6} .

Lemma

If $k = 2^r s$, for some positive number r and odd number s, then the multiplication of two elements in \mathbb{F}_{2^k} can be implemented by **one AND layer and** $\omega(k) = 3^r s^2$ **AND gates**.

AND-depth 3, AND-count 3 · 27.

Parallel Addition Chain

Shortest addition chain \neq Minimal-AND-depth implementation:

•
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 7 \Rightarrow 4$$
 AND layers

• $\alpha^{-1} \in \mathbb{F}_{2^8}$: the minimal AND-depth is 3.

Parallel Addition Chain

Shortest addition chain \neq Minimal-AND-depth implementation:

▶
$$1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 7 \Rightarrow 4$$
 AND layers

•
$$\alpha^{-1} \in \mathbb{F}_{2^8}$$
: the minimal AND-depth is 3.

Parallel Addition Chain:

$$A = \begin{bmatrix} 1 & 2 & 4 & 7 \\ 1 & 0 & 3 & 0 \end{bmatrix} \qquad \begin{array}{c} \mathcal{C}_1 : 1 \xrightarrow{+1} 2 \xrightarrow{+2} 4 \xrightarrow{+3} 7 \\ \mathcal{C}_2 : 1 \longrightarrow 1 \xrightarrow{+2} 3 \end{array}$$
$$\alpha \xrightarrow{\wedge 2} \alpha^{10_2} \xrightarrow{\times \alpha^1} \alpha^{11_2} \xrightarrow{\wedge 4} \alpha^{1100_2} \xrightarrow{\times \alpha^{11_2}} \alpha^{111_2} \xrightarrow{\wedge 16} \alpha^{1110000_2} \xrightarrow{\times \alpha^{1102}} \alpha^{1111110_2}$$
$$\alpha^{10_2} \longrightarrow \alpha^{10_2} \longrightarrow \alpha^{10_2} \xrightarrow{\times \alpha^{1100_2}} \alpha^{1110_2}$$

. .

. .

. .

For any *n*, there is a parallel addition chain for *n* with the minimal depth $\lceil \log_2(n) \rceil$ and involving $HW(n) + \lfloor \log_2(n) \rfloor - 1$ additions.

「heorem

There is a classical circuit implementing the inversion in \mathbb{F}_{2^n} with AND-depth $\lceil \log_2(n-1) \rceil$ and AND-count $\omega(n)(\mathrm{HW}(n-1) + \lfloor \log_2(n-1) \rfloor - 1)$.

RAIN-128 (an MPC-friendly block cipher, CCS 2022) S-box, the inversion in $\mathbb{F}_{2^{128}}$:

AND-depth 7 and AND-count 24057.

For any *n*, there is a parallel addition chain for *n* with the minimal depth $\lceil \log_2(n) \rceil$ and involving $HW(n) + \lfloor \log_2(n) \rfloor - 1$ additions.

Theorem

There is a classical circuit implementing the inversion in \mathbb{F}_{2^n} with AND-depth $\lceil \log_2(n-1) \rceil$ and AND-count $\omega(n)(\mathrm{HW}(n-1) + \lfloor \log_2(n-1) \rfloor - 1)$.

a RAIN-128 (an MPC-friendly block cipher, CCS 2022) S-box, the inversion in $\mathbb{F}_{2^{128}}$:

AND-depth 7 and AND-count 24057.

For any *n*, there is a parallel addition chain for *n* with the minimal depth $\lceil \log_2(n) \rceil$ and involving $HW(n) + \lfloor \log_2(n) \rfloor - 1$ additions.

Theorem

There is a classical circuit implementing the inversion in \mathbb{F}_{2^n} with AND-depth $\lceil \log_2(n-1) \rceil$ and AND-count $\omega(n)(\mathrm{HW}(n-1) + \lfloor \log_2(n-1) \rfloor - 1)$.

RAIN-128 (an MPC-friendly block cipher, CCS 2022) S-box, the inversion in $\mathbb{F}_{2^{128}}$:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

AND-depth 7 and AND-count 24057.

Implementing the Inversion in $\mathbb{F}_{2^{2m}}$

• Tower field structure: $\alpha = a_0 \beta^{2^m} + a_1 \beta$,

 $\alpha^{2^{m}} = a_{1}\beta^{2^{m}} + a_{0}\beta, \quad b = \alpha \cdot \alpha^{2^{m}} = a_{0}a_{1}\beta^{2^{m+1}} + (a_{0}^{2} + a_{1}^{2})\beta^{2^{m}+1} + a_{0}a_{1}\beta^{2^{m}}$

and $\alpha^{-1} = b^{-1}a_1\beta^{2^m} + b^{-1}a_0\beta$.

• Three Steps: (1) compute $b \in \mathbb{F}_{2^m}$; (2) b^{-1} ; (3) $b^{-1}a_1, b^{-1}a_0$;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Implementing the Inversion in $\mathbb{F}_{2^{2m}}$

• Tower field structure: $\alpha = a_0 \beta^{2^m} + a_1 \beta$,

 $\alpha^{2^{m}} = a_{1}\beta^{2^{m}} + a_{0}\beta, \quad b = \alpha \cdot \alpha^{2^{m}} = a_{0}a_{1}\beta^{2^{m+1}} + (a_{0}^{2} + a_{1}^{2})\beta^{2^{m}+1} + a_{0}a_{1}\beta^{2^{m}}$

and $\alpha^{-1} = b^{-1}a_1\beta^{2^m} + b^{-1}a_0\beta$.

• Three Steps: (1) compute $b \in \mathbb{F}_{2^m}$; (2) b^{-1} ; (3) $b^{-1}a_1, b^{-1}a_0$;

• Merge Step (2) (compute a parallel addition chain of m-1) and (3):

$$A_{1} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \end{bmatrix} \Rightarrow A_{2} = \begin{bmatrix} 1 & 2 & 3 \boxplus a_{1} \\ 1 & 1 \boxplus a_{0} & 3 \boxplus a_{0} \\ 1 & 1 \boxplus a_{1} & 0 \end{bmatrix}$$

Theorem

Let $m-1 = \sum_{i=1}^{s} 2^{k_i}$ with $0 \le k_1 < k_2 < \cdots < k_s$ and $s \ge 2$. If $k_s > \lceil \log_2(\sum_{i=1}^{s-1} 2^{k_i}) \rceil$, then $\alpha^{-1} \in \mathbb{F}_{2^{2m}}$ can be implemented by a classical circuit with the minimal AND-depth $\lceil \log_2(2m-1) \rceil$ and AND-count $\omega(m)(HW(m-1) + \lfloor \log_2(m-1) \rfloor + 3)$.

$$A = \begin{bmatrix} 1 & 2 & \cdots & 2^{k_1} & 2^{k_1+1} & \cdots & 2^{k_2} & 2^{k_2+1} & \cdots & 2^{k_{s-1}} & 2^{k_{s-1}+1} & \cdots & \mathbf{2^{k_s}} & 0 \\ \\ 0 & 0 & \cdots & 2^{k_1} & 0 & \cdots & 0 & \sum_{i=1}^2 2^{k_i} & \cdots & 0 & \sum_{i=1}^{s-1} \mathbf{2^{k_i}} & \cdots & 0 & m-1 \end{bmatrix}$$

AES S-box: AND-depth 3 , AND-count 42 (Asiacrypt 2022, AND-count 78).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Convert to Clifford+*T* circuit with our new conversion algorithm.

Table: Clifford+T circuits (including uncomputation) for the AES S-box with T-depth 3.

Туре	#CNOT	#1qClifford	# T	#M	<i>T</i> -depth	Full Depth	Width	Source
$\mathfrak{C}^0/\mathfrak{C}^*$	1396/1398	494	312	78	3	119	218/226	Asiacrypt 2022
\mathfrak{C}^*	1110	448	264	66	3	92	129	IEEE TC 2024
$\mathfrak{C}^0/\mathfrak{C}^*$	827/856	266/298	168	34/42	3	85/87	89/97	This work

New Results for Implementing Quantum Oracles for AES

#CNOT	#1qClifford	# T	#M	<i>T</i> -depth	Full Depth	Width	Source
456040	179200	105600	26400	60	1802	3796	IEEE TC 2024
353160	119200	67200	16800	60	1782	3156	This work

Table: The Costs of Grover Oracles based on the Pipeline Structure.

Table: The Costs of Encryption Oracles based on the Interlacing-Uncompute Structure.

#CNOT	#1qClifford	# T	#M	<i>T</i> -depth	Full Depth	Width	Source
364360	144584	84480	21120	33	1078	4128	IEEE TC 2024
281896	96584	53760	13440	33	1066	3104	This work

Outline

2 Implementing Nonlinear Functions with the Minimal *T*-depth

3 Implementing the Multiplicative Inversion in \mathbb{F}_{2^n}

4 Implementing Nonlinear Functions with the Minimal Width

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Minimal-width NCT implementations

- An invertible vectorial Boolean function F is a permutation \mathcal{P} on \mathbb{F}_2^n .
- It always has an in-place NCT implementation:
 - $\triangleright \mathcal{P}$ is even: 0 ancilla qubit, minimal-width = n
 - $\triangleright \mathcal{P}$ is odd: 1 ancilla qubit, minimal-width = n + 1
 - Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, John P. Hayes: Synthesis of reversible logic circuits. *IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.* 22(6): 710-722 (2003)
- How to obtain the minimal-width implementations?
- AES S-box: [PQCrypto 2016, Grassl et al.] 9 qubits with no more than 9695 *T*-gates and 12631 Clifford gates. The specific circuit was not presented.

Minimal-width NCT implementations

- An invertible vectorial Boolean function F is a permutation \mathcal{P} on \mathbb{F}_2^n .
- It always has an in-place NCT implementation:
 - $\triangleright \mathcal{P}$ is even: 0 ancilla qubit, minimal-width = n
 - $\triangleright \mathcal{P}$ is odd: 1 ancilla qubit, minimal-width = n + 1
 - Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, John P. Hayes: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6): 710-722 (2003)
- How to obtain the minimal-width implementations?
- AES S-box: [PQCrypto 2016, Grassl et al.] 9 qubits with no more than 9695 *T*-gates and 12631 Clifford gates. The specific circuit was not presented.

SAT-based Method

- \blacksquare \leq 5 qubit: at most one Toffoli gate in each layer.
- $F = S_k \circ T_k \circ S_{k-1} \circ \cdots \circ S_2 \circ T_2 \circ S_1 \circ T_1 \circ S_0$: T corresponds a Toffoli gate, S corresponds to all possible affine transformation.
 - ▶ Affine Layers: $\forall i \in \{1, ..., w\}, \forall j \in \{0, ..., k\}, B_{i,j} = c_{1,i}^{(j)} A_{1,j} + \dots + c_{w,i}^{(j)} A_{w,j} + d_i^{(j)},$ for some Boolean variables $c_{1,i}^{(j)}, \dots, c_{w,i}^{(j)}$ and $d_i^{(j)}$.
 - ▶ **Toffoli layers**: $\forall j \in \{1, ..., k\}$, $A_{3,j} = B_{3,(j-1)} + B_{1,(j-1)} \cdot B_{2,(j-1)}$, and $A_{i,j} = B_{i,(j-1)}$ if $i \neq 3$.
 - lnputs and outputs: $\forall i \in \{1, \ldots, n\}$, $A_{i,0} = x_i$, $B_{i,k} = f_i(x_1, x_2, \ldots, x_n)$.
 - Ancilla qubit (for an odd F): If w = n + 1, $A_{w,0} = 0$ and $B_{w,k} = 0$.

SAT-based Method

- \bullet \leq 5 qubit: at most one Toffoli gate in each layer.
- $F = S_k \circ T_k \circ S_{k-1} \circ \cdots \circ S_2 \circ T_2 \circ S_1 \circ T_1 \circ S_0$: T corresponds a Toffoli gate, S corresponds to all possible affine transformation.
 - ▶ Affine Layers: $\forall i \in \{1, ..., w\}, \forall j \in \{0, ..., k\}, B_{i,j} = c_{1,i}^{(j)} A_{1,j} + \cdots + c_{w,i}^{(j)} A_{w,j} + d_i^{(j)},$ for some Boolean variables $c_{1,i}^{(j)}, \ldots, c_{w,i}^{(j)}$ and $d_i^{(j)}$.
 - ► **Toffoli layers**: $\forall j \in \{1, ..., k\}$, $A_{3,j} = B_{3,(j-1)} + B_{1,(j-1)} \cdot B_{2,(j-1)}$, and $A_{i,j} = B_{i,(j-1)}$ if $i \neq 3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- ▶ Inputs and outputs: $\forall i \in \{1, \ldots, n\}$, $A_{i,0} = x_i$, $B_{i,k} = f_i(x_1, x_2, \ldots, x_n)$.
- Ancilla qubit (for an odd F): If w = n + 1, $A_{w,0} = 0$ and $B_{w,k} = 0$.

Improve the Encoding Scheme

• Exclude equivalent solutions (Fix the Toffoli gate):

Meet-in-the-Middle: Quantum circuits are reversible. Build the equations forward and backward respectively, then meet in the middle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Should add some constrains to ensure the affine layers are invertible.

Improve the Encoding Scheme

• Exclude equivalent solutions (Fix the Toffoli gate):

►
$$\mathcal{T}_{i,j,k} = \operatorname{Rewire} \circ \mathcal{T}_{1,2,3} \circ \operatorname{Rewire}^{-1}$$

 \Downarrow
 $\mathcal{S}_1 \circ \mathcal{T}_{i,j,k} \circ \mathcal{S}_2 = (\mathcal{S}_1 \circ \operatorname{Rewire}) \circ \mathcal{T}_{1,2,3} \circ (\operatorname{Rewire}^{-1} \circ \mathcal{S}_2) = \mathcal{S}'_1 \circ \mathcal{T}_{1,2,3} \circ \mathcal{S}'_2$

Meet-in-the-Middle: Quantum circuits are reversible. Build the equations forward and backward respectively, then meet in the middle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Should add some constrains to ensure the affine layers are invertible.

Table: Costs of the 5-qubit quantum circuits for the χ function of SHA3.

Туре	#NOT	#CNOT	#Toffoli	Width	Toffoli-depth	Full Depth	Source
NCT	12	0	7	5	7	10	This work
Туре	#CNOT	#1qClifford	# T	Width	T-depth	Full Depth	Source
Clifford+ <i>T</i>	79 49	24 24	70 49	12 5	30 21	103 66	eprint 2023 This work

Implementing χ requires at least 5 Toffoli gates without width limit. Toffoli-count 7 is almost optimal.

Table: Costs of the 5-qubit quantum circuit for the S-box of ASCON.

			• • • •	3	200

Table: Costs of the 5-qubit quantum circuits for the χ function of SHA3.

Туре	#NOT	#CNOT	#Toffoli	Width	Toffoli-depth	Full Depth	Source
NCT	12	0	7	5	7	10	This work
Туре	#CNOT	#1qClifford	# T	Width	<i>T</i> -depth	Full Depth	Source
Clifford+ <i>T</i>	79 49	24 24	70 49	12 5	30 21	103 66	eprint 2023 This work

 Implementing χ requires at least 5 Toffoli gates without width limit. Toffoli-count 7 is almost optimal.

Table: Costs of the 5-qubit quantum circuit for the S-box of ASCON.

Туре	#NOT	#CNOT	#Toffoli	Width	Toffoli-depth	Full Depth	Source		
NCT	10	38	7	5	7	44	This work		
						▲ □ ▶ ▲ [御 と く ヨ と く ヨ >	- E	500

Method Based on MCT Implementations

• $C^m X$ gate: an MCT (Multiple Controlled Toffoli) gate with m control qubits, maps $|x_1, x_2, \dots, x_k\rangle |x_{k+1}\rangle$ to $|x_1, x_2, \dots, x_k\rangle |x_{k+1} \oplus x_1 x_2 \dots x_k\rangle$

•
$$C^0 X = \text{NOT}, C^1 X = \text{CNOT}, C^2 X = \text{Toffoli}.$$

Our idea:

Construct an MCT implementation without ancilla qubit;

2 Decompose each $C^k X$ to Toffoli gates with **at most one ancilla qubit**.

Method Based on MCT Implementations

• $C^m X$ gate: an MCT (Multiple Controlled Toffoli) gate with m control qubits, maps $|x_1, x_2, \dots, x_k\rangle |x_{k+1}\rangle$ to $|x_1, x_2, \dots, x_k\rangle |x_{k+1} \oplus x_1 x_2 \dots x_k\rangle$

•
$$C^0 X = \text{NOT}, C^1 X = \text{CNOT}, C^2 X = \text{Toffoli}.$$

Our idea:

- **1** Construct an MCT implementation without ancilla qubit;
- **2** Decompose each $C^k X$ to Toffoli gates with **at most one ancilla qubit**.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Decomposition of $C^m X$

Lemma (Physical Review A 1995, Barenco et al.)

A $C^m X$ gate can be implemented by two $C^p X$ gates and two (one) $C^q X$ gate and one dirty (clean) ancilla qubit, where p + q = m + 1

Figure: Implementing a $C^7 X$ gate with one ancilla qubit.

Decomposition of $C^m X$

Lemma (Physical Review A 1995, Barenco et al.)

A $C^m X$ gate with m > 3 can be implemented by 4(m-2) Toffoli gates and m-2 ancilla qubits(dirty qubits).

Figure: Implementing a C^5X gate with three dirty ancilla qubits.

With on ancilla qubit (dirty or clean), one can decompose C^mX into Toffoli gates.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Decomposition of $C^m X$

Lemma (Physical Review A 1995, Barenco et al.)

A $C^m X$ gate with m > 3 can be implemented by 4(m-2) Toffoli gates and m-2 ancilla qubits(dirty qubits).

Figure: Implementing a C^5X gate with three dirty ancilla qubits.

• With on ancilla qubit (dirty or clean), one can decompose $C^m X$ into Toffoli gates.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

MCT Implementations from Tensor Decomposition

- Lee et al.: An Algorithm for Reversible Logic Circuit Synthesis Based on Tensor Decomposition. arXiv:2107.04298, 2021
 - $\blacksquare M_k M_{k-1} \cdots M_1 \mathcal{P}_n = \mathcal{P}_{n-1} \otimes I_2$
 - \mathcal{P}_{n-1} only involve the first n-1 wires. Recursively decompose \mathcal{P}_{n-1} .
 - We can obtain a MCT decomposition consisting of $\{X, C^1X, C^2X, \ldots, C^{n-1}X\}$
 - For an even permutation, the decomposition does not contain $C^{n-1}X$ in most cases.
 - Combing the decomposition of $C^m X$, we can obtain the minimal-width NCT circuit for \mathcal{P}_n .

MCT Implementations from Tensor Decomposition

- Lee et al.: An Algorithm for Reversible Logic Circuit Synthesis Based on Tensor Decomposition. arXiv:2107.04298, 2021
 - $\blacksquare M_k M_{k-1} \cdots M_1 \mathcal{P}_n = \mathcal{P}_{n-1} \otimes I_2$
 - \mathcal{P}_{n-1} only involve the first n-1 wires. Recursively decompose \mathcal{P}_{n-1} .
 - We can obtain a MCT decomposition consisting of $\{X, C^1X, C^2X, \dots, C^{n-1}X\}$
 - For an even permutation, the decomposition does not contain $C^{n-1}X$ in most cases.
 - Combing the decomposition of $C^m X$, we can obtain the minimal-width NCT circuit for \mathcal{P}_n .

Minimal-width Implementations for the AES S-box

Tensor Decomposition based method + SAT-based method (for 5-qubit sub-circuits)

#NOT	#CNOT	#Toffoli	Width	Toffoli-depth	Full Depth
233	885	833	9	793	1594

Table: Costs of the 9-qubit NCT circuit for the AES S-box.

Table: Costs of different 9-qubit Clifford+*T* circuits for the AES S-box.

#Clifford (CNOT, 1qClifford)	# T	Width	T-depth	Full Depth	Source
\leq 12631(- , -)	≤ 9295	9	-	-	PQCrypt 16
7465 (6028, 1437)	3783	9	1501	7180	This work
13008 (10633, 2375)	3447	9	1274	9954	This work (T-par)

Minimal-width Implementations for a Pair of S-boxes

Implementing a pair of S-box, (S_1, S_2) : use a qubit allocated for implementing S_2 as the dirty ancilla qubit when implementing S_1 , and vice versa.

Туре	#NOT	#CNOT	#Toffoli	Width	Toffoli-depth	Full Depth
NCT	502	1770	2140	16	1714	2990
Туре	#1qClifford	#CNOT	# T	Width	<i>T</i> -depth	Full Depth
$\begin{array}{c} Clifford{+}\mathcal{T}\\ Clifford{+}\mathcal{T}(T{-}par) \end{array}$	3628 5066	14786 23976	9008 8360	16 16	2949 2774	15253 18883

Table: Costs of the 16-qubit quantum circuits for a pair of AES S-boxes.

We can construct a 256-qubit quantum circuit of AES-128, achieving the theoretical minimum.

Minimal-width Implementations for a Pair of S-boxes

Implementing a pair of S-box, (S_1, S_2) : use a qubit allocated for implementing S_2 as the dirty ancilla qubit when implementing S_1 , and vice versa.

Туре	#NOT	#CNOT	#Toffoli	Width	Toffoli-depth	Full Depth
NCT	502	1770	2140	16	1714	2990
Туре	#1qClifford	#CNOT	# T	Width	<i>T</i> -depth	Full Depth
Clifford+T Clifford+T (T-par)	3628 5066	14786 23976	9008 8360	16 16	2949 2774	15253 18883

Table: Costs of the 16-qubit quantum circuits for a pair of AES S-boxes.

 We can construct a 256-qubit quantum circuit of AES-128, achieving the theoretical minimum.

Thank you for your attention!

huangzhenyu@iie.ac.cn

うせん 前 (中国) (日) (日) (日)