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Motivation

Quantum Cryptanlysis for Symmetric Ciphers
▶ Grover’s algorithm: the attacker needs to construct a Grover oracle to search the key.
▶ Simon’s algorithm (Kuwakado and Mori, ISIT 2010; Kaplan et al. Crypto 2016): The

attacker needs to access an online quantum encryption oracle.
▶ Offline Simon’s algorithm (Bonnetain et al. Asiacrypt 2019): the attacker needs to

construct different quantum encryption oracles for different keys.
▶ The quantum circuit that implements the cipher is a primary component of the

Grover oracle or the quantum encryption oracle.
NIST’s call for proposals for PQC
▶ The complexity of quantum key search circuit for AES is used as a baseline to

categorize the post-quantum public-key schemes.
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Circuit Complexity
Cost Metrics:

Width (the number of qubits); Gate count, especially the T-count;

Depth: The number of layers of the circuit (gates acting on disjoint sets of qubits can be
applied in parallel)

T-depth: the number of layers for T gates, which dominates the running time of a circuit in
fault-tolerant quantum computation (Surface code).

Previous Works (PQCrypto 2016, Asiacrypt 2020, Eurocrypt 2020, Aisacrypt 2022, Asiacrypt
2023, Asiacrypt 2024, etc):

AES Width: 2953 → 512 → 374, T-depth: 120 → 80 → 60

Heuristic improvements that are only applicable for AES.

Both T-depth and Width have theoretical minimums.
Generic methods for constructing circuits that achieve these minimums?
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Convert Classical Circuits to Quantum Circuits
Boolean Function Implementation Problem
Given a vectorial Boolean function F(x), construct a quantum circuit that maps

|x, 0⟩ → |F(x), 0⟩: An in-place implementation of an invertible F.
|x, y⟩ → |x, y ⊕ F(x)⟩ for any y (sometimes only for y = 0): An out-of-place
implementation of F.

From classical circuits to quantum circuits:
Classicial gates: NOT, XOR, AND ⇒ NCT gate set: NOT(Pauli-X), CNOT, Toffoli

|x⟩ X |x ⊕ 1⟩

Figure: NOT gate

|x1⟩ |x1⟩
|x2⟩ |x1 ⊕ x2⟩

Figure: CNOT gate

|x1⟩ |x1⟩
|x2⟩ |x2⟩
|x3⟩ |x3 ⊕ x1 · x2⟩

Figure: Toffoli gate

⇒ Clifford+T gates: {Pauli gates, CNOT, S, H} + T
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Clifford+T Implementations for the Toffoli gate

No ancilla qubit:
|a⟩ T T † |a⟩

|b⟩ T T † T † |b⟩

|c⟩ H T T H |c⊕ ab⟩

T-depth-1:
|a⟩ T |a⟩

|b⟩ T |b⟩

|c⟩ H T H |c⊕ ab⟩

|0⟩ T |0⟩

|0⟩ T † |0⟩

|0⟩ T † |0⟩

|0⟩ T † |0⟩

Design NCT circuits that achieve the minimal Toffoli-depth or minimal width
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Convert Classical Circuits to NCT Circuits
Problems of the trivial conversion (XOR→CNOT, AND→Toffoli):
▶ Need lots of ancilla qubits.
▶ The depth may change, especially Toffoli-depth̸= AND-depth in sometimes.

d

c

b

a

ab

bd⊕ cd

∧

+
∧

a ∧ b b⊕ c b⊕ c a ∧ b

|a⟩ |a⟩ |a⟩ |a⟩
|b⟩ |b⟩ |b⟩ |b⟩
|c⟩ |c⟩ |c⟩ |c⟩
|d⟩ |d⟩ |d⟩ |d⟩
|0⟩ |ab⟩ |0⟩ |ab⟩
|0⟩ |b⊕ c⟩ |0⟩ |b⊕ c⟩
|0⟩ |bd⊕ cd⟩ |0⟩ |bd⊕ cd⟩

(1) AND-depth-1 (2) Toffoli-depth-2 (3) Toffoli-depth-1

Figure: Quantum implementations of a classical circuit with AND-depth 1



Quantum Circuit with the Minimal Toffoli-depth

Theorem (Asiacrypt 2022, Huang & Sun)
Given a classical circuit with AND-depth s, the Toffoli-depth of the quantum circuit
implementing all the nodes of the classical circuit is not smaller than s. Moreover, with
sufficiently many ancillae, we can construct a quantum circuit implementing all the nodes of
the classical circuit with Toffoli-depth s.

1 Construct a classical circuit with the minimal AND-depth (= ⌈log2(D)⌉);
▶ D is the algebraic degree of the vectorial Boolean function F (With an AND-layer, one

can mostly double the degree).
▶ AES S-box (degree 7): the minimal AND-depth is 3.

2 Convert it to a Toffoli-depth-⌈log2(D)⌉ NCT circuit.
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Automatic Conversion with Low Quantum Resource Cost

Layer 1 Layer 2 Layer 3
|M1⟩ |M1⟩
|M2⟩ |M2⟩
|M3⟩ |M3⟩
|0⟩ |M4⟩
|0⟩ |M5⟩
|0⟩ |M6⟩
|0⟩ |M7⟩
|0⟩ |M8⟩
|0⟩ |M9⟩
|0⟩ |M10⟩
|0⟩ |M11⟩
|0⟩ |M12⟩
|0⟩ |M13⟩

Our idea: Reconstruct the CNOT sub-circuits that connect the Toffoli layers
while maintaining the lowest width and a low gate-count.



Inputs and Outputs of the CNOT Sub-circuits
CNOT gates generate linear expressions.
A Toffoli layer generates some new Boolean variables.
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x2

...
xn

CNOTs
======⇒



∗

...
∗

L1(x1, . . . , xn)

L2(x1, . . . , xn)

...
L2k1 (x1, . . . , xn)

Toffoli Layer
===========⇒



∗

...
∗

L1(x1, . . . , xn)

L2(x1, . . . , xn)
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======⇒
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L′2(x1, . . . , xn+k1 )

...

L′2k2 (x1, . . . , xn+k1 )

Toffoli Layer
===========⇒ · · ·



Lemma 2
Let {L1, L2 . . . , Lt} and {T1,T2 . . . ,Tm} be two sequences of linear functions w.r.t Boolean
variables x1, x2, . . . , xn. Suppose the rank of L1, L2, . . . , Lt is n, and the rank of T1,T2, . . . ,Tm
is k. If |L1, L2, . . . , Lt⟩ is the input of a t-qubit register, then to output the state
|T1,T2, . . . ,Tm⟩ using a CNOT circuit, m − k − (t − n) additional qubits are necessary and
sufficient. Additionally, if m − k − (t − n) < 0, it means no additional qubits are required.
Instead, t − n − m + k qubits can be returned to |0⟩.

Table: Different NCT circuits originated from an AND-depth-4 classical circuit for the AES
S-box. Toffoli-depth=2× AND-depth, since uncomputation is included.

Type #NOT #CNOT #Toffoli Toffoli-depth Full Depth Width Source

C∗ 4 312 68 8 78 90 Aisacrypt 2023
C∗ 4 368 68 8 105 76 Aisacrypt 2023

C0/C∗ 4 227/240 60 8 60 66 This work
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Construct Classical Implementations with the Minimal AND-depth

Trivial approach:
▶ 1st AND layer: generate monomials with degree 2 simultaneously: x1x2, . . . , xn−1xn;
▶ 2rd AND layer: generate monomials with degree 3, 4 simultaneously;

· · ·
▶ k-th AND layer: generate monomials with degree from 2k−1 + 1 to 2k;
▶ Construct F from these monomials by XOR gates.

χ function of SHA3 : (f1, f2, f3, f4, f5) =
(x1 + (x2 + 1)x3, x2 + (x3 + 1)x4, x3 + (x4 + 1)x5, x4 + (x5 + 1)x1, x5 + (x1 + 1)x2).

Construct x2 · x3, x3 · x4, x4 · x5, x5 · x1, x1 · x2 in one AND layer.
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Top-down approach:
▶ Ms: Polynomials in layer s. Boolean polynomials with degree in the range

[2s−1 + 1, 2s], whose minimal AND-depth is s.

▶ f = fd + fd−1 + · · ·+ f1, where fi ∈ Mi. Generate fd → fd−1 → · · ·

▶ Compute the max-depth cover {C1,C2, . . . ,Ck} ⊂ Md of f:

f = C1 + C2 + · · ·+ Ck + R,

where Ci = Di,1 · Di,2, and Di,j,R ∈ Md−1.

Then recursively compute the covers of these Di,j and R.

▶ Trivial cover (all monomials contained in fd ) is equivalent to the trivial approach.
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Construct Nontrivial Covers

Example 1
Let
f = x1x2x3x4x5x6 + x1x2x3x4x5 + x1x2x3x4x6 + x1x3x4x5x6 + x1x2x4x5x6 + x1x2x3x5x6 + x2x3x4x5x6.

C = {(x1x2x3 + x2x3 + x1x2 + x1x3) · (x4x5x6 + x4x5 + x4x6 + x5x6)}

is a max-depth cover of f with size 1.

Greedy approach: gradually enlarge the monomial sets S1, S2, such that the product
(
∑

pi∈S1
pi)(

∑
qj∈S2

qj) covers more monomials in F.

SAT-based Method: encode the relation f =
∑k

i=1 D1
i · D2

i + R to Boolean
equations, then solve them by an off-the-shelf SAT-solver.
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Applications
AES S-box (degree 7): AND-depth 3,AND-count 76.
▶ Asiacrypt 2022: AND-depth 3, AND-count 78, modified from an AND-depth-4

implementation with some heuristics.
SKINNY S-box (degree 7): AND-depth 3, AND-count 10.

Top-down approach only needs the ANF (algebraic normal form) of F.

For Boolean functions with specific structure, can we find minimal-AND-depth
implementations with lower AND-count?
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Minimal AND-depth for Implementing the Inversion

The problem
α ∈ F2n : x1β1 + x2β2 + · · ·+ xnβn, where x1, . . . , xn ∈ F2.
α−1 can be written as
f1(x1, x2, . . . , xn)β1 + f2(x1, x2, . . . , xn)β2 + · · ·+ fn(x1, x2, . . . , xn)βn.
Goal: implementing F = (f1, f2, . . . , fn).

It is easy to prove that deg(F) = n − 1.

Theorem
The minimal AND-depth for implementing the multiplicative inversion in F2n is
⌈log2(n − 1)⌉.



Minimal AND-depth for Implementing the Inversion

The problem
α ∈ F2n : x1β1 + x2β2 + · · ·+ xnβn, where x1, . . . , xn ∈ F2.
α−1 can be written as
f1(x1, x2, . . . , xn)β1 + f2(x1, x2, . . . , xn)β2 + · · ·+ fn(x1, x2, . . . , xn)βn.
Goal: implementing F = (f1, f2, . . . , fn).

It is easy to prove that deg(F) = n − 1.

Theorem
The minimal AND-depth for implementing the multiplicative inversion in F2n is
⌈log2(n − 1)⌉.



Addition Chain and Exponentiation
α2n−2 · α = α2n−1 = 1, and if α = 0, α2n−2 = 0 ⇒ α−1 = α2n−2.
Compute α−1 = α62 ∈ F26 :
12(1)

∧2−−→102(2)
×−→112(3)

∧2−−→1102(6)
×−→ 1112(7)

∧4−−→111002(28) ×−→111112(31) ∧2−−→1111102(62)

▶ Squaring can be implemented without AND gate, squaring will not change the
Hamming weight.

▶ The change of the Hamming weight: 1 → 2 → 3 → 5
▶ 3 additions correspond to 3 multiplications in F26 .

Lemma
If k = 2rs, for some positive number r and odd number s, then the multiplication of two elements
in F2k can be implemented by one AND layer and ω(k) = 3rs2 AND gates.

▶ AND-depth 3, AND-count 3 · 27.
An addition chain for n − 1 can induce an implementation of the inversion in F2n .
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An addition chain for n − 1 can induce an implementation of the inversion in F2n .



Addition Chain and Exponentiation
α2n−2 · α = α2n−1 = 1, and if α = 0, α2n−2 = 0 ⇒ α−1 = α2n−2.
Compute α−1 = α62 ∈ F26 :
12(1)

∧2−−→102(2)
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▶ Squaring can be implemented without AND gate, squaring will not change the
Hamming weight.
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Parallel Addition Chain

Shortest addition chain ̸= Minimal-AND-depth implementation:
▶ 1 → 2 → 3 → 5 → 7 ⇒ 4 AND layers
▶ α−1 ∈ F28 : the minimal AND-depth is 3.

Parallel Addition Chain:
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Lemma
For any n, there is a parallel addition chain for n with the minimal depth ⌈log2(n)⌉ and
involving HW(n) + ⌊log2(n)⌋ − 1 additions.

 1 2 · · · 2k1 2k1+1 · · · 2k2 2k2+1 · · · 2k3 · · · 2km 0

0 0 · · · 2k1 0 · · · 0
∑2

i=1 2ki · · · 0 · · · 0
∑m

i=1 2ki



Theorem
There is a classical circuit implementing the inversion in F2n with AND-depth
⌈log2(n − 1)⌉ and AND-count ω(n)(HW(n − 1) + ⌊log2(n − 1)⌋ − 1).

RAIN-128 (an MPC-friendly block cipher, CCS 2022) S-box, the inversion in F2128 :

A =

[
1 2 4 8 16 32 64 127
1 0 3 7 15 31 63 0

]
,

AND-depth 7 and AND-count 24057.



Lemma
For any n, there is a parallel addition chain for n with the minimal depth ⌈log2(n)⌉ and
involving HW(n) + ⌊log2(n)⌋ − 1 additions.

 1 2 · · · 2k1 2k1+1 · · · 2k2 2k2+1 · · · 2k3 · · · 2km 0

0 0 · · · 2k1 0 · · · 0
∑2

i=1 2ki · · · 0 · · · 0
∑m

i=1 2ki



Theorem
There is a classical circuit implementing the inversion in F2n with AND-depth
⌈log2(n − 1)⌉ and AND-count ω(n)(HW(n − 1) + ⌊log2(n − 1)⌋ − 1).

RAIN-128 (an MPC-friendly block cipher, CCS 2022) S-box, the inversion in F2128 :

A =

[
1 2 4 8 16 32 64 127
1 0 3 7 15 31 63 0

]
,

AND-depth 7 and AND-count 24057.



Lemma
For any n, there is a parallel addition chain for n with the minimal depth ⌈log2(n)⌉ and
involving HW(n) + ⌊log2(n)⌋ − 1 additions.

 1 2 · · · 2k1 2k1+1 · · · 2k2 2k2+1 · · · 2k3 · · · 2km 0

0 0 · · · 2k1 0 · · · 0
∑2

i=1 2ki · · · 0 · · · 0
∑m

i=1 2ki



Theorem
There is a classical circuit implementing the inversion in F2n with AND-depth
⌈log2(n − 1)⌉ and AND-count ω(n)(HW(n − 1) + ⌊log2(n − 1)⌋ − 1).

RAIN-128 (an MPC-friendly block cipher, CCS 2022) S-box, the inversion in F2128 :

A =

[
1 2 4 8 16 32 64 127
1 0 3 7 15 31 63 0

]
,

AND-depth 7 and AND-count 24057.



Implementing the Inversion in F22m

Tower field structure: α = a0β2m
+ a1β,

α2m
= a1β

2m
+ a0β, b = α · α2m

= a0a1β
2m+1

+ (a2
0 + a2

1)β
2m+1 + a0a1β

2

and α−1 = b−1a1β2m
+ b−1a0β.

Three Steps: (1) compute b ∈ F2m ; (2) b−1; (3) b−1a1, b−1a0;

Merge Step (2) (compute a parallel addition chain of m − 1) and (3):
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Theorem
Let m − 1 =

∑s
i=1 2ki with 0 ≤ k1 < k2 < · · · < ks and s ≥ 2. If ks > ⌈log2(

∑s−1
i=1 2ki)⌉,

then α−1 ∈ F22m can be implemented by a classical circuit with the minimal AND-depth
⌈log2(2m − 1)⌉ and AND-count ω(m)(HW(m − 1) + ⌊log2(m − 1)⌋+ 3).

A =

 1 2 · · · 2k1 2k1+1 · · · 2k2 2k2+1 · · · 2ks−1 2ks−1+1 · · · 2ks 0

0 0 · · · 2k1 0 · · · 0
∑2

i=1 2ki · · · 0
∑s−1

i=1 2ki · · · 0 m − 1

 .

AES S-box: AND-depth 3 , AND-count 42 (Asiacrypt 2022, AND-count 78).



Convert to Clifford+T circuit with our new conversion algorithm.

Table: Clifford+T circuits (including uncomputation) for the AES S-box with T-depth 3.

Type #CNOT #1qClifford #T #M T-depth Full Depth Width Source

C0/C∗ 1396/1398 494 312 78 3 119 218/226 Asiacrypt 2022
C∗ 1110 448 264 66 3 92 129 IEEE TC 2024

C0/C∗ 827/856 266/298 168 34/42 3 85/87 89/97 This work



New Results for Implementing Quantum Oracles for AES

Table: The Costs of Grover Oracles based on the Pipeline Structure.

#CNOT #1qClifford #T #M T-depth Full Depth Width Source

456040 179200 105600 26400 60 1802 3796 IEEE TC 2024
353160 119200 67200 16800 60 1782 3156 This work

Table: The Costs of Encryption Oracles based on the Interlacing-Uncompute Structure.

#CNOT #1qClifford #T #M T-depth Full Depth Width Source

364360 144584 84480 21120 33 1078 4128 IEEE TC 2024
281896 96584 53760 13440 33 1066 3104 This work
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Minimal-width NCT implementations

An invertible vectorial Boolean function F is a permutation P on Fn
2.

It always has an in-place NCT implementation:
▶ P is even: 0 ancilla qubit, minimal-width= n
▶ P is odd: 1 ancilla qubit, minimal-width= n + 1

Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, John P. Hayes: Synthesis of reversible
logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6): 710-722 (2003)

How to obtain the minimal-width implementations?

AES S-box: [PQCrypto 2016, Grassl et al.] 9 qubits with no more than 9695
T-gates and 12631 Clifford gates. The specific circuit was not presented.



Minimal-width NCT implementations

An invertible vectorial Boolean function F is a permutation P on Fn
2.

It always has an in-place NCT implementation:
▶ P is even: 0 ancilla qubit, minimal-width= n
▶ P is odd: 1 ancilla qubit, minimal-width= n + 1

Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, John P. Hayes: Synthesis of reversible
logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6): 710-722 (2003)

How to obtain the minimal-width implementations?

AES S-box: [PQCrypto 2016, Grassl et al.] 9 qubits with no more than 9695
T-gates and 12631 Clifford gates. The specific circuit was not presented.



SAT-based Method

≤ 5 qubit: at most one Toffoli gate in each layer.
F = Sk ◦ Tk ◦ Sk−1 ◦ · · · ◦ S2 ◦ T2 ◦ S1 ◦ T1 ◦ S0: T corresponds a Toffoli gate, S
corresponds to all possible affine transformation.

▶ Affine Layers: ∀i ∈ {1, . . . ,w}, ∀j ∈ {0, . . . , k}, Bi,j = c(j)1,iA1,j + · · ·+ c(j)w,iAw,j + d(j)
i ,

for some Boolean variables c(j)1,i, . . . , c
(j)
w,i and d(j)

i .
▶ Toffoli layers: ∀j ∈ {1, . . . , k}, A3,j = B3,(j−1) + B1,(j−1) · B2,(j−1), and Ai,j = Bi,(j−1) if

i ̸= 3.
▶ Inputs and outputs: ∀i ∈ {1, . . . , n}, Ai,0 = xi, Bi,k = fi(x1, x2, . . . , xn).
▶ Ancilla qubit (for an odd F): If w = n + 1, Aw,0 = 0 and Bw,k = 0.
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Improve the Encoding Scheme

Exclude equivalent solutions (Fix the Toffoli gate):
▶ Ti,j,k = Rewire ◦ T1,2,3 ◦ Rewire−1

⇓
S1 ◦ Ti,j,k ◦ S2 = (S1 ◦ Rewire) ◦ T1,2,3 ◦ (Rewire−1 ◦ S2) = S ′

1 ◦ T1,2,3 ◦ S ′
2

Meet-in-the-Middle: Quantum circuits are reversible. Build the equations
forward and backward respectively, then meet in the middle.
▶ Should add some constrains to ensure the affine layers are invertible.
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Applications
Table: Costs of the 5-qubit quantum circuits for the χ function of SHA3.

Type #NOT #CNOT #Toffoli Width Toffoli-depth Full Depth Source

NCT 12 0 7 5 7 10 This work

Type #CNOT #1qClifford #T Width T-depth Full Depth Source

Clifford+T 79 24 70 12 30 103 eprint 2023
49 24 49 5 21 66 This work

Implementing χ requires at least 5 Toffoli gates without width limit.
Toffoli-count 7 is almost optimal.

Table: Costs of the 5-qubit quantum circuit for the S-box of ASCON.

Type #NOT #CNOT #Toffoli Width Toffoli-depth Full Depth Source

NCT 10 38 7 5 7 44 This work



Applications
Table: Costs of the 5-qubit quantum circuits for the χ function of SHA3.

Type #NOT #CNOT #Toffoli Width Toffoli-depth Full Depth Source

NCT 12 0 7 5 7 10 This work

Type #CNOT #1qClifford #T Width T-depth Full Depth Source

Clifford+T 79 24 70 12 30 103 eprint 2023
49 24 49 5 21 66 This work

Implementing χ requires at least 5 Toffoli gates without width limit.
Toffoli-count 7 is almost optimal.

Table: Costs of the 5-qubit quantum circuit for the S-box of ASCON.

Type #NOT #CNOT #Toffoli Width Toffoli-depth Full Depth Source

NCT 10 38 7 5 7 44 This work



Method Based on MCT Implementations

CmX gate: an MCT (Multiple Controlled Toffoli) gate with m control qubits, maps
|x1, x2, · · · , xk⟩ |xk+1⟩ to |x1, x2, · · · , xk⟩ |xk+1 ⊕ x1x2 · · · xk⟩

C0X = NOT, C1X = CNOT, C2X = Toffoli.

Our idea:
1 Construct an MCT implementation without ancilla qubit;

2 Decompose each CkX to Toffoli gates with at most one ancilla qubit.
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Decomposition of CmX

Lemma (Physical Review A 1995, Barenco et al.)
A CmX gate can be implemented by two CpX gates and two (one) CqX gate and one
dirty (clean) ancilla qubit, where p + q = m + 1�

=

dirty

=

clean

Figure: Implementing a C7X gate with one ancilla qubit.



Decomposition of CmX

Lemma (Physical Review A 1995, Barenco et al.)
A CmX gate with m > 3 can be implemented by 4(m− 2) Toffoli gates and m− 2�ancilla
qubits(dirty qubits).

=

Figure: Implementing a C5X gate with three dirty ancilla qubits.

With on ancilla qubit (dirty or clean), one can decompose CmX into Toffoli gates.
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MCT Implementations from Tensor Decomposition

Lee et al.: An Algorithm for Reversible Logic Circuit Synthesis Based on Tensor
Decomposition. arXiv:2107.04298, 2021

MkMk−1 · · ·M1Pn = Pn−1 ⊗ I2

Pn−1 only involve the first n − 1 wires. Recursively decompose Pn−1.

We can obtain a MCT decomposition consisting of {X,C1X,C2X, . . . ,Cn−1X}
▶ For an even permutation, the decomposition does not contain Cn−1X in most cases.
▶ Combing the decomposition of CmX, we can obtain the minimal-width NCT circuit for

Pn.
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Minimal-width Implementations for the AES S-box
Tensor Decomposition based method + SAT-based method (for 5-qubit sub-circuits)

Table: Costs of the 9-qubit NCT circuit for the AES S-box.

#NOT #CNOT #Toffoli Width Toffoli-depth Full Depth

233 885 833 9 793 1594

Table: Costs of different 9-qubit Clifford+T circuits for the AES S-box.

#Clifford (CNOT, 1qClifford) #T Width T-depth Full Depth Source

≤ 12631( - , - ) ≤ 9295 9 - - PQCrypt 16
7465 (6028, 1437) 3783 9 1501 7180 This work

13008 (10633, 2375) 3447 9 1274 9954 This work (T-par)



Minimal-width Implementations for a Pair of S-boxes

Implementing a pair of S-box, (S1, S2): use a qubit allocated for implementing S2 as
the dirty ancilla qubit when implementing S1, and vice versa.

Table: Costs of the 16-qubit quantum circuits for a pair of AES S-boxes.

Type #NOT #CNOT #Toffoli Width Toffoli-depth Full Depth

NCT 502 1770 2140 16 1714 2990

Type #1qClifford #CNOT #T Width T-depth Full Depth

Clifford+T 3628 14786 9008 16 2949 15253
Clifford+T (T-par) 5066 23976 8360 16 2774 18883

We can construct a 256-qubit quantum circuit of AES-128, achieving the theoretical
minimum.
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