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Motivation

® Quantum Cryptanlysis for Symmetric Ciphers

>
>

>

Grover's algorithm: the attacker needs to construct a Grover oracle to search the key.
Simon's algorithm (Kuwakado and Mori, ISIT 2010; Kaplan et al. Crypto 2016): The
attacker needs to access an online quantum encryption oracle.

Offline Simon’s algorithm (Bonnetain et al. Asiacrypt 2019): the attacker needs to
construct different quantum encryption oracles for different keys.

The quantum circuit that implements the cipher is a primary component of the
Grover oracle or the quantum encryption oracle.



Motivation

m Quantum Cryptanlysis for Symmetric Ciphers

> Grover's algorithm: the attacker needs to construct a Grover oracle to search the key.

» Simon's algorithm (Kuwakado and Mori, ISIT 2010; Kaplan et al. Crypto 2016): The
attacker needs to access an online quantum encryption oracle.

» Offline Simon’s algorithm (Bonnetain et al. Asiacrypt 2019): the attacker needs to
construct different quantum encryption oracles for different keys.

» The quantum circuit that implements the cipher is a primary component of the
Grover oracle or the quantum encryption oracle.

m NIST's call for proposals for PQC

» The complexity of quantum key search circuit for AES is used as a baseline to
categorize the post-quantum public-key schemes.



Circuit Complexity
Cost Metrics:

m Width (the number of qubits); Gate count, especially the T-count;

m Depth: The number of layers of the circuit (gates acting on disjoint sets of qubits can be
applied in parallel)

m T-depth: the number of layers for T gates, which dominates the running time of a circuit in
fault-tolerant quantum computation (Surface code).
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m AES Width: 2953 — 512 — 374, T-depth: 120 — 80 — 60

m Heuristic improvements that are only applicable for AES.



Circuit Complexity
Cost Metrics:

m Width (the number of qubits); Gate count, especially the T-count;

m Depth: The number of layers of the circuit (gates acting on disjoint sets of qubits can be
applied in parallel)

m T-depth: the number of layers for T gates, which dominates the running time of a circuit in
fault-tolerant quantum computation (Surface code).

Previous Works (PQCrypto 2016, Asiacrypt 2020, Eurocrypt 2020, Aisacrypt 2022, Asiacrypt
2023, Asiacrypt 2024, etc):

m AES Width: 2953 — 512 — 374, T-depth: 120 — 80 — 60

m Heuristic improvements that are only applicable for AES.

Both T-depth and Width have theoretical minimums.
Generic methods for constructing circuits that achieve these minimums?



Convert Classical Circuits to Quantum Circuits
Boolean Function Implementation Problem

Given a vectorial Boolean function F(x), construct a quantum circuit that maps

m |x,0) — |F(x),0): An in-place implementation of an invertible F.

® |x,¥) = |x,y @ F(x)) for any y (sometimes only for y = 0): An out-of-place
implementation of F.




Convert Classical Circuits to Quantum Circuits

Boolean Function Implementation Problem

Given a vectorial Boolean function F(x), construct a quantum circuit that maps
m |x,0) — |F(x),0): An in-place implementation of an invertible F.

® |x,¥) = |x,y @ F(x)) for any y (sometimes only for y = 0): An out-of-place
implementation of F.

From classical circuits to quantum circuits:
m Classicial gates: NOT, XOR, AND =- NCT gate set: NOT(Pauli-X), CNOT, Toffoli
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Figure: Toffoli gate

Figure: NOT gate Figure: CNOT gate

= Clifford+ T gates: {Pauli gates, CNOT, S, H} + T



Clifford+ T Implementations for the Toffoli gate

m No ancilla qubit:
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Clifford+ T Implementations for the Toffoli gate

m No ancilla qubit:
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Design NCT circuits that achieve the minimal Toffoli-depth or minimal width
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Implementing Nonlinear Functions with the Minimal T-depth



Convert Classical Circuits to NCT Circuits

m Problems of the trivial conversion (XOR—CNOT, AND— Toffoli):

» Need lots of ancilla qubits.
» The depth may change, especially Toffoli-depth# AND-depth in sometimes.

(1) AND-depth-1
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implementations of a classical circuit with AND-depth 1



Quantum Circuit with the Minimal Toffoli-depth

Theorem (Asiacrypt 2022, Huang & Sun)

Given a classical circuit with AND-depth s, the Toffoli-depth of the quantum circuit
implementing all the nodes of the classical circuit is not smaller than s. Moreover, with
sufficiently many ancillae, we can construct a quantum circuit implementing all the nodes of
the classical circuit with Toffoli-depth s.
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Construct a classical circuit with the minimal AND-depth (= [log,(D)]);
» D is the algebraic degree of the vectorial Boolean function F (With an AND-layer, one

can mostly double the degree).
> AES S-box (degree 7): the minimal AND-depth is 3.



Quantum Circuit with the Minimal Toffoli-depth

Theorem (Asiacrypt 2022, Huang & Sun)

Given a classical circuit with AND-depth s, the Toffoli-depth of the quantum circuit
implementing all the nodes of the classical circuit is not smaller than s. Moreover, with
sufficiently many ancillae, we can construct a quantum circuit implementing all the nodes of
the classical circuit with Toffoli-depth s.

Construct a classical circuit with the minimal AND-depth (= [log,(D)]);
» D is the algebraic degree of the vectorial Boolean function F (With an AND-layer, one

can mostly double the degree).
> AES S-box (degree 7): the minimal AND-depth is 3.

Convert it to a Toffoli-depth-[log,(D)] NCT circuit.



Automatic Conversion with Low Quantum Resource Cost
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m Our idea: Reconstruct the CNOT sub-circuits that connect the Toffoli layers
while maintaining the lowest width and a low gate-count.



Inputs and Outputs of the CNOT Sub-circuits

m CNOT gates generate linear expressions.

m A Toffoli layer generates some new Boolean variables.
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Let {L1,L...,L:} and {T1, T2..., Ty} be two sequences of linear functions w.r.t Boolean
variables xq, X2, ..., x,. Suppose the rank of Ly, L,,..., L, is n, and the rank of Ty, T,,..., T,
is k. If L1, Ly, ..., L) is the input of a t-qubit register, then to output the state

|T1, Tay ..., Tm) using a CNOT circuit, m — k — (t — n) additional qubits are necessary and

sufficient. Additionally, if m — k— (t— n) < 0, it means no additional qubits are required.
Instead, t — n — m+ k qubits can be returned to |0).




Let {L1,L...,L:} and {T1, T2..., Ty} be two sequences of linear functions w.r.t Boolean
variables xq, X2, ..., x,. Suppose the rank of Ly, L,,..., L, is n, and the rank of Ty, T,,..., T,
is k. If L1, Ly, ..., L) is the input of a t-qubit register, then to output the state

|T1, Tay ..., Tm) using a CNOT circuit, m — k — (t — n) additional qubits are necessary and

sufficient. Additionally, if m — k— (t— n) < 0, it means no additional qubits are required.
Instead, t — n — m+ k qubits can be returned to |0).

Table: Different NCT circuits originated from an AND-depth-4 classical circuit for the AES
S-box. Toffoli-depth=2x AND-depth, since uncomputation is included.

Type #NOT #CNOT #Toffoli Toffoli-depth Full Depth Width Source
¢* 4 312 68 8 78 90 Aisacrypt 2023
¢* 4 368 68 8 105 76 Aisacrypt 2023

e0/¢* 4 227/240 60 8 60 66 This work




Construct Classical Implementations with the Minimal AND-depth

m Trivial approach:

» 1st AND layer: generate monomials with degree 2 simultaneously: xyx, ..., Xp_1Xn;
» 2rd AND layer: generate monomials with degree 3,4 simultaneously;

> k-th AND layer: generate monomials with degree from 21 + 1 to 2;
» Construct F from these monomials by XOR gates.



Construct Classical Implementations with the Minimal AND-depth

m Trivial approach:

» 1st AND layer: generate monomials with degree 2 simultaneously: xyx, ..., Xp_1Xn;
» 2rd AND layer: generate monomials with degree 3,4 simultaneously;

> k-th AND layer: generate monomials with degree from 21 + 1 to 2;
» Construct F from these monomials by XOR gates.

m x function of SHA3 : (fi,f,f3, fa, f5) =
(x1 + (x2 + 1)x3, %0 + (x3 + 1)xa, x3 + (x4 + 1)x5, x4 + (x5 + 1)x1, X5 + (x1 + 1)x2).
Construct xp - x3, X3 * X4, X4 - X5, X5 * X1, X1 - X2 in one AND layer.



m Top-down approach:

> Ms,: Polynomials in layer s. Boolean polynomials with degree in the range
[251 + 1,2°], whose minimal AND-depth is s.

» f=fy+ fyg_1+---+ fi, where f; € Ml;. Generate fy — fy_1 — ---
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m Top-down approach:
> Ms,: Polynomials in layer s. Boolean polynomials with degree in the range
[251 + 1,2°], whose minimal AND-depth is s.

» f=fy+fy_1+---+ f, where f; € M;. Generate fy — fy_1 — ---
» Compute the max-depth cover {Cy, Gy, ..., C} C My of £
f=G+G+--+CG+R,
where C; = Dj1 - Dj», and D;j, R € My_;.
Then recursively compute the covers of these D;; and R.

» Trivial cover (all monomials contained in fy ) is equivalent to the trivial approach.



Construct Nontrivial Covers
Example 1
Let
f= X1 X2X3XaX5Xg + X1 X0 X3X4 X5 —+ X1 X2X3XaXg + X1 X3X4X5Xe + X1 X20XaX5Xe + X1 X2X3X5Xe + X2X3X4X5X6-

C = {(xaxax3 + xox3 + x1X2 + x1x3) + (XaX5%6 + XaX5 + XaXe + X5X6) }
is a max-depth cover of fwith size 1.
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m Greedy approach: gradually enlarge the monomial sets S;, Sy, such that the product
(X pes, P)(Xges, qj) covers more monomials in F.




Construct Nontrivial Covers
Let
f= X1 X2X3XaX5Xg + X1 X0 X3X4 X5 —+ X1 X2X3XaXg + X1 X3X4X5Xe + X1 X20XaX5Xe + X1 X2X3X5Xe + X2X3X4X5X6-

C = {(xaxax3 + xox3 + x1X2 + x1x3) + (XaX5%6 + XaX5 + XaXe + X5X6) }
is a max-depth cover of fwith size 1.

m Greedy approach: gradually enlarge the monomial sets S;, Sy, such that the product
(X pes, P)(Xges, qj) covers more monomials in F.

m SAT-based Method: encode the relation f= Zf;l D! - D? + R to Boolean
equations, then solve them by an off-the-shelf SAT-solver.




Applications

m AES S-box (degree 7): AND-depth 3,AND-count 76.

» Asiacrypt 2022: AND-depth 3, AND-count 78, modified from an AND-depth-4
implementation with some heuristics.

m SKINNY S-box (degree 7): AND-depth 3, AND-count 10.
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Applications

m AES S-box (degree 7): AND-depth 3,AND-count 76.

» Asiacrypt 2022: AND-depth 3, AND-count 78, modified from an AND-depth-4
implementation with some heuristics.

m SKINNY S-box (degree 7): AND-depth 3, AND-count 10.

m Top-down approach only needs the ANF (algebraic normal form) of F.

m For Boolean functions with specific structure, can we find minimal-AND-depth
implementations with lower AND-count?



Outline
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Minimal AND-depth for Implementing the Inversion

The problem

m o€ Fon: x9681 +x02 4+ -+ xpBn, where x1,...,x, € Fs.

m o1 can be written as

fl(Xlax2a v 7Xn)/81 + f2(X17X27 o 7Xn)62 + -+ fn(X17X27 cee 7Xn)6n-
m Goal: implementing F= (fi, fa,..., ).
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Minimal AND-depth for Implementing the Inversion

The problem

m o€ Fon: x9681 +x02 4+ -+ xpBn, where x1,...,x, € Fs.

1 can be written as

| e
fl(Xlax2a o 7Xn)/81 + f2(X17X27 .. 7Xn)62 + -+ fn(X17X27 o 7Xn)6n-

m Goal: implementing F= (fi, fa,..., ).

m It is easy to prove that deg(F) = n— 1.

The minimal AND-depth for implementing the multiplicative inversion in Fan is
[loga(n — 1)1




Addition Chain and Exponentiation

n__ _ . — —_ —
ma? 2. a=01=1andifa=0,a2"2=0= a1 =0a?"2




Addition Chain and Exponentiation
ma? 2 a=0""1=1andifa=00*""?=0=a1=0a?"2
m Compute a1 = a% € Fy:

A2 N2

15(1) 2210,(2)25115(3) 22110,(6) = 1115(7)-5511100,(28)=+111115(31)-5111110,(62)

» Squaring can be implemented without AND gate, squaring will not change the
Hamming weight.

» The change of the Hamming weight: 1 -2 — 3 — 5
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15(1) 2210,(2)25115(3) 22110,(6) = 1115(7)-5511100,(28)=+111115(31)-5111110,(62)

» Squaring can be implemented without AND gate, squaring will not change the

Hamming weight.
» The change of the Hamming weight: 1 -2 — 3 — 5
» 3 additions correspond to 3 multiplications in Fys.

If k= 2"s, for some positive number r and odd number s, then the multiplication of two elements
in Fox can be implemented by one AND layer and w(k) = 3’s> AND gates.
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Addition Chain and Exponentiation

ot 2. a=0"1=1,andifa=0,a2"2=0= a ! =a?"2

m Compute a1 = a% € Fy:
15(1) 2210,(2)25115(3) 22110,(6) = 1115(7)-5511100,(28)=+111115(31)-5111110,(62)
» Squaring can be implemented without AND gate, squaring will not change the

Hamming weight.

» The change of the Hamming weight: 1 -2 — 3 — 5
» 3 additions correspond to 3 multiplications in Fys.

If k= 2"s, for some positive number r and odd number s, then the multiplication of two elements
in Fox can be implemented by one AND layer and w(k) = 3’s> AND gates.

» AND-depth 3, AND-count 3 - 27.



Addition Chain and Exponentiation

ot 2. a=0"1=1,andifa=0,a2"2=0= a ! =a?"2

m Compute a1 = a% € Fy:
N2 X N2 X N4 X N2
12(1)22105(2) 25115(3) 22110,(6) = 1115(7)2511100,(28)=+111115(31)22:111110,(62)
» Squaring can be implemented without AND gate, squaring will not change the

Hamming weight.

» The change of the Hamming weight: 1 -2 — 3 — 5
» 3 additions correspond to 3 multiplications in Fys.

If k= 2"s, for some positive number r and odd number s, then the multiplication of two elements
in Fox can be implemented by one AND layer and w(k) = 3’s> AND gates.

» AND-depth 3, AND-count 3 - 27.

® An addition chain for n — 1 can induce an implementation of the inversion in Fon.



Parallel Addition Chain

m Shortest addition chain # Minimal-AND-depth implementation:
> 1—+52—-3—5—7= 4AND layers

» o' € Fy: the minimal AND-depth is 3.



Parallel Addition Chain

m Shortest addition chain # Minimal-AND-depth implementation:
> 1—+52—-3—5—7= 4AND layers

» o' € Fy: the minimal AND-depth is 3.

m Parallel Addition Chain:

1, 42, +3
1247 Ci:1—2-"54—-"57
+2
1030 Co:l—1753
C1
o 2 102 xal 91, 1 11002 xall2 Q1112 210 11110000, xol1102 111111102
o102 o102 - o102 x 11002 Q11102



For any n, there is a parallel addition chain for n with the minimal depth [log,(n)] and
involving HW (n) + |log,(n)| — 1 additions.
1 2 ki 2ki+l ... ok 2ko+1 . 2ky ... 2km 0
0 0 ... 2k 0 0 2, 2k 0 0 M ok




For any n, there is a parallel addition chain for n with the minimal depth [log,(n)] and
involving HW (n) + |log,(n)| — 1 additions.

2ki+l ... ok 2ko+1 .. 2ky ... 2km
k 2 ok
o ... 24 0 >i;2

There is a classical circuit implementing the inversion in Fan with AND-depth
[logs(n —1)] and AND-count w(n)(HW(n — 1) + |logy(n—1)] — 1).




For any n, there is a parallel addition chain for n with the minimal depth [log,(n)] and
involving HW (n) + |log,(n)| — 1 additions.

2k oki+l ... 9ok Dko+1 .. 2k3
0o ... 2k 0 0

64
15

127
31 63 0 ’

.. 2km 0
Z?:l 2ki 0 0 Z:ll 2ki
There is a classical circuit implementing the inversion in Fan with AND-depth
[logy(n —1)] and AND-count w(n)(HW(n — 1) + |log,(n—1)] —1).
m RAIN-128 (an MPC-friendly block cipher, CCS 2022) S-box, the inversion in Fyis:
1 2 4 8
A= [ 1 0

16 32
3 7
AND-depth 7 and AND-count 24057.

[m]

=



Implementing the Inversion in Fyom

m Tower field structure: a = ag%" + aif3,
o = a1 + af, b=a-a® = aa " + (3 +a3)F2"H + apar B2

and a = b 1a:8%" + b LagB.
m Three Steps: (1) compute b € Fam; (2) b71; (3) b1ay, b~ Lap;



Implementing the Inversion in Fyom

m Tower field structure: a = ag%" + aif3,
o = a1 + af, b=a-a® = aa " + (3 +a3)F2"H + apar B2
and a1 = b 122" + b 1agp.
m Three Steps: (1) compute b € Fam; (2) b71; (3) b1ay, b~ Lap;

m Merge Step (2) (compute a parallel addition chain of m — 1) and (3):
1 2 3Ha:

123
A1:|:100} = Ag: 1 153(10 353&0
11 EB al 0
b o pt002 l(b; piote A2, pl0102 4})([)1002(11 b0z, = p~1g,
plooz X0 b1002a0 ‘ b1002a0 «p10102 b11102ag _ b71a0

1005 Xa1 1004 100
b002_>b002a1 'boozal



Let m—1=>57 25 with0< ki < ko < --- < ks and s > 2. If ks > [log, (>

s—1 nk;

1 27)]

i=1 ’

then a~! € Fyem can be implemented by a classical circuit with the minimal AND-depth

[logo(2m —1)] and AND-count w(m)(HW(m — 1) + [logo(m — 1) | + 3).
1 2 . 2k1 2k1+1 . 2k2 2k2+1 2k 1 2k —1+1 . 2‘(5 0
A =
0 0 2 0 0 $L2 o 0 TR

m AES S-box: AND-depth 3, AND-count 42 (Asiacrypt 2022, AND-count 78).



m Convert to Clifford+ T circuit with our new conversion algorithm.

Table: Clifford+T circuits (including uncomputation) for the AES S-box with T-depth 3.

Type #CNOT #1qClifford #T #M T-depth Full Depth Width Source

¢0/¢*  1396/1398 494 312 78 3 119 218/226  Asiacrypt 2022
¢ 1110 448 264 66 3 92 129 IEEE TC 2024

e/c*  827/856 266/298 168 34/42 3 85/87 89/97 This work




New Results for Implementing Quantum Oracles for AES

Table: The Costs of Grover Oracles based on the Pipeline Structure.
#CNOT #1qClifford #T #M T-depth Full Depth Width Source
456040 179200 105600 26400 60 1802 3796 IEEE TC 2024
353160 119200 67200 16800 60 1782 3156 This work
Table: The Costs of Encryption Oracles based on the Interlacing-Uncompute Structure.
#CNOT #1qClifford #T #M T-depth Full Depth Width Source
364360 144584 84480 21120 33 1078 4128 IEEE TC 2024
281896 96584 53760 13440 33 1066 3104 This work
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Implementing Nonlinear Functions with the Minimal Width



Minimal-width NCT implementations

m An invertible vectorial Boolean function Fis a permutation P on [F7.
m It always has an in-place NCT implementation:

» P is even: 0 ancilla qubit, minimal-width= n

» P is odd: 1 ancilla qubit, minimal-width=n+ 1

@ Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, John P. Hayes: Synthesis of reversible
logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6): 710-722 (2003)



Minimal-width NCT implementations

m An invertible vectorial Boolean function Fis a permutation P on [F7.
m It always has an in-place NCT implementation:

» P is even: 0 ancilla qubit, minimal-width= n

» P is odd: 1 ancilla qubit, minimal-width=n+ 1

@ Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, John P. Hayes: Synthesis of reversible
logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6): 710-722 (2003)

m How to obtain the minimal-width implementations?

m AES S-box: [PQCrypto 2016, Grassl et al.] 9 qubits with no more than 9695
T-gates and 12631 Clifford gates. The specific circuit was not presented.



SAT-based Method

m < 5 qubit: at most one Toffoli gate in each layer.

mF=8o0ToS 10085 07081071 08g: T corresponds a Toffoli gate, S
corresponds to all possible affine transformation.



SAT-based Method

m < 5 qubit: at most one Toffoli gate in each layer.

mF=8S0To0S10---08 07081071 08: T corresponds a Toffoli gate, S
corresponds to all possible affine transformation.

> Affine Layers: Vie{l,...,w},Vje{O Gk Bij= A 4 DAL+ D,

for some Boolean variables c(ll?i, Cey W, ) and d(J)
> Toffoli layers: Vjc {1,... k}, Asj=Bs 1)+ By 1) Bo1), and Ajj = B; iy if
i#3.

> Inputs and outputs: Vi€ {1,...,n}, Aio = x;, Bix = filx1, x2, ..., xpn).
> Ancilla qubit (for an odd F): If w=n+1, A,o =0 and B, x = 0.



Improve the Encoding Scheme

m Exclude equivalent solutions (Fix the Toffoli gate):

> 7i;x = Rewire o 71 2.3 o Rewire

U
S107Tijk0S2 = (S10Rewire)o T30 (Rewire71 08)=8]0T12308)



Improve the Encoding Scheme

m Exclude equivalent solutions (Fix the Toffoli gate):

> 7i;x = Rewire o 71 2.3 o Rewire

U
S107Tijk0S2 = (S10Rewire)o T30 (Rewire71 08)=8]0T12308)

m Meet-in-the-Middle: Quantum circuits are reversible. Build the equations
forward and backward respectively, then meet in the middle.

» Should add some constrains to ensure the affine layers are invertible.



Applications

Table: Costs of the 5-qubit quantum circuits for the x function of SHA3.

Type #NOT #CNOT #Toffoli  Width  Toffoli-depth  Full Depth Source

NCT 12 0 7 5 7 10 This work

Type #CNOT  #1qClifford #T Width T-depth Full Depth Source

79 24 70 12 30 103 eprint 2023

Clifford+T 49 24 49 5 21 66 This work

m Implementing x requires at least 5 Toffoli gates without width limit.
Toffoli-count 7 is almost optimal.



Applications

Table: Costs of the 5-qubit quantum circuits for the x function of SHA3.

Type #NOT #CNOT #Toffoli  Width  Toffoli-depth  Full Depth Source

NCT 12 0 7 5 7 10 This work

Type #CNOT  #1qClifford #T Width T-depth Full Depth Source

79 24 70 12 30 103 eprint 2023

Clifford+T 49 24 49 5 21 66 This work

m Implementing x requires at least 5 Toffoli gates without width limit.
Toffoli-count 7 is almost optimal.

Table: Costs of the 5-qubit quantum circuit for the S-box of ASCON.

Type #NOT  #CNOT  #Toffoli  Width  Toffoli-depth  Full Depth Source

NCT 10 38 7 5 7 44 This work




Method Based on MCT Implementations

m ("X gate: an MCT (Multiple Controlled Toffoli) gate with m control qubits, maps
X1, X2, ++ s Xk) [Xkr1) tO X1, X2,y Xek) [Xky1 D xaxa - Xk)

m COX= NOT, C'X = CNOT, C?X = Toffoli.



Method Based on MCT Implementations

m ("X gate: an MCT (Multiple Controlled Toffoli) gate with m control qubits, maps
|X17X2a to 7Xk> ‘Xk+1> to ’X17X2’ T 7Xk> |Xk+1 @D x1xp - - - Xk>

m COX= NOT, C'X = CNOT, C?X = Toffoli.

m Our idea:
Construct an MCT implementation without ancilla qubit;

Decompose each CKX to Toffoli gates with at most one ancilla qubit.



Decomposition of C"X

Lemma (Physical Review A 1995, Barenco et al.)

A C™X gate can be implemented by two CPX gates and two (one) C9X gate and one
dirty (clean) ancilla qubit, where p+g=m+1
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Figure: Implementing a C" X gate with one ancilla qubit.



Decomposition of C"X

Lemma (Physical Review A 1995, Barenco et al.)

A C™X gate with m > 3 can be implemented by 4(m — 2) Toffoli gates and m — 2 ancilla
qubits(dirty qubits).
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Figure: Implementing a C°X gate with three dirty ancilla qubits.



Decomposition of C"X

Lemma (Physical Review A 1995, Barenco et al.)

A C™X gate with m > 3 can be implemented by 4(m — 2) Toffoli gates and m — 2 ancilla
qubits(dirty qubits).
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Figure: Implementing a C°X gate with three dirty ancilla qubits.

= With on ancilla qubit (dirty or clean), one can decompose C" X into Toffoli gates.



MCT Implementations from Tensor Decomposition

@ Lee et al.: An Algorithm for Reversible Logic Circuit Synthesis Based on Tensor
Decomposition. arXiv:2107.04298, 2021

m MiMy_1---MiPp=Pr1® b

m P,_1 only involve the first n — 1 wires. Recursively decompose P,_1.



MCT Implementations from Tensor Decomposition

@ Lee et al.: An Algorithm for Reversible Logic Circuit Synthesis Based on Tensor
Decomposition. arXiv:2107.04298, 2021

s MiMy_1---MiPp=Pnr1®h
m P,_1 only involve the first n — 1 wires. Recursively decompose P,_1.

m We can obtain a MCT decomposition consisting of {X, C1.X, C?X,..., C""1X}
» For an even permutation, the decomposition does not contain C"~1X in most cases.

» Combing the decomposition of C™X, we can obtain the minimal-width NCT circuit for
Ph.



Minimal-width Implementations for the AES S-box

m Tensor Decomposition based method + SAT-based method (for 5-qubit sub-circuits)

Table: Costs of the 9-qubit NCT circuit for the AES S-box.

#NOT #CNOT # Toffoli Width Toffoli-depth Full Depth

233 885 833 9 793 1594

Table: Costs of different 9-qubit Clifford+ T circuits for the AES S-box.

#Clifford (CNOT, 1qClifford) #T Width ~ T-depth  Full Depth Source
<12631(-,-) < 9295 9 - - PQCrypt 16
7465 (6028, 1437) 3783 9 1501 7180 This work

13008 (10633, 2375) 3447 9 1274 9954 This work (T-par)




Minimal-width Implementations for a Pair of S-boxes

m Implementing a pair of S-box, (51, S2): use a qubit allocated for implementing S, as
the dirty ancilla qubit when implementing S;, and vice versa.

Table: Costs of the 16-qubit quantum circuits for a pair of AES S-boxes.

Type #NOT #CNOT  #Toffoli  Width  Toffoli-depth  Full Depth

NCT 502 1770 2140 16 1714 2990

Type #1qClifford #CNOT #T Width T-depth Full Depth
Clifford4+T 3628 14786 9008 16 2949 15253

Clifford+T (T-par) 5066 23976 8360 16 2774 18883




Minimal-width Implementations for a Pair of S-boxes

m Implementing a pair of S-box, (51, S2): use a qubit allocated for implementing S, as
the dirty ancilla qubit when implementing S;, and vice versa.

Table: Costs of the 16-qubit quantum circuits for a pair of AES S-boxes.

Type #NOT #CNOT  #Toffoli  Width  Toffoli-depth  Full Depth
NCT 502 1770 2140 16 1714 2990

Type #1qClifford #CNOT #T Width T-depth Full Depth
Clifford4+T 3628 14786 9008 16 2949 15253
Clifford+T (T-par) 5066 23976 8360 16 2774 18883

m We can construct a 256-qubit quantum circuit of AES-128, achieving the theoretical
minimum.



Thank you for your attention!
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