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NIST PQC Standardisation: Additional signatures
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Main interest: short signatures and fast algorithms.

Multivariate cryptography
Public key: a from Fg — Fg':

x5 P(x) = (p1(x), - ., (X))
Secret key: a way to find x € Fg such that:

P(x) = H(message)
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Crash course on polynomial systems

Algebra
The system P(x) = 0 generates an
Z = (p1(x), .-, Pm(x)) T=(x*>—y*2? 4+ 2%) € R[x, y, 2]

T:={>1"1api(x),(ai) € Fq[x]™}
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Crash course on polynomial systems

Algebra

The system P(x) = 0 generates an

Z = (p1(x), .-, Pm(x)) T=(x*>—y*2? 4+ 2%) € R[x, y, 2]
I :={>"1 aipi(x), (a;) € Fq[x]™}

Geometry

This ideal defines a

V(Z) = {x € F,,Vp € T,p(x) = 0} |

V(Z) in R3? [Cox, Little, O'Sheal]
Dimension of a variety

Let (H;)ien be hyperplanes and V a variety. dim V = 0 if V is finite, and

dmV =dif VA H;N...N Hy has dimension 0. 3/14
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Quadratic map P(x) : Fg — Fg' generating 7 = (p1, ..., pm), with n > 2m.

Private key (Algebraic point of view)

Quadratic map F(x) : Fg — Fg' linear in xq,. .., x, (oil variables).
Linear change of variables A € GL,(F) such that P = F o A.

Private key (Geometric point of view)

Linear subspace O of dimension o such that O C V(7).

® First o columns of the secret matrix A~! span O.

® |n UOV, o = m, but not always the case in

® V(Z) is a complete intersection if n > 2m: dim V(Z) = n— m. i



The Kipnis-Shamir attack against (U)OV
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The Kipnis-Shamir attack against (U)OV

P(x)=(x"Pix,...,x"Ppx), dimO=m

From quadratic forms to linear algebra

If n=2m, then O is an invariant subspace of Pi_le. Poly-time cryptanalysis.

Generalisation to UOV

m—1
x € O is an of P13 y;P; with probability ~ g™~". Exp-time.
i=1

Previous work

[KS'98] computes singular points of the intersection of two quadrics. [Luyten '23]

[KPG'99] computes singular points of V/(Z). Beullens, Castryck '23 )
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Contributions
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Contributions

Objective: characterize the singular locus of V/(Z) and propose new algebraic attacks.
Z={p1,...,Pm) CFq[x], dim(O) = o.

Dimension of the singular locus of V(Z) (Th. 3.1)

Suppose 7 is radical of codimension m, and n > m + o. Then
dimSing(V(Z))NO >20+m—n—-1

Generic smoothness of a singular variety (Th. 3.2)

Lt K=Qor K=Fp,p>1.
For a UQV variety , Sing(V(Z)) C O.

Application: Singular point attack on UOV+

The security of UOV-} was overestimated by a factor g*.

This improves the cryptanalysis by factors 22,218 237 (1, 1, V).
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Singular points

Let Z = {(p1,..., pm) be a radical ideal of codimension m.

Definition (Tangent space at a non-singular point)
The tangent space of V at x € V is T,V := ker,(Jacp(x))

y

y2=x3-3x+2inR? x> —y?224+ 22 =0inR3

7/14



Singular points

Let Z = {(p1,..., pm) be a radical ideal of codimension m.

Definition (Tangent space at a non-singular point)
The tangent space of V at x € V is T,V := ker,(Jacp(x))

X

y2=x3-3x+2inR? x> —y?224+ 22 =0inR3
Singular point: (1,0)

7/14



Singular points

Let Z = {(p1,..., pm) be a radical ideal of codimension m.

Definition (Tangent space at a non-singular point)
The tangent space of V at x € V is T,V := ker,(Jacp(x))

X

y2=x3-3x+2inR? x> —y?224+ 22 =0inR3
Singular point: (1,0) Singular points: line (x=z=0)

7/14



Singular points

Let Z = (p1,...,pm) be a ideal of

Definition (Tangent space at a non-singular point)

The of Vat x € Vis T,V := ker,(Jacp(x))
y2=x3-3x+2inR? x> —y?224+ 22 =0inR3

Singular point: (1,0) Singular points: line (x=z=0)

Definition (Singular points)

x € V(Z)\ {0} is if Jacp(x) has rank less than m.
7/14



Structured equations yield a structured Jacobian

Algebraic private key [Kipnis, Patarin, Goubin, 1999]
Private key F: m quadratic polynomials linear in xi, ..., Xo.
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Structured equations yield a structured Jacobian

Algebraic private key [Kipnis, Patarin, Goubin, 1999]

Private key F: m quadratic polynomials in xq,...,Xo-

Secret Jacobian

The Jacobian of F(x) has a special shape when x € O:

Where and J € Fy[xq,. .. ,x,,]mx(”_o).

Dimension of the singular locus of V/(Z)
dim Sing(V(Z)) > 2dim(O)+ m—n—1 8/14



Sing(V/(Z)) leaks the secret key

Generic smoothness: Thom’s weak transversality theorem

In characteristic 0, generic complete intersections are smooth.

9/14



Sing(V/(Z)) leaks the secret key

Generic smoothness: Thom’s weak transversality theorem

In characteristic 0, generic complete intersections are

Generic smoothness of a singular variety
Let K=Qor K=TFp,p>1.
For a UQV variety , Sing(V(Z)) C O.

9/14



Sing(V/(Z)) leaks the secret key

Generic smoothness: Thom’s weak transversality theorem

In characteristic 0, generic complete intersections are

Generic smoothness of a singular variety
Let K=Qor K=TFp,p>1.
For a UQV variety , Sing(V(Z)) C O.

Geometric interpretation of

Kipnis-Shamir [KPG'99] is a (hybrid) singular point computation. Support previous
analyses by weakening hypotheses and by estimating |Sing(V/(Z))|r, with the
Lang-Weil bound.
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Application: Study of UOV}/VOX




Hide O with the 1 perturbation

uov+ [Faugeére, Macario-Rat, Patarin, Perret 2022]
Start with a UOV secret key, replace t < 8 polynomials by , and
mix. P=SoFoA

Idea: Tradeoff between signing time and key size.

Analysis: O ¢ V(Z) = key attacks on UOV+ must invert S.
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Hide O with the 1 perturbation

uov+ [Faugeére, Macario-Rat, Patarin, Perret 2022]
Start with a UOV secret key, replace t < 8 polynomials by , and
mix. P=SoFoA

Idea: Tradeoff between signing time and key size.

Analysis: O ¢ V(Z) = key attacks on UOV+ must invert S.

Geometric interpretation
Let Z = (P(x)). V(Z) is the intersection of a with t generic quadrics.

—— ——
Generic quadrics  UQOV variety

Dimension computation

The £ perturbation reduces the dimension of the singular locus by at most
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From singular points to a key recovery attack
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From singular points to a key recovery attack

V(Z) is the public key variety, V() is the underlying UOV variety.

Singular points (still) leak the trapdoor

Sing(V/(Z)) c Sing(V(J)) Cc O

Singular points of V/(Z)

~ q3°72t="=1 singular points of V/(Z), and P(x) = 0, with g°~! candidates.
Expected cost: O(g"~°+2tpv). Kipnis-Shamir [KPG'99].

Singular points of V(7)

~ q3°~t="=1 singular points of V/(7), with g°~! candidates.

Expected number of trials: O(g"~2°%t)

Can we decide "x € O?" faster than O(g'n®) ? 11/14
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Adapting “x € O?” to UOV efficiently

Previous result for UOV [P. 2024]
Decide x € O7 in polynomial time: x € O = O C T, V.

Tangent spaces again !
xeO — ONT,V

Restricting to an easier UOV{ instance

Pi1,v(x) is a UOV+ instance with o equations but n — o + 1 variables and an

Distinguisher
x €0 = V(P1,v(x)) has . Solved in polynomial time.

12/14
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Application: New attack on UOV T /VOX

“x € O?” in polynomial time

Decide “x € O?" in O((”_2°I2t_3)2(”_2";2”1)) with :

Singular points attack and asymptotic result
of V(J) leak the trapdoor without inverting S:

2
n—20 n—2o0+2t—3 n—20+2t+1
oy ) )
——

4 2

# trials

Cost of each trial from “xeO7?/

Previous result

This attack improves the attack which required:

O(qnf2o+2tnw)

[Cogliati, Faugére, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]
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Practical results and bit complexity

Parameters | [l Vv
log, gates 39 41 43
Timing on my laptop || 1.8s | 5.5s5 | 15.4s

Figure 1: “x € O?" for UOVF} with msolve? on a laptop.
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Practical results and bit complexity

Parameters | [l Vv
log, gates 39 41 43
Timing on my laptop || 1.8s | 5.5s5 | 15.4s

Figure 1: “x € O?" for UOVF} with msolve? on a laptop.

We add log,(q) x (n — 20+ t) to obtain the full cost:

Parameters I " Vv
Security level (log, gates) || 143 | 207 | 272
Kipnis-Shamir (log, gates) || 166 | 233 | 313

This work (log, gates) 140 | 188 | 243

Figure 2: Full attack on UOV.

14/14
%see https://msolve.lip6.fr/ /



Thank you for your attention!
Singular points of UOV

® V(Z) has a (large) positive-dimensional singular locus.

® Sing(V(Z)) C O generically.
e Algebraic singular points attack does not threaten UOV.

® Enumerative singular points attack is Kipnis-Shamir.

Singular points of UOV}/VOX

® 1 transform does not hide (all) singularities.

® Target singularities instead of “obvious” ones.

® Adapt “x € O?" to UOVTF efficiently.
® Improved cryptanalysis of UOVT.
14/14

Code and logs available online : https://github.com/pi-r2/SingPoints
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A key geometric property: dimension

Intuition of dimension from physics

p1(x), ..., pm(x) : m “independant” constraints, n variables
— n — m degrees of freedom in V(Z).
This is correct if p1,...,pm is a
y2=x3—-3x+2inR? x> —y?22 + 22 in R3

Figure 3: A has dimension 1 Figure 4: A has dimension n-1
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An enumerative approach to the computation of singular points

x € Fg\ {0}, 3y e F7"\ {0}
x € Sing(V(Z)) <= {P(x)=0
y € ker (JacP(x)T)

The [Kipnis, Shamir '98] attack computes singular points 3
x€FgyeFy
x € Sing(V(T)) — ({P(x)=0
m—1
X € ker (Pml > yiPi— yml,,)
i=1

m

1
— Xx is an of P13 yiP;.
1

3[Luyten 2023], [Castryck, Beullens 2023]
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