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Context: Post Quantum Cryptography

NIST PQC Standardisation: Additional signatures
• Round 1: 11/40 schemes based on polynomial systems
• Round 2: 4/14 (UOV, MAYO, SNOVA, QR-UOV)

Main interest: short signatures and fast algorithms.

Multivariate cryptography
Public key : a polynomial map from Fn

q 7→ Fm
q :

x 7→ P(x) = (p1(x), . . . , pm(x))

Secret key : a way to find preimages x ∈ Fn
q such that:

P(x) = H(message)
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Crash course on polynomial systems

Algebra
The system P(x) = 0 generates an ideal
I = ⟨p1(x), . . . , pm(x)⟩

I := {
∑m

i=1 aipi(x), (ai) ∈ Fq[x]m}

I = ⟨x2 − y2z2 + z3⟩ ∈ R[x , y , z ]

Geometry
This ideal defines a variety

V (I) = {x ∈ Fn
q, ∀p ∈ I, p(x) = 0}

V (I) in R3 [Cox, Little, O’Shea]

Dimension of a variety
Let (Hi)i∈N be generic hyperplanes and V a variety. dim V = 0 if V is finite, and
dim V = d if V ∩ H1 ∩ . . . ∩ Hd has dimension 0.
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Unbalanced Oil and Vinegar [Kipnis, Patarin, Goubin, 1999]

UOV Public key
Quadratic map P(x) : Fn

q 7→ Fm
q generating I = ⟨p1, . . . , pm⟩, with n > 2m.

Private key (Algebraic point of view) [Patarin 1997]
• Quadratic map F(x) : Fn

q 7→ Fm
q linear in x1, . . . , xo (oil variables).

• Linear change of variables A ∈ GLn(Fq) such that P = F ◦ A.

Private key (Geometric point of view) [Kipnis, Shamir 1998]
Linear subspace O of dimension o such that O ⊂ V (I).

Observations

• First o columns of the secret matrix A−1 span O.

• In UOV, o = m, but not always the case in variants.
• V (I) is a complete intersection if n ≥ 2m: dim V (I) = n − m.
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The Kipnis-Shamir attack against (U)OV

P(x) = (xT P1x, . . . , xT Pmx), dim O = m

From quadratic forms to linear algebra [Kipnis-Shamir 1998]
If n = 2m, then O is an invariant subspace of P−1

i Pj . Poly-time cryptanalysis.

Generalisation to UOV [Kipnis, Patarin, Goubin 1999]

x ∈ O is an eigenvector of P−1
m

m−1∑
i=1

yiPi with probability ≈ q2m−n. Exp-time.

Previous work
[KS’98] computes singular points of the intersection of two quadrics. [Luyten ’23]
[KPG’99] computes singular points of V (I). Beullens, Castryck ’23
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Contributions

Objective: characterize the singular locus of V (I) and propose new algebraic attacks.

I = ⟨p1, . . . , pm⟩ ⊂ Fq[x], dim(O) = o.

Dimension of the singular locus of V (I) (Th. 3.1)
Suppose I is radical of codimension m, and n > m + o. Then

dim Sing(V (I)) ∩ O ≥ 2o + m − n − 1

Generic smoothness of a singular variety (Th. 3.2)
Let K = Q or K = Fp, p ≫ 1.
For a UOV variety generic in the Zariski sense, Sing(V (I)) ⊂ O.

Application: Singular point attack on UOV+̂
The security of UOV+̂ was overestimated by a factor qt .
This improves the cryptanalysis by factors 22, 218, 237 (I, III, V).
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Singular points

Let I = ⟨p1, . . . , pm⟩ be a radical ideal of codimension m.
Definition (Tangent space at a non-singular point)
The tangent space of V at x ∈ V is TxV := kerr (JacP(x))

y2 = x3 − 3x + 2 in R2 x2 − y2z2 + z3 = 0 in R3

Singular points: line (x=z=0)

Definition (Singular points)
x ∈ V (I) \ {0} is singular if JacP(x) has rank less than m.
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Structured equations yield a structured Jacobian

Algebraic private key [Kipnis, Patarin, Goubin, 1999]
Private key F : m quadratic polynomials linear in x1, . . . , xo.

Secret Jacobian [P. 2025]
The Jacobian of F(x) has a special shape :

JacF (x) =


1
...

m
1 o o + 1 n

J2



Where J1 ∈ Fq[xo+1, . . . , xn]m×o and J2 ∈ Fq[x1, . . . , xn]m×(n−o).

Dimension of the singular locus of V (I) [P. 2025]
dim Sing(V (I)) ≥ 2 dim(O) + m − n − 1
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Sing(V (I)) leaks the secret key

Generic smoothness: Thom’s weak transversality theorem
In characteristic 0, generic complete intersections are smooth.

Generic smoothness of a singular variety [P. 2025]
Let K = Q or K = Fp, p ≫ 1.
For a UOV variety generic in the Zariski sense, Sing(V (I)) ⊂ O.

Geometric interpretation of Kipnis-Shamir [P. 2025]
Kipnis-Shamir [KPG’99] is a (hybrid) singular point computation. Support previous
analyses by weakening hypotheses and by estimating |Sing(V (I))|Fq with the
Lang-Weil bound.
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Application: Study of UOV+̂/VOX



Hide O with the +̂ perturbation

UOV+̂ [Faugère, Macario-Rat, Patarin, Perret 2022]
Start with a UOV secret key, replace t ≤ 8 polynomials by random polynomials, and
mix. P = S ◦ F ◦ A
Idea: Tradeoff between signing time and key size.
Analysis: O ̸⊂ V (I) =⇒ key attacks on UOV+̂ must invert S.

Geometric interpretation [P. 2025]
Let I = ⟨P(x)⟩. V (I) is the intersection of a UOV variety with t generic quadrics.

V (I) = V (G)︸ ︷︷ ︸
Generic quadrics

∩ V (J )︸ ︷︷ ︸
UOV variety

Dimension computation [P. 2025]
The +̂ perturbation reduces the dimension of the singular locus by at most 2t.
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From singular points to a key recovery attack

V (I) is the public key variety, V (J ) is the underlying UOV variety.
Singular points (still) leak the trapdoor

Sing(V (I)) ⊂ Sing(V (J )) ⊂ O

Singular points of V (I)
≈ q3o−2t−n−1 singular points of V (I), and P(x) = 0, with qo−1 candidates.

Expected cost: O(qn−o+2tnω). This is Kipnis-Shamir [KPG’99].

Singular points of V (J )
≈ q3o−t−n−1 singular points of V (J ), with qo−1 candidates.

Expected number of trials: O(qn−2o+t) but P(x) ̸= 0.

Can we decide “x ∈ O?” faster than O(qtnω) ?
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Adapting “x ∈ O?” to UOV+̂ efficiently

Previous result for UOV [P. 2024]
Decide x ∈ O? in polynomial time: x ∈ O =⇒ O ⊂ TxV .

Tangent spaces again
x ∈ O =⇒ O ∩ TxV large dimension.

Restricting to an easier UOV+̂ instance
P|Tx V (x) is a UOV+̂ instance with o equations but n − o + 1 variables and an
o − t dimensional UOV trapdoor.

Distinguisher [P. 2025]
x ∈ O =⇒ V (P|Tx V (x)) has constant codimension. Solved in polynomial time.
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Application: New attack on UOV+̂/VOX

“x ∈ O?” in polynomial time [P. 2025]

Decide “x ∈ O?” in O(
(n−2o+2t−3

4
)2(n−2o+2t+1

2
)
) with tangent spaces.

Singular points attack and asymptotic result [P. 2025]
Singular points of V (J ) leak the trapdoor without inverting S:

O(qn−2o+t︸ ︷︷ ︸
# trials

·
(

n − 2o + 2t − 3
4

)2(n − 2o + 2t + 1
2

)
︸ ︷︷ ︸

Cost of each trial from “x∈O?′′

)

Previous result [VOX]1

This attack improves the Kipnis-Shamir attack which required:

O(qn−2o+2tnω)

1
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Practical results and bit complexity

Parameters I III V
log2 gates 39 41 43

Timing on my laptop 1.8s 5.5s 15.4s

Figure 1: “x ∈ O?” for UOV+̂ with msolve2 on a laptop.

We add log2(q) × (n − 2o + t) to obtain the full cost:

Parameters I III V
Security level (log2 gates) 143 207 272
Kipnis-Shamir (log2 gates) 166 233 313

This work (log2 gates) 140 188 243

Figure 2: Full attack on UOV+̂.

2see https://msolve.lip6.fr/ 14/14
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Thank you for your attention!

Singular points of UOV
• V (I) has a (large) positive-dimensional singular locus.
• Sing(V (I)) ⊂ O generically.
• Algebraic singular points attack does not threaten UOV.
• Enumerative singular points attack is Kipnis-Shamir.

Singular points of UOV+̂/VOX

• +̂ transform does not hide (all) singularities.
• Target underlying singularities instead of “obvious” ones.
• Adapt “x ∈ O?” to UOV+̂ efficiently.
• Improved cryptanalysis of UOV+̂.

Code and logs available online : https://github.com/pi-r2/SingPoints
14/14



A key geometric property: dimension

Intuition of dimension from physics
p1(x), . . . , pm(x) : m “independant” constraints, n variables
=⇒ n − m degrees of freedom in V (I).

This is correct if p1, . . . , pm is a regular sequence.

y2 = x3 − 3x + 2 in R2

Figure 3: A curve has dimension 1

x2 − y2z2 + z3 in R3

Figure 4: A hypersurface has dimension n-1
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An enumerative approach to the computation of singular points

Bilinear modeling

x ∈ Sing(V (I)) ⇐⇒


x ∈ Fn

q \ {0}, ∃y ∈ Fm
q \ {0}

P(x) = 0
yT JacP(x) = 0

The [Kipnis, Shamir ’98] attack computes singular points

x ∈ Sing(V (I)) ⇐⇒


x ∈ Fn

q, y ∈ Fm
q

P(x) = 0

x ∈ ker
(

P−1
m

m−1∑
i=1

yiPi − ymIn
)

=⇒ x is an eigenvector of P−1
m

m−1∑
i=1

yiPi .
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Structured equations yield a structured Jacobian bis

Underlying UOV Jacobian
Jacobian of F when x ∈ O:

JacF (x) =


t + 1
...
o

1 o o + 1 n

J1

0 J2



Observation
The singular locus of V (I) contains (SingV (J )) ∩ V (J).

Dimension computation [P. 2025]
+̂ reduces the dimension of the singular locus by at most 2t.
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