Singular points of UOV and VOX

Pierre Pébereau Sorbonne Université, LIP6, CNRS, Thales SIX

May 2025

Context: Post Quantum Cryptography

NIST PQC Standardisation: Additional signatures

- Round 1: 11/40 schemes based on polynomial systems
- Round 2: 4/14 (UOV, MAYO, SNOVA, QR-UOV)

Main interest: short signatures and fast algorithms.

Context: Post Quantum Cryptography

NIST PQC Standardisation: Additional signatures

- Round 1: 11/40 schemes based on polynomial systems
- Round 2: 4/14 (UOV, MAYO, SNOVA, QR-UOV)

Main interest: short signatures and fast algorithms.

Multivariate cryptography

Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^m$:

 $\boldsymbol{x}\mapsto \mathcal{P}(\boldsymbol{x})=(p_1(\boldsymbol{x}),\ldots,p_m(\boldsymbol{x}))$

Context: Post Quantum Cryptography

NIST PQC Standardisation: Additional signatures

- Round 1: 11/40 schemes based on polynomial systems
- Round 2: 4/14 (UOV, MAYO, SNOVA, QR-UOV)

Main interest: short signatures and fast algorithms.

Multivariate cryptography

Public key: a polynomial map from $\mathbb{F}_q^n \mapsto \mathbb{F}_q^m$:

$$\boldsymbol{x}\mapsto \mathcal{P}(\boldsymbol{x})=(p_1(\boldsymbol{x}),\ldots,p_m(\boldsymbol{x}))$$

Secret key: a way to find preimages $\boldsymbol{x} \in \mathbb{F}_q^n$ such that:

 $\mathcal{P}(\mathbf{x}) = \mathcal{H}(message)$

Crash course on polynomial systems

Algebra

The system $\mathcal{P}(\mathbf{x}) = 0$ generates an ideal $\mathcal{I} = \langle p_1(\mathbf{x}), \dots, p_m(\mathbf{x}) \rangle$ $\mathcal{I} := \{\sum_{i=1}^m a_i p_i(\mathbf{x}), (a_i) \in \mathbb{F}_q[\mathbf{x}]^m\}$

$$\mathcal{I} = \langle x^2 - y^2 z^2 + z^3 \rangle \in \mathbb{R}[x, y, z]$$

Crash course on polynomial systems

Algebra

The system $\mathcal{P}(\mathbf{x}) = 0$ generates an ideal $\mathcal{I} = \langle p_1(\mathbf{x}), \dots, p_m(\mathbf{x}) \rangle$

$$\mathcal{I} := \{\sum_{i=1}^m a_i p_i(\boldsymbol{x}), (a_i) \in \mathbb{F}_q[\boldsymbol{x}]^m\}$$

Geometry

This ideal defines a variety

$$V(\mathcal{I}) = \{ oldsymbol{x} \in \overline{\mathbb{F}}_q^n, orall p \in \mathcal{I}, p(oldsymbol{x}) = 0 \}$$

$$\mathcal{I} = \langle x^2 - y^2 z^2 + z^3 \rangle \in \mathbb{R}[x, y, z]$$

 $V(\mathcal{I})$ in \mathbb{R}^3 [Cox, Little, O'Shea]

Crash course on polynomial systems

Algebra

The system $\mathcal{P}(\mathbf{x}) = 0$ generates an ideal $\mathcal{I} = \langle p_1(\mathbf{x}), \dots, p_m(\mathbf{x}) \rangle$

$$\mathcal{I} := \{\sum_{i=1}^m a_i p_i(\mathbf{x}), (a_i) \in \mathbb{F}_q[\mathbf{x}]^m\}$$

Geometry

This ideal defines a variety

$$\mathcal{V}(\mathcal{I}) = \{ oldsymbol{x} \in \overline{\mathbb{F}}_q^n, orall p \in \mathcal{I}, p(oldsymbol{x}) = 0 \}$$

$$\mathcal{I} = \langle x^2 - y^2 z^2 + z^3 \rangle \in \mathbb{R}[x, y, z]$$

 $V(\mathcal{I})$ in \mathbb{R}^3 [Cox, Little, O'Shea]

Dimension of a variety

Let $(H_i)_{i \in \mathbb{N}}$ be generic hyperplanes and V a variety. dim V = 0 if V is finite, and dim V = d if $V \cap H_1 \cap \ldots \cap H_d$ has dimension 0.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map $\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ generating $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, with n > 2m.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(\pmb{x}):\mathbb{F}_q^n\mapsto \mathbb{F}_q^m$$
 generating $\mathcal{I}=\langle p_1,\ldots,p_m
angle$, with $n>2m$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(\pmb{x}):\mathbb{F}_q^n\mapsto \mathbb{F}_q^m$$
 generating $\pmb{\mathcal{I}}=\langle p_1,\ldots,p_m
angle$, with $n>2m$.

Private key (Algebraic point of view)

[Patarin 1997]

- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

Private key (Geometric point of view)

[Kipnis, Shamir 1998]

Linear subspace \mathcal{O} of dimension o such that $\mathcal{O} \subset V(\mathcal{I})$.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$$
 generating $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, with $n > 2m$.

Private key (Algebraic point of view)

- [Patarin 1997]
- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

Private key (Geometric point of view)

[Kipnis, Shamir 1998]

Linear subspace \mathcal{O} of dimension o such that $\mathcal{O} \subset V(\mathcal{I})$.

Observations

• First *o* columns of the secret matrix A^{-1} span \mathcal{O} .

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(\mathbf{x}): \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$$
 generating $\mathcal{I} = \langle p_1, \dots, p_m \rangle$, with $n > 2m$.

Private key (Algebraic point of view)

- [Patarin 1997]
- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

Private key (Geometric point of view)

[Kipnis, Shamir 1998]

Linear subspace \mathcal{O} of dimension o such that $\mathcal{O} \subset V(\mathcal{I})$.

Observations

- First *o* columns of the secret matrix A^{-1} span \mathcal{O} .
- In UOV, o = m, but not always the case in variants.

[Kipnis, Patarin, Goubin, 1999]

UOV Public key

Quadratic map
$$\mathcal{P}(\boldsymbol{x}):\mathbb{F}_q^n\mapsto\mathbb{F}_q^m$$
 generating $\mathcal{I}=\langle p_1,\ldots,p_m
angle$, with $n>2m$.

Private key (Algebraic point of view)

- Quadratic map $\mathcal{F}(\mathbf{x}) : \mathbb{F}_q^n \mapsto \mathbb{F}_q^m$ linear in x_1, \ldots, x_o (oil variables).
- Linear change of variables $A \in GL_n(\mathbb{F}_q)$ such that $\mathcal{P} = \mathcal{F} \circ A$.

Private key (Geometric point of view)

[Patarin 1997]

[Kipnis, Shamir 1998]

Linear subspace \mathcal{O} of dimension o such that $\mathcal{O} \subset V(\mathcal{I})$.

Observations

- First *o* columns of the secret matrix A^{-1} span \mathcal{O} .
- In UOV, o = m, but not always the case in variants.
- $V(\mathcal{I})$ is a complete intersection if $n \ge 2m$: dim $V(\mathcal{I}) = n m$.

$$\mathcal{P}(\mathbf{x}) = (\mathbf{x}^T P_1 \mathbf{x}, \dots, \mathbf{x}^T P_m \mathbf{x}), \quad \dim \mathcal{O} = m$$

$$\mathcal{P}(\mathbf{x}) = (\mathbf{x}^T P_1 \mathbf{x}, \dots, \mathbf{x}^T P_m \mathbf{x}), \quad \dim \mathcal{O} = m$$

From quadratic forms to linear algebra	[Kipnis-Shamir 1998]		
If $n = 2m$, then \mathcal{O} is an invariant subspace of $P_i^{-1}P_i$.	Poly-time cryptanalysis.		

$$\mathcal{P}(\mathbf{x}) = (\mathbf{x}^T P_1 \mathbf{x}, \dots, \mathbf{x}^T P_m \mathbf{x}), \quad \dim \mathcal{O} = m$$

From quadratic forms to linear algebra[Kipnis-Shamir 1998]If n = 2m then Q is an inversiont subgroup of $P^{-1}P$. Boby time emotions

If n = 2m, then \mathcal{O} is an invariant subspace of $P_i^{-1}P_j$. Poly-time cryptanalysis.

Generalisation to UOV

[Kipnis, Patarin, Goubin 1999]

$$x \in \mathcal{O}$$
 is an eigenvector of $P_m^{-1} \sum_{i=1}^{m-1} y_i P_i$ with probability $\approx q^{2m-n}$. Exp-time.

$$\mathcal{P}(\mathbf{x}) = (\mathbf{x}^T P_1 \mathbf{x}, \dots, \mathbf{x}^T P_m \mathbf{x}), \quad \dim \mathcal{O} = m$$

From quadratic forms to linear algebra

[Kipnis-Shamir 1998]

If n = 2m, then \mathcal{O} is an invariant subspace of $P_i^{-1}P_j$. Poly-time cryptanalysis.

Generalisation to UOV

[Kipnis, Patarin, Goubin 1999]

$$x \in \mathcal{O}$$
 is an eigenvector of $P_m^{-1} \sum_{i=1}^{m-1} y_i P_i$ with probability $\approx q^{2m-n}$. Exp-time.

Previous work

[KS'98] computes singular points of the intersection of two quadrics.[Luyten '23][KPG'99] computes singular points of $V(\mathcal{I})$.Beullens, Castryck '23

Objective: characterize the singular locus of $V(\mathcal{I})$ and propose new algebraic attacks.

$$\mathcal{I} = \langle p_1, \ldots, p_m \rangle \subset \mathbb{F}_q[\mathbf{x}], \quad \dim(\mathcal{O}) = o.$$

Objective: characterize the singular locus of $V(\mathcal{I})$ and propose new algebraic attacks.

 $\mathcal{I} = \langle p_1, \ldots, p_m \rangle \subset \mathbb{F}_q[\mathbf{x}], \quad \dim(\mathcal{O}) = o.$

Dimension of the singular locus of $V(\mathcal{I})$ (Th. 3.1)

Suppose \mathcal{I} is radical of codimension m, and n > m + o. Then dim Sing $(V(\mathcal{I})) \cap \mathcal{O} \ge 2o + m - n - 1$

Objective: characterize the singular locus of $V(\mathcal{I})$ and propose new algebraic attacks.

 $\mathcal{I} = \langle p_1, \ldots, p_m \rangle \subset \mathbb{F}_q[\mathbf{x}], \quad \dim(\mathcal{O}) = o.$

Dimension of the singular locus of $V(\mathcal{I})$ (Th. 3.1)

Suppose \mathcal{I} is radical of codimension m, and n > m + o. Then $\dim \operatorname{Sing}(V(\mathcal{I})) \cap \mathcal{O} \ge 2o + m - n - 1$

Generic smoothness of a singular variety (Th. 3.2)

Let $\mathbb{K} = \mathbb{Q}$ or $\mathbb{K} = \mathbb{F}_p, p \gg 1$.

For a UOV variety generic in the Zariski sense, $Sing(V(\mathcal{I})) \subset \mathcal{O}$.

Objective: characterize the singular locus of $V(\mathcal{I})$ and propose new algebraic attacks.

 $\mathcal{I} = \langle p_1, \ldots, p_m \rangle \subset \mathbb{F}_q[\mathbf{x}], \quad \dim(\mathcal{O}) = o.$

Dimension of the singular locus of $V(\mathcal{I})$ (Th. 3.1)

Suppose $\mathcal I$ is radical of codimension m, and n > m + o. Then $\dim \operatorname{Sing}(V(\mathcal I)) \cap \mathcal O \ge 2o + m - n - 1$

Generic smoothness of a singular variety (Th. 3.2)

Let $\mathbb{K} = \mathbb{Q}$ or $\mathbb{K} = \mathbb{F}_p, p \gg 1$.

For a UOV variety generic in the Zariski sense, $Sing(V(\mathcal{I})) \subset \mathcal{O}$.

Application: Singular point attack on UOV $\hat{+}$

The security of UOV $\hat{+}$ was overestimated by a factor q^t . This improves the cryptanalysis by factors 2^2 , 2^{18} , 2^{37} (I, III, V).

Let $\mathcal{I} = \langle p_1, \dots, p_m \rangle$ be a radical ideal of codimension *m*.

Definition (Tangent space at a non-singular point)

The tangent space of V at $\mathbf{x} \in V$ is $T_{\mathbf{x}}V := \ker_r(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$

Let $\mathcal{I} = \langle p_1, \dots, p_m \rangle$ be a radical ideal of codimension *m*.

Definition (Tangent space at a non-singular point)

The tangent space of V at $\mathbf{x} \in V$ is $T_{\mathbf{x}}V := \ker_r(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$

Let $\mathcal{I} = \langle p_1, \ldots, p_m \rangle$ be a radical ideal of codimension *m*.

Definition (Tangent space at a non-singular point)

The tangent space of V at $\mathbf{x} \in V$ is $T_{\mathbf{x}}V := \ker_{r}(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$

Let $\mathcal{I} = \langle p_1, \ldots, p_m \rangle$ be a radical ideal of codimension *m*.

Definition (Tangent space at a non-singular point)

The tangent space of V at $\mathbf{x} \in V$ is $T_{\mathbf{x}}V := \ker_r(\operatorname{Jac}_{\mathcal{P}}(\mathbf{x}))$

Definition (Singular points)

 $x \in V(\mathcal{I}) \setminus \{0\}$ is singular if $\operatorname{Jac}_{\mathcal{P}}(x)$ has rank less than m.

Algebraic private key

[Kipnis, Patarin, Goubin, 1999]

Private key \mathcal{F} : *m* quadratic polynomials linear in x_1, \ldots, x_o .

Algebraic private key

[Kipnis, Patarin, Goubin, 1999]

Private key \mathcal{F} : *m* quadratic polynomials linear in x_1, \ldots, x_o .

Secret Jacobian

The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape :

$$\operatorname{Jac}_{\mathcal{F}}(\boldsymbol{x}) = \begin{bmatrix} 1 & & & \\ \vdots & & & \\ m & & & \\ 1 \cdots \cdots n & o + 1 \cdots \cdots n \end{bmatrix}$$

Where $J_1 \in \mathbb{F}_q[x_{o+1}, \ldots, x_n]^{m \times o}$ and $J_2 \in \mathbb{F}_q[x_1, \ldots, x_n]^{m \times (n-o)}$.

Private key \mathcal{F} : *m* quadratic polynomials linear in x_1, \ldots, x_o . Secret Jacobian

Algebraic private key

The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape when $\mathbf{x} \in \mathcal{O}$:

$$\operatorname{Jac}_{\mathcal{F}}(\mathbf{x}) = \begin{bmatrix} 1 & & \\ \vdots & & \\ m & & \\ 1 & \cdots & o & o+1 & \cdots & n \end{bmatrix}$$

Where $J_1 \in \mathbb{F}_{a}[x_{o+1}, \dots, x_{n}]^{m \times o}$ and $J_2 \in \mathbb{F}_{a}[x_1, \dots, x_{n}]^{m \times (n-o)}$.

[Kipnis, Patarin, Goubin, 1999]

[P. 2025]

Algebraic private key

[Kipnis, Patarin, Goubin, 1999]

Private key \mathcal{F} : *m* quadratic polynomials linear in x_1, \ldots, x_o .

Secret Jacobian

The Jacobian of $\mathcal{F}(\mathbf{x})$ has a special shape when $\mathbf{x} \in \mathcal{O}$:

Where $J_1 \in \mathbb{F}_q[x_{o+1}, \ldots, x_n]^{m \times o}$ and $J_2 \in \mathbb{F}_q[x_1, \ldots, x_n]^{m \times (n-o)}$.

Dimension of the singular locus of $V(\mathcal{I})$

 $\dim \operatorname{Sing}(V(\mathcal{I})) \geq 2\dim(\mathcal{O}) + m - n - 1$

Generic smoothness: Thom's weak transversality theorem

In characteristic 0, generic complete intersections are smooth.

Generic smoothness: Thom's weak transversality theorem

In characteristic 0, generic complete intersections are smooth.

Generic smoothness of a singular variety

Let $\mathbb{K} = \mathbb{Q}$ or $\mathbb{K} = \mathbb{F}_p, p \gg 1$.

For a UOV variety generic in the Zariski sense, $Sing(V(\mathcal{I})) \subset \mathcal{O}$.

Generic smoothness: Thom's weak transversality theorem

In characteristic 0, generic complete intersections are smooth.

Generic smoothness of a singular variety

Let $\mathbb{K} = \mathbb{Q}$ or $\mathbb{K} = \mathbb{F}_p, p \gg 1$.

For a UOV variety generic in the Zariski sense, $Sing(V(\mathcal{I})) \subset \mathcal{O}$.

Geometric interpretation of Kipnis-Shamir

[P. 2025]

Kipnis-Shamir [KPG'99] is a (hybrid) singular point computation. Support previous analyses by weakening hypotheses and by estimating $|\text{Sing}(V(\mathcal{I}))|_{\mathbb{F}_q}$ with the Lang-Weil bound.

Application: Study of UOV + /VOX

Hide ${\mathcal O}$ with the $\hat{+}$ perturbation

$\mathbf{UOV}\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

Start with a UOV secret key, replace $t \le 8$ polynomials by random polynomials, and mix. $\mathcal{P} = S \circ \mathcal{F} \circ A$

Idea: Tradeoff between signing time and key size.

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Hide ${\mathcal O}$ with the $\hat{+}$ perturbation

$\mathbf{UOV}\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

Start with a UOV secret key, replace $t \le 8$ polynomials by random polynomials, and mix. $\mathcal{P} = S \circ \mathcal{F} \circ A$

Idea: Tradeoff between signing time and key size.

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Geometric interpretation

Let $\mathcal{I} = \langle \mathcal{P}(\mathbf{x}) \rangle$. $V(\mathcal{I})$ is the intersection of a UOV variety with t generic quadrics.

$$V(\mathcal{I}) = \underbrace{V(\mathcal{G})}_{\text{Generic quadrics}} \cap \underbrace{V(\mathcal{J})}_{\text{UOV variety}}$$

[P. 2025]

Hide ${\mathcal O}$ with the $\hat{+}$ perturbation

$\mathbf{UOV}\hat{+}$

[Faugère, Macario-Rat, Patarin, Perret 2022]

Start with a UOV secret key, replace $t \le 8$ polynomials by random polynomials, and mix. $\mathcal{P} = S \circ \mathcal{F} \circ A$

Idea: Tradeoff between signing time and key size.

Analysis: $\mathcal{O} \not\subset V(\mathcal{I}) \implies$ key attacks on UOV $\hat{+}$ must invert \mathcal{S} .

Geometric interpretation

Let $\mathcal{I} = \langle \mathcal{P}(\mathbf{x}) \rangle$. $V(\mathcal{I})$ is the intersection of a UOV variety with t generic quadrics.

$$V(\mathcal{I}) = \underbrace{V(\mathcal{G})}_{\text{Generic quadrics}} \cap \underbrace{V(\mathcal{J})}_{\text{UOV variety}}$$

Dimension computation

The $\hat{+}$ perturbation reduces the dimension of the singular locus by at most **2***t*.

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(m{x})=0$, with q^{o-1} candidates.

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(m{x})=0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t}n^{\omega})$. This is Kipnis-Shamir [KPG'99].

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x})=0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t}n^{\omega})$. This is Kipnis-Shamir [KPG'99].

Singular points of $V(\mathcal{J})$

 $pprox q^{3o-t-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(\mathbf{x})=0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t}n^{\omega})$. This is Kipnis-Shamir [KPG'99].

Singular points of $V(\mathcal{J})$

 $pprox q^{3o-m{t}-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

Expected number of trials: $O(q^{n-2o+t})$ but $\mathcal{P}(\mathbf{x}) \neq 0$.

 $V(\mathcal{I})$ is the public key variety, $V(\mathcal{J})$ is the underlying UOV variety.

Singular points (still) leak the trapdoor

 $\operatorname{Sing}(V(\mathcal{I})) \subset \operatorname{Sing}(V(\mathcal{J})) \subset \mathcal{O}$

Singular points of $V(\mathcal{I})$

 $pprox q^{3o-2t-n-1}$ singular points of $V(\mathcal{I})$, and $\mathcal{P}(m{x})=0$, with q^{o-1} candidates.

Expected cost: $O(q^{n-o+2t}n^{\omega})$. This is Kipnis-Shamir [KPG'99].

Singular points of $V(\mathcal{J})$

 $pprox q^{3o-t-n-1}$ singular points of $V(\mathcal{J})$, with q^{o-1} candidates.

Expected number of trials: $O(q^{n-2o+t})$ but $\mathcal{P}(x) \neq 0$.

Can we decide " $x \in O$?" faster than $O(q^t n^{\omega})$?

Adapting " $x \in O$?" to UOV $\hat{+}$ efficiently

Previous result for UOV

Decide $\mathbf{x} \in \mathcal{O}$? in polynomial time: $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \subset T_{\mathbf{x}}V$.

Adapting " $x \in O$?" to UOV $\hat{+}$ efficiently

Previous result for UOV

[P. 2024]

Decide $\mathbf{x} \in \mathcal{O}$? in polynomial time: $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \subset T_{\mathbf{x}}V$.

Tangent spaces again

 $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \cap T_{\mathbf{x}} V$ large dimension.

Adapting " $x \in \mathcal{O}$?" to UOV $\hat{+}$ efficiently

Previous result for UOV

Decide $\mathbf{x} \in \mathcal{O}$? in polynomial time: $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \subset T_{\mathbf{x}}V$.

Tangent spaces again

 $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \cap T_{\mathbf{x}} V$ large dimension.

Restricting to an easier UOV $\hat{+}$ instance

 $\mathcal{P}_{|T_xV}(\mathbf{x})$ is a UOV+ instance with *o* equations but n - o + 1 variables and an o - t dimensional UOV trapdoor.

Adapting " $x \in \mathcal{O}$?" to UOV $\hat{+}$ efficiently

Previous result for UOV

Decide $\mathbf{x} \in \mathcal{O}$? in polynomial time: $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \subset T_{\mathbf{x}}V$.

Tangent spaces again

 $\mathbf{x} \in \mathcal{O} \implies \mathcal{O} \cap T_{\mathbf{x}} V$ large dimension.

 $\mathcal{P}_{|\mathcal{T}_{x}V}(\mathbf{x})$ is a UOV+ instance with *o* equations but n - o + 1 variables and an o - t dimensional UOV trapdoor.

Distinguisher

 $\mathbf{x} \in \mathcal{O} \implies V(\mathcal{P}_{|T_{\mathbf{x}}V}(\mathbf{x}))$ has constant codimension. Solved in polynomial time.

Application: New attack on UOV $\hat{+}/VOX$

" $x \in \mathcal{O}$?" in polynomial time

Decide " $\mathbf{x} \in \mathcal{O}$?" in $O(\binom{n-2o+2t-3}{4}^2\binom{n-2o+2t+1}{2})$ with tangent spaces.

Application: New attack on UOV $\hat{+}/VOX$

" $x \in \mathcal{O}$?" in polynomial time

1

Decide "
$$\mathbf{x} \in \mathcal{O}$$
?" in $O(\binom{n-2o+2t-3}{4}^2 \binom{n-2o+2t+1}{2})$ with tangent spaces.

Singular points attack and asymptotic result

Singular points of $V(\mathcal{J})$ leak the trapdoor without inverting \mathcal{S} :

$$O(\underbrace{q^{n-2o+t}}_{\# \text{ trials}} \cdot \underbrace{\binom{n-2o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}}_{\text{Cost of each trial from "} x \in \mathcal{O}?''})$$

Application: New attack on UOV $\hat{+}/\text{VOX}$

" $x \in \mathcal{O}$?" in polynomial time

Decide "
$$\mathbf{x} \in \mathcal{O}$$
?" in $O(\binom{n-2o+2t-3}{4}^2 \binom{n-2o+2t+1}{2})$ with tangent spaces.

Singular points attack and asymptotic result

Singular points of $V(\mathcal{J})$ leak the trapdoor without inverting \mathcal{S} :

$$O(\underbrace{q^{n-2o+t}}_{\# \text{ trials}} \cdot \underbrace{\binom{n-2o+2t-3}{4}^2 \binom{n-2o+2t+1}{2}}_{\text{Cost of each trial from "} x \in \mathcal{O}?''})$$

Previous result

This attack improves the Kipnis-Shamir attack which required:

$$O(q^{n-2o+2t}n^{\omega})$$

13/14

[VOX]

[Cogliati, Faugère, Fouque, Goubin, Larrieu, Macario-Rat, Minaud, Patarin, 2023]

Practical results and bit complexity

Parameters	I		V
\log_2 gates	39	41	43
Timing on my laptop	1.8s	5.5s	15.4s

Figure 1: " $x \in \mathcal{O}$?" for UOV $\hat{+}$ with msolve² on a laptop.

²see https://msolve.lip6.fr/

Practical results and bit complexity

Parameters	I		V
\log_2 gates	39	41	43
Timing on my laptop	1.8s	5.5s	15.4s

Figure 1: " $x \in \mathcal{O}$?" for UOV $\hat{+}$ with msolve² on a laptop.

We add $\log_2(q) \times (n - 2o + t)$ to obtain the full cost:

Parameters	I	- 111	V
Security level (log ₂ gates)	143	207	272
Kipnis-Shamir (log ₂ gates)	166	233	313
This work (log ₂ gates)	140	188	243

Figure 2: Full attack on $UOV \hat{+}$.

Thank you for your attention!

Singular points of UOV

- $V(\mathcal{I})$ has a (large) positive-dimensional singular locus.
- $\mathsf{Sing}(V(\mathcal{I})) \subset \mathcal{O}$ generically.
- Algebraic singular points attack does not threaten UOV.
- Enumerative singular points attack is Kipnis-Shamir.

Singular points of UOV $\hat{+}/VOX$

- $\hat{+}$ transform does not hide (all) singularities.
- Target underlying singularities instead of "obvious" ones.
- Adapt " $\mathbf{x} \in \mathcal{O}$?" to UOV $\hat{+}$ efficiently.
- Improved cryptanalysis of UOV $\hat{+}$.

Code and logs available online : https://github.com/pi-r2/SingPoints

A key geometric property: dimension

Intuition of dimension from physics

 $p_1(\mathbf{x}), \ldots, p_m(\mathbf{x}) : m$ "independant" constraints, *n* variables $\implies n - m$ degrees of freedom in $V(\mathcal{I})$.

A key geometric property: dimension

Intuition of dimension from physics

 $p_1(\mathbf{x}), \ldots, p_m(\mathbf{x}) : m$ "independent" constraints, n variables

 \implies n - m degrees of freedom in $V(\mathcal{I})$.

This is correct if p_1, \ldots, p_m is a regular sequence.

A key geometric property: dimension

Intuition of dimension from physics

 $p_1(\mathbf{x}), \dots, p_m(\mathbf{x}) : m$ "independant" constraints, *n* variables $\implies n - m$ degrees of freedom in $V(\mathcal{I})$. This is correct if p_1, \dots, p_m is a regular sequence

This is correct if p_1, \ldots, p_m is a regular sequence.

Figure 3: A curve has dimension 1

Figure 4: A hypersurface has dimension n-1

Bilinear modeling

$$\boldsymbol{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \boldsymbol{x} \in \mathbb{F}_q^n \setminus \{0\}, \exists \boldsymbol{y} \in \mathbb{F}_q^m \setminus \{0\} \\ \mathcal{P}(\boldsymbol{x}) = 0 \\ \boldsymbol{y}^T \operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x}) = 0 \end{cases}$$

Bilinear modeling

$$\boldsymbol{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \boldsymbol{x} \in \mathbb{F}_q^n \setminus \{0\}, \exists \boldsymbol{y} \in \mathbb{F}_q^m \setminus \{0\} \\ \mathcal{P}(\boldsymbol{x}) = 0 \\ \boldsymbol{y}^T \operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x}) = 0 \end{cases}$$

The [Kipnis, Shamir '98] attack computes singular points ³

$$\mathbf{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \mathbf{x} \in \mathbb{F}_q^n, \mathbf{y} \in \mathbb{F}_q^m \\ \mathcal{P}(\mathbf{x}) = 0 \\ \mathbf{x} \in \ker\left(P_m^{-1}\sum_{i=1}^{m-1} y_i P_i - y_m I_n\right) \end{cases}$$

Bilinear modeling

$$\mathbf{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \mathbf{x} \in \mathbb{F}_q^n \setminus \{0\}, \exists \mathbf{y} \in \mathbb{F}_q^m \setminus \{0\} \\ \mathcal{P}(\mathbf{x}) = 0 \\ \mathbf{y}^T \operatorname{Jac}_{\mathcal{P}}(\mathbf{x}) = 0 \end{cases}$$

The [Kipnis, Shamir '98] attack computes singular points ³

$$\mathbf{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \mathbf{x} \in \mathbb{F}_q^n, \mathbf{y} \in \mathbb{F}_q^m \\ \mathcal{P}(\mathbf{x}) = 0 \\ \mathbf{x} \in \ker\left(P_m^{-1} \sum_{i=1}^{m-1} y_i P_i - y_m I_n\right) \end{cases}$$

Bilinear modeling

$$\boldsymbol{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \boldsymbol{x} \in \mathbb{F}_q^n \setminus \{0\}, \exists \boldsymbol{y} \in \mathbb{F}_q^m \setminus \{0\} \\ \mathcal{P}(\boldsymbol{x}) = 0 \\ \boldsymbol{y} \in \ker\left(\operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x})^{\mathcal{T}}\right) \end{cases}$$

The [Kipnis, Shamir '98] attack computes singular points ³

$$\mathbf{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \mathbf{x} \in \mathbb{F}_q^n, \mathbf{y} \in \mathbb{F}_q^m \\ \mathcal{P}(\mathbf{x}) = 0 \\ \mathbf{x} \in \ker\left(P_m^{-1}\sum_{i=1}^{m-1} y_i P_i - y_m I_n\right) \end{cases}$$

Bilinear modeling

$$\boldsymbol{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \boldsymbol{x} \in \mathbb{F}_q^n \setminus \{0\}, \exists \boldsymbol{y} \in \mathbb{F}_q^m \setminus \{0\} \\ \mathcal{P}(\boldsymbol{x}) = 0 \\ \boldsymbol{y} \in \ker\left(\operatorname{Jac}_{\mathcal{P}}(\boldsymbol{x})^{\mathcal{T}}\right) \end{cases}$$

The [Kipnis, Shamir '98] attack computes singular points ³

$$\mathbf{x} \in \operatorname{Sing}(V(\mathcal{I})) \iff \begin{cases} \mathbf{x} \in \mathbb{F}_q^n, \mathbf{y} \in \mathbb{F}_q^m \\ \mathcal{P}(\mathbf{x}) = 0 \\ \mathbf{x} \in \ker\left(P_m^{-1}\sum_{i=1}^{m-1} y_i P_i - y_m I_n\right) \\ \implies \mathbf{x} \text{ is an eigenvector of } P_m^{-1}\sum_{i=1}^{m-1} y_i P_i. \end{cases}$$

Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\boldsymbol{x} \in \mathcal{O}$:

Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\boldsymbol{x} \in \mathcal{O}$:

Observation

The singular locus of $V(\mathcal{I})$ contains $(\operatorname{Sing} V(\mathcal{J})) \cap V(J)$.

Underlying UOV Jacobian

Jacobian of \mathcal{F} when $\boldsymbol{x} \in \mathcal{O}$:

Observation

The singular locus of $V(\mathcal{I})$ contains $(\operatorname{Sing} V(\mathcal{J})) \cap V(J)$.

Dimension computation

 $\hat{+}$ reduces the dimension of the singular locus by at most 2t.

[P. 2025]