MiniCast: Minimizing the Communication Complexity of Reliable Broadcast

Victor Shoup (Offchain Labs) Joint work with Thomas Locher (Dfinity)

We have n parties P_1, \ldots, P_n connected by *authenticated* point-point-channels

We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels

Communication network is *asynchronous* and controlled by the adversary

We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels

Communication network is *asynchronous* and controlled by the adversary

At most t < n/3 parties are corrupt (Byzantine)

- We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels
- Communication network is *asynchronous* and controlled by the adversary
- At most t < n/3 parties are corrupt (Byzantine)
- One of P_1, \ldots, P_n is the designated sender S

- We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels
- Communication network is *asynchronous* and controlled by the adversary
- At most t < n/3 parties are corrupt (Byzantine)
- One of P_1, \ldots, P_n is the designated sender S
- Protocol should S allow to broadcast a single message m to P_1, \ldots, P_n

- We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels
- Communication network is *asynchronous* and controlled by the adversary
- At most t < n/3 parties are corrupt (Byzantine)
- One of P_1, \ldots, P_n is the designated sender S
- Protocol should S allow to broadcast a single message m to P_1, \ldots, P_n

Correctness property:

All honest parties that output a message must output the same message.

- We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels
- Communication network is *asynchronous* and controlled by the adversary
- At most t < n/3 parties are corrupt (Byzantine)
- One of P_1, \ldots, P_n is the designated sender S

Protocol should S allow to broadcast a single message m to P_1, \ldots, P_n

Correctness property:

All honest parties that output a message must output the same message. Moreover, if S is honest, that message is the one input by S.

- We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels
- Communication network is *asynchronous* and controlled by the adversary
- At most t < n/3 parties are corrupt (Byzantine)
- One of P_1, \ldots, P_n is the designated sender S

Protocol should S allow to broadcast a single message m to P_1, \ldots, P_n

Correctness property:

All honest parties that output a message must output the same message. Moreover, if S is honest, that message is the one input by S.

Completeness property:

If any honest party outputs a message

- We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels
- Communication network is *asynchronous* and controlled by the adversary
- At most t < n/3 parties are corrupt (Byzantine)
- One of P_1, \ldots, P_n is the designated sender S

Protocol should S allow to broadcast a single message m to P_1, \ldots, P_n

Correctness property:

All honest parties that output a message must output the same message. Moreover, if S is honest, that message is the one input by S.

Completeness property:

If any honest party outputs a message or an honest sender S inputs a message,

- We have *n* parties P_1, \ldots, P_n connected by *authenticated* point-point-channels
- Communication network is *asynchronous* and controlled by the adversary
- At most t < n/3 parties are corrupt (Byzantine)
- One of P_1, \ldots, P_n is the designated sender S

Protocol should S allow to broadcast a single message m to P_1, \ldots, P_n

Correctness property:

All honest parties that output a message must output the same message. Moreover, if S is honest, that message is the one input by S.

Completeness property:

If any honest party outputs a message or an honest sender S inputs a message, then eventually all honest parties output a message.

Message complexity: total number of *messages* sent from all honest parties to any party

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: O(n²)

Communication complexity: total number of *bits* sent from all honest parties to any party

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

Bracha: $O(|m| \cdot n^2)$

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

```
Bracha: O(|m| \cdot n^2)
```

Cachin & Tessaro [2005]: $O(|m| \cdot n + \lambda \cdot n^2 \log n)$

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

```
Bracha: O(|m| \cdot n^2)
```

Cachin & Tessaro [2005]: $O(|m| \cdot n + \lambda \cdot n^2 \log n)$

 $[\lambda = hash output length]$

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

Bracha: $O(|m| \cdot n^2)$

Cachin & Tessaro [2005]: $O(|m| \cdot n + \lambda \cdot n^2 \log n)$

 $[\lambda = hash output length]$

Das, Xiang & Ren [2021]: $O(|m| \cdot n + \lambda \cdot n^2)$

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

Bracha: $O(|m| \cdot n^2)$

Cachin & Tessaro [2005]: $O(|m| \cdot n + \lambda \cdot n^2 \log n)$

 $[\lambda = hash output length]$

Das, Xiang & Ren [2021]: $O(|m| \cdot n + \lambda \cdot n^2)$ Abraham & Asharov [2022]: $O(|m| \cdot n + \lambda \cdot n^2)$

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

Bracha: $O(|m| \cdot n^2)$

Cachin & Tessaro [2005]: $O(|m| \cdot n + \lambda \cdot n^2 \log n)$

 $[\lambda = hash output length]$

Das, Xiang & Ren [2021]: $O(|m| \cdot n + \lambda \cdot n^2)$

Abraham & Asharov [2022]: $O(|m| \cdot n + \lambda \cdot n^2)$ [statistically secure]

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

Bracha: $O(|m| \cdot n^2)$

Cachin & Tessaro [2005]: $O(|m| \cdot n + \lambda \cdot n^2 \log n)$

 $[\lambda = hash output length]$

Das, Xiang & Ren [2021]: $O(|m| \cdot n + \lambda \cdot n^2)$

Abraham & Asharov [2022]: $O(|m| \cdot n + \lambda \cdot n^2)$ [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least $3 \cdot |m| \cdot n + \dots$

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

Bracha: $O(|m| \cdot n^2)$

Cachin & Tessaro [2005]: $O(|m| \cdot n + \lambda \cdot n^2 \log n)$

 $[\lambda = hash output length]$

Das, Xiang & Ren [2021]: $O(|m| \cdot n + \lambda \cdot n^2)$

Abraham & Asharov [2022]: $O(|m| \cdot n + \lambda \cdot n^2)$ [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least $3 \cdot |m| \cdot n + \dots$

Locher [2024]: $2 \cdot |m| \cdot n + O(\lambda \cdot n^2 \log n)$

Message complexity: total number of *messages* sent from all honest parties to any party

Bracha: $O(n^2)$

Communication complexity: total number of *bits* sent from all honest parties to any party

Bracha: $O(|m| \cdot n^2)$

Cachin & Tessaro [2005]: $O(|m| \cdot n + \lambda \cdot n^2 \log n)$

 $[\lambda = hash output length]$

Das, Xiang & Ren [2021]: $O(|m| \cdot n + \lambda \cdot n^2)$

Abraham & Asharov [2022]: $O(|m| \cdot n + \lambda \cdot n^2)$ [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least $3 \cdot |m| \cdot n + \dots$

 Locher [2024]:
 $2 \cdot |m| \cdot n + O(\lambda \cdot n^2 \log n)$

 This work:
 $1.5 \cdot |m| \cdot n + O(\lambda \cdot n^2 \log n)$

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code: encode a message m as a vector of "fragments" f_1, \ldots, f_n

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

The idea:

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

The idea:

S encodes m as f_1, \ldots, f_n and sends each party P_i its fragment f_i

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

The idea:

S encodes m as f_1, \ldots, f_n and sends each party P_i its fragment f_i Each party P_i broadcasts its fragment f_i

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

The idea:

S encodes m as f_1, \ldots, f_n and sends each party P_i its fragment f_i Each party P_i broadcasts its fragment f_i Each party outputs a message m when

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

The idea:

S encodes m as f_1, \ldots, f_n and sends each party P_i its fragment f_i Each party P_i broadcasts its fragment f_i Each party outputs a message m when

• it receives n - 2t fragments, and

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

The idea:

S encodes m as f_1, \ldots, f_n and sends each party P_i its fragment f_i Each party P_i broadcasts its fragment f_i Each party outputs a message m when

- it receives n 2t fragments, and
- n-t parties tell it they are holding fragments

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

The idea:

S encodes m as f_1, \ldots, f_n and sends each party P_i its fragment f_i

Each party P_i broadcasts its fragment f_i

Each party outputs a message *m* when

- it receives n 2t fragments, and
- n-t parties tell it they are holding fragments
 - of which maybe only n 2t are honest and <u>actually</u> broadcast their fragment

All of the earlier (pre-Locher) work uses an (n, n-2t)-erasure code:

encode a message m as a vector of "fragments" f_1, \ldots, f_n

any n - 2t fragments can be used to recover m

fragments are of size $\approx |m|/(n-2t) < 3|m|/n$

The idea:

S encodes m as f_1, \ldots, f_n and sends each party P_i its fragment f_i

Each party P_i broadcasts its fragment f_i

Each party outputs a message m when

- it receives *n* 2*t* fragments, and
- n-t parties tell it they are holding fragments
 - of which maybe only n 2t are honest and <u>actually</u> broadcast their fragment
 - this is why we need a reconstruction threshold of only n-2t to maintain completeness

Reducing blowup using a higher reconstruction threshold

If we use an (n, n-t) erasure code, we can (hopefully) reduce the blowup to $1.5 \times$

Reducing blowup using a higher reconstruction threshold

If we use an (n, n-t) erasure code, we can (hopefully) reduce the blowup to $1.5 \times$

Problem: how to maintain completeness?

If we use an (n, n-t) erasure code, we can (hopefully) reduce the blowup to $1.5 \times$

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n-t) erasure code

If we use an (n, n-t) erasure code, we can (hopefully) reduce the blowup to $1.5 \times$

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n-t) erasure code

... but the logic to maintain completeness pushes the blowup to 2×

If we use an (n, n-t) erasure code, we can (hopefully) reduce the blowup to $1.5 \times$

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n-t) erasure code

... but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

If we use an (n, n-t) erasure code, we can (hopefully) reduce the blowup to $1.5 \times$

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n-t) erasure code

... but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

 use an (n, n - t) erasure code to encode the message as a vector of fragments

If we use an (n, n-t) erasure code, we can (hopefully) reduce the blowup to $1.5 \times$

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n-t) erasure code

... but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

- use an (n, n t) erasure code to encode the message as a vector of fragments
- use an (n, n 2t) erasure code to encode each fragment as a vector of "mini-fragments"

If we use an (n, n-t) erasure code, we can (hopefully) reduce the blowup to $1.5 \times$

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n-t) erasure code

... but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

- use an (n, n t) erasure code to encode the message as a vector of fragments
- use an (n, n 2t) erasure code to encode each fragment as a vector of "mini-fragments"
- using mini-fragments, it is possible to arrange that the honest parties help each other obtain their respective fragments *with little communication complexity*

• The communication of our protocol is very well balanced:

- The communication of our protocol is very well balanced:
 - each party, *including the sender*, transmits $\approx 1.5 \cdot |m| \cdot n$ bits

- The communication of our protocol is very well balanced:
 - each party, *including the sender*, transmits $\approx 1.5 \cdot |m| \cdot n$ bits
 - critical in *asymmetric* protocols, where only one sender broadcasts at a time (e.g., PBFT-like protocols), and where bandwidth is limited

- The communication of our protocol is very well balanced:
 - each party, *including the sender*, transmits $\approx 1.5 \cdot |m| \cdot n$ bits
 - critical in *asymmetric* protocols, where only one sender broadcasts at a time (e.g., PBFT-like protocols), and where bandwidth is limited
- The cost of erasure coding (and other overheads) is insignificant (compared to typical network speeds)

- The communication of our protocol is very well balanced:
 - each party, *including the sender*, transmits $\approx 1.5 \cdot |m| \cdot n$ bits
 - critical in *asymmetric* protocols, where only one sender broadcasts at a time (e.g., PBFT-like protocols), and where bandwidth is limited
- The cost of erasure coding (and other overheads) is insignificant (compared to typical network speeds)
 - erasure coding algorithms and software have come a long way! (https://github.com/AndersTrier/reed-solomon-simd)

- The communication of our protocol is very well balanced:
 - each party, *including the sender*, transmits $\approx 1.5 \cdot |m| \cdot n$ bits
 - critical in *asymmetric* protocols, where only one sender broadcasts at a time (e.g., PBFT-like protocols), and where bandwidth is limited
- The cost of erasure coding (and other overheads) is insignificant (compared to typical network speeds)
 - erasure coding algorithms and software have come a long way! (https://github.com/AndersTrier/reed-solomon-simd)
- The (good case) round complexity is 4 (which is sub-optimal)

- The communication of our protocol is very well balanced:
 - each party, *including the sender*, transmits $\approx 1.5 \cdot |m| \cdot n$ bits
 - critical in *asymmetric* protocols, where only one sender broadcasts at a time (e.g., PBFT-like protocols), and where bandwidth is limited
- The cost of erasure coding (and other overheads) is insignificant (compared to typical network speeds)
 - erasure coding algorithms and software have come a long way! (https://github.com/AndersTrier/reed-solomon-simd)
- The (good case) round complexity is 4 (which is sub-optimal)
 - Nevertheless, it can be adapted to PBFT-like protocols to have an effective round complexity of 2 (with caveats)

("Sing a Song of Simplex", Shoup [2023])

- The communication of our protocol is very well balanced:
 - each party, *including the sender*, transmits $\approx 1.5 \cdot |m| \cdot n$ bits
 - critical in *asymmetric* protocols, where only one sender broadcasts at a time (e.g., PBFT-like protocols), and where bandwidth is limited
- The cost of erasure coding (and other overheads) is insignificant (compared to typical network speeds)
 - erasure coding algorithms and software have come a long way! (https://github.com/AndersTrier/reed-solomon-simd)
- The (good case) round complexity is 4 (which is sub-optimal)
 - Nevertheless, it can be adapted to PBFT-like protocols to have an effective round complexity of 2 (with caveats)

("Sing a Song of Simplex", Shoup [2023])

 In follow-up joint work with Locher, we reduce round complexity to 3 (and sometimes 2, with caveats), but with a modest communication imbalance

("Improving the Round Complexity of MiniCast", Locher & Shoup [2025])