
MiniCast: Minimizing the Communication Complexity
of Reliable Broadcast

Victor Shoup (Offchain Labs)

Joint work with Thomas Locher (Dfinity)

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Reliable Broadcast

We have n parties P1, . . . , Pn connected by authenticated
point-point-channels

Communication network is asynchronous and controlled by the
adversary

At most t < n/3 parties are corrupt (Byzantine)

One of P1, . . . , Pn is the designated sender S

Protocol should S allow to broadcast a single message m to P1, . . . , Pn

Correctness property:

All honest parties that output a message must output the same
message. Moreover, if S is honest, that message is the one
input by S.

Completeness property:

If any honest party outputs a message or an honest sender S
inputs a message, then eventually all honest parties output a
message.

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Message and communication complexity

Message complexity: total number of messages sent from all honest
parties to any party

Bracha: O(n2)

Communication complexity: total number of bits sent from all honest
parties to any party

Bracha: O(|m| · n2)

Cachin & Tessaro [2005]: O(|m| · n + λ · n2 logn)

[λ = hash output length]

Das, Xiang & Ren [2021]: O(|m| · n + λ · n2)

Abraham & Asharov [2022]: O(|m| · n + λ · n2) [statistically secure]

Long messages: worrying about big-O constants

All of the above cost at least 3 · |m| · n + . . .

Locher [2024]: 2 · |m| · n + O(λ · n2 logn)

This work: 1.5 · |m| · n + O(λ · n2 logn)

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Where does this 3× “blowup” come from?

All of the earlier (pre-Locher) work uses an (n, n − 2t)-erasure code:

encode a message m as a vector of “fragments” ƒ1, . . . , ƒn

any n − 2t fragments can be used to recover m

fragments are of size ≈ |m|/(n − 2t) < 3|m|/n

The idea:

S encodes m as ƒ1, . . . , ƒn and sends each party P its fragment ƒ

Each party P broadcasts its fragment ƒ

Each party outputs a message m when

• it receives n − 2t fragments, and

• n − t parties tell it they are holding fragments

◦ of which maybe only n − 2t are honest and actually broadcast their
fragment

◦ this is why we need a reconstruction threshold of only n− 2t
to maintain completeness

Reducing blowup using a higher reconstruction threshold

If we use an (n, n − t) erasure code, we can (hopefully) reduce the
blowup to 1.5×

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n − t) erasure code

. . . but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

• use an (n, n − t) erasure code to encode the message as a vector
of fragments

• use an (n, n − 2t) erasure code to encode each fragment as a
vector of “mini-fragments”

• using mini-fragments, it is possible to arrange that the honest
parties help each other obtain their respective fragments with
little communication complexity

Reducing blowup using a higher reconstruction threshold

If we use an (n, n − t) erasure code, we can (hopefully) reduce the
blowup to 1.5×

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n − t) erasure code

. . . but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

• use an (n, n − t) erasure code to encode the message as a vector
of fragments

• use an (n, n − 2t) erasure code to encode each fragment as a
vector of “mini-fragments”

• using mini-fragments, it is possible to arrange that the honest
parties help each other obtain their respective fragments with
little communication complexity

Reducing blowup using a higher reconstruction threshold

If we use an (n, n − t) erasure code, we can (hopefully) reduce the
blowup to 1.5×

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n − t) erasure code

. . . but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

• use an (n, n − t) erasure code to encode the message as a vector
of fragments

• use an (n, n − 2t) erasure code to encode each fragment as a
vector of “mini-fragments”

• using mini-fragments, it is possible to arrange that the honest
parties help each other obtain their respective fragments with
little communication complexity

Reducing blowup using a higher reconstruction threshold

If we use an (n, n − t) erasure code, we can (hopefully) reduce the
blowup to 1.5×

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n − t) erasure code

. . . but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

• use an (n, n − t) erasure code to encode the message as a vector
of fragments

• use an (n, n − 2t) erasure code to encode each fragment as a
vector of “mini-fragments”

• using mini-fragments, it is possible to arrange that the honest
parties help each other obtain their respective fragments with
little communication complexity

Reducing blowup using a higher reconstruction threshold

If we use an (n, n − t) erasure code, we can (hopefully) reduce the
blowup to 1.5×

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n − t) erasure code

. . . but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

• use an (n, n − t) erasure code to encode the message as a vector
of fragments

• use an (n, n − 2t) erasure code to encode each fragment as a
vector of “mini-fragments”

• using mini-fragments, it is possible to arrange that the honest
parties help each other obtain their respective fragments with
little communication complexity

Reducing blowup using a higher reconstruction threshold

If we use an (n, n − t) erasure code, we can (hopefully) reduce the
blowup to 1.5×

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n − t) erasure code

. . . but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

• use an (n, n − t) erasure code to encode the message as a vector
of fragments

• use an (n, n − 2t) erasure code to encode each fragment as a
vector of “mini-fragments”

• using mini-fragments, it is possible to arrange that the honest
parties help each other obtain their respective fragments with
little communication complexity

Reducing blowup using a higher reconstruction threshold

If we use an (n, n − t) erasure code, we can (hopefully) reduce the
blowup to 1.5×

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n − t) erasure code

. . . but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

• use an (n, n − t) erasure code to encode the message as a vector
of fragments

• use an (n, n − 2t) erasure code to encode each fragment as a
vector of “mini-fragments”

• using mini-fragments, it is possible to arrange that the honest
parties help each other obtain their respective fragments with
little communication complexity

Reducing blowup using a higher reconstruction threshold

If we use an (n, n − t) erasure code, we can (hopefully) reduce the
blowup to 1.5×

Problem: how to maintain completeness?

Locher [2024] gives a protocol that uses an (n, n − t) erasure code

. . . but the logic to maintain completeness pushes the blowup to 2×

This work (very rough idea):

• use an (n, n − t) erasure code to encode the message as a vector
of fragments

• use an (n, n − 2t) erasure code to encode each fragment as a
vector of “mini-fragments”

• using mini-fragments, it is possible to arrange that the honest
parties help each other obtain their respective fragments with
little communication complexity

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

Other features and follow-up work

• The communication of our protocol is very well balanced:

◦ each party, including the sender, transmits ≈ 1.5 · |m| · n bits

◦ critical in asymmetric protocols, where only one sender broadcasts at a
time (e.g., PBFT-like protocols), and where bandwidth is limited

• The cost of erasure coding (and other overheads) is insignificant
(compared to typical network speeds)

◦ erasure coding algorithms and software have come a long way!

(https://github.com/AndersTrier/reed-solomon-simd)

• The (good case) round complexity is 4 (which is sub-optimal)

◦ Nevertheless, it can be adapted to PBFT-like protocols to have an
effective round complexity of 2 (with caveats)

(“Sing a Song of Simplex”, Shoup [2023])

◦ In follow-up joint work with Locher, we reduce round complexity to 3 (and
sometimes 2, with caveats), but with a modest communication imbalance

(“Improving the Round Complexity of MiniCast”, Locher & Shoup [2025])

