A Meta-Complexity Characterisation of Quantum Cryptography

Bruno P. Cavalar

University of Oxford

Joint work with Eli Goldin (NYU), Matthew Gray (Oxford), Peter Hall (NYU)

イロト イボト イヨト

EUROCRYPT 2025

Bruno P. Cavalar (Oxford)

A Meta-Complexity Characterisation of Quantum Cryptography

1/17

Minimal complexity-theoretic assumption required for cryptography?

• $P \neq NP$: necessary; sufficient?

- ► Specific constructions: Factoring, LWE, etc.
- Quantum complication: PRSs may exist even if BQP = QMA (in particular, ∄ pqOWFs) [Kretschmer, TQC 2021]
 - ► The classical "holy grail" is no longer relevant
- Meta-complexity: classical characterisations!

This talk: an equivalence between **quantum** cryptography and complexity theory *via meta-complexity*.

Minimal complexity-theoretic assumption required for cryptography?

• $P \neq NP$: necessary; sufficient?

- ▶ Specific constructions: Factoring, LWE, etc.
- Quantum complication: PRSs may exist even if BQP = QMA (in particular, ∄ pqOWFs) [Kretschmer, TQC 2021]
 - ► The classical "holy grail" is no longer relevant
- Meta-complexity: classical characterisations!

This talk: an equivalence between **quantum** cryptography and complexity theory *via meta-complexity*.

Minimal complexity-theoretic assumption required for cryptography?

• $P \neq NP$: necessary; sufficient?

- ► Specific constructions: Factoring, LWE, etc.
- Quantum complication: PRSs may exist even if BQP = QMA (in particular, ∄ pqOWFs) [Kretschmer, TQC 2021]
 - ► The classical "holy grail" is no longer relevant
- Meta-complexity: classical characterisations!

This talk: an equivalence between **quantum** cryptography and complexity theory *via meta-complexity*.

Minimal complexity-theoretic assumption required for cryptography?

• $P \neq NP$: necessary; sufficient?

- ► Specific constructions: Factoring, LWE, etc.
- Quantum complication: PRSs may exist even if BQP = QMA (in particular, ∄ pqOWFs) [Kretschmer, TQC 2021]
 - ▶ The classical "holy grail" is no longer relevant
- Meta-complexity: classical characterisations!

This talk: an equivalence between **quantum** cryptography and complexity theory *via meta-complexity*.

Bruno P. Cavalar (Oxford)

A Meta-Complexity Characterisation of Quantum Cryptography

- $P \neq NP$: necessary; sufficient?
 - ► Specific constructions: Factoring, LWE, etc.
- Quantum complication: PRSs may exist even if BQP = QMA (in particular, ∄ pqOWFs) [Kretschmer, TQC 2021]
 - ▶ The classical "holy grail" is no longer relevant
- Meta-complexity: classical characterisations!

This talk: an equivalence between **quantum** cryptography and complexity theory *via meta-complexity*.

- $P \neq NP$: necessary; sufficient?
 - ► Specific constructions: Factoring, LWE, etc.
- Quantum complication: PRSs may exist even if BQP = QMA (in particular, ∄ pqOWFs) [Kretschmer, TQC 2021]
 - The classical "holy grail" is no longer relevant
- Meta-complexity: classical characterisations!

This talk: an equivalence between **quantum** cryptography and complexity theory *via meta-complexity*.

Bruno P. Cavalar (Oxford)

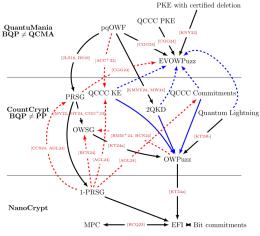
A Meta-Complexity Characterisation of Quantum Cryptography

- $P \neq NP$: necessary; sufficient?
 - ► Specific constructions: Factoring, LWE, etc.
- Quantum complication: PRSs may exist even if BQP = QMA (in particular, ∄ pqOWFs) [Kretschmer, TQC 2021]
 - The classical "holy grail" is no longer relevant
- Meta-complexity: classical characterisations!

This talk: an equivalence between **quantum** cryptography and complexity theory *via meta-complexity*.

- $P \neq NP$: necessary; sufficient?
 - ► Specific constructions: Factoring, LWE, etc.
- Quantum complication: PRSs may exist even if BQP = QMA (in particular, ∄ pqOWFs) [Kretschmer, TQC 2021]
 - ► The classical "holy grail" is no longer relevant
- Meta-complexity: classical characterisations!

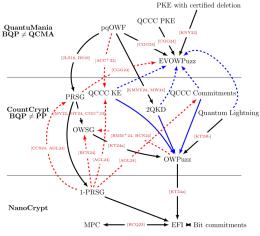
This talk: an equivalence between **quantum** cryptography and complexity theory *via meta-complexity*.



Credits: Goldin, Morimae, Mutreja, and Yamakawa [2024]

- Primitives following from PRS are not known to be equivalent (in fact, plenty of oracle separations)
- OWPuzz's seem minimal in QCCC and CountCrypt
- EFI seems minimal for quantum communication
- This work: OWPuzz

イロト イポト イヨト イヨト



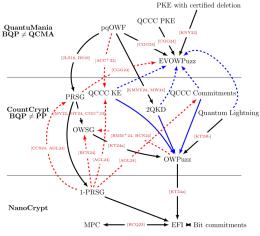
Credits: Goldin, Morimae, Mutreja, and Yamakawa [2024]

 Primitives following from PRS are not known to be equivalent

(in fact, plenty of oracle separations)

- OWPuzz's seem minimal in QCCC and CountCrypt
- EFI seems minimal for quantum communication
- This work: OWPuzz

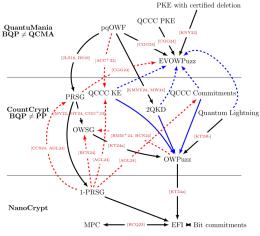
イロト イポト イヨト イヨト



Credits: Goldin, Morimae, Mutreja, and Yamakawa [2024]

- Primitives following from PRS are not known to be equivalent (in fact, plenty of oracle separations)
- OWPuzz's seem minimal in QCCC and CountCrypt
- EFI seems minimal for quantum communication
- This work: OWPuzz

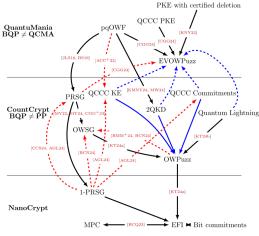
イロト イポト イヨト イヨト



Credits: Goldin, Morimae, Mutreja, and Yamakawa [2024]

- Primitives following from PRS are not known to be equivalent (in fact, plenty of oracle separations)
- OWPuzz's seem minimal in QCCC and CountCrypt
- EFI seems minimal for quantum communication
- This work: OWPuzz

イロト イポト イヨト イヨト

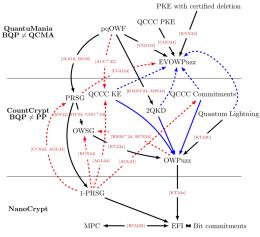


Credits: Goldin, Morimae, Mutreja, and Yamakawa [2024]

- Primitives following from PRS are not known to be equivalent (in fact, plenty of oracle separations)
- OWPuzz's seem minimal in QCCC and CountCrypt
- EFI seems minimal for quantum communication

This work: OWPuzz

イロト イポト イヨト イヨト



Credits: Goldin, Morimae, Mutreja, and Yamakawa [2024]

- Primitives following from PRS are not known to be equivalent (in fact, plenty of oracle separations)
- OWPuzz's seem minimal in QCCC and CountCrypt
- EFI seems minimal for quantum communication
- This work: OWPuzz

イロト イポト イヨト イヨト

- OWPuzz = (Samp, Ver). [Khurana-Tomer, STOC 2024]
- Samp $(1^{\lambda}) \rightarrow (k, s) \in \{0, 1\}^*$ in quantum polynomial-time (QPT).
 - ▶ k : key; s: puzzle.
- Soundness: $\mathbb{P}_{(k,s)\leftarrow \text{Samp}(1^{\lambda})}[\text{Ver}(k,s) = \top] = 1 \text{negl}(n)$
- Correctness: $\forall \mathsf{QPTA}, \mathbb{P}_{(k,s) \leftarrow \mathsf{Samp}(1^{\lambda})}[\mathsf{Ver}(\mathcal{A}(s), s) = \top] = \mathsf{negl}(n)$
- Notably: Ver can be inefficient!
- Arises naturally from *shadow tomography*.

• OWPuzz = (Samp, Ver). [Khurana-Tomer, STOC 2024]

- Samp $(1^{\lambda}) \rightarrow (k, s) \in \{0, 1\}^*$ in quantum polynomial-time (QPT).
 - ► *k* : *key*; *s*: *puzzle*.
- Soundness: $\mathbb{P}_{(k,s)\leftarrow \text{Samp}(1^{\lambda})}[\text{Ver}(k,s) = \top] = 1 \text{negl}(n)$
- Correctness: $\forall \mathsf{QPTA}, \mathbb{P}_{(k,s) \leftarrow \mathsf{Samp}(1^{\lambda})}[\mathsf{Ver}(\mathcal{A}(s), s) = \top] = \mathsf{negl}(n)$
- Notably: Ver can be inefficient!
- Arises naturally from *shadow tomography*.

- OWPuzz = (Samp, Ver). [Khurana-Tomer, STOC 2024]
- Samp $(1^{\lambda}) \rightarrow (k, s) \in \{0, 1\}^*$ in quantum polynomial-time (QPT).
 - ▶ k : key; s: puzzle.
- Soundness: $\mathbb{P}_{(k,s) \leftarrow \text{Samp}(1^{\lambda})}[\text{Ver}(k,s) = \top] = 1 \text{negl}(n)$
- Correctness: $\forall \mathsf{QPTA}, \mathbb{P}_{(k,s) \leftarrow \mathsf{Samp}(1^{\lambda})}[\mathsf{Ver}(\mathcal{A}(s), s) = \top] = \mathsf{negl}(n)$
- Notably: Ver can be inefficient!
- Arises naturally from *shadow tomography*.

- OWPuzz = (Samp, Ver). [Khurana-Tomer, STOC 2024]
- Samp $(1^{\lambda}) \rightarrow (k, s) \in \{0, 1\}^*$ in quantum polynomial-time (QPT).
 - ▶ k : key; s: puzzle.
- Soundness: $\mathbb{P}_{(k,s) \leftarrow \text{Samp}(1^{\lambda})}[\text{Ver}(k,s) = \top] = 1 \text{negl}(n)$
- Correctness: $\forall \mathsf{QPTA}, \mathbb{P}_{(k,s) \leftarrow \mathsf{Samp}(1^{\lambda})}[\mathsf{Ver}(\mathcal{A}(s), s) = \top] = \mathsf{negl}(n)$
- Notably: Ver can be inefficient!
- Arises naturally from *shadow tomography*.

- OWPuzz = (Samp, Ver). [Khurana-Tomer, STOC 2024]
- Samp $(1^{\lambda}) \rightarrow (k, s) \in \{0, 1\}^*$ in quantum polynomial-time (QPT).
 - ▶ k : key; s: puzzle.
- Soundness: $\mathbb{P}_{(k,s) \leftarrow \text{Samp}(1^{\lambda})}[\text{Ver}(k,s) = \top] = 1 \text{negl}(n)$
- Correctness: $\forall \mathsf{QPTA}, \mathbb{P}_{(k,s) \leftarrow \mathsf{Samp}(1^{\lambda})}[\mathsf{Ver}(\mathcal{A}(s), s) = \top] = \mathsf{negl}(n)$
- Notably: Ver can be inefficient!
- Arises naturally from *shadow tomography*.

◆□▶ ◆□▶ ◆注▶ ◆注▶ ─ 注

- OWPuzz = (Samp, Ver). [Khurana-Tomer, STOC 2024]
- Samp $(1^{\lambda}) \rightarrow (k, s) \in \{0, 1\}^*$ in quantum polynomial-time (QPT).
 - ▶ k : key; s: puzzle.
- Soundness: $\mathbb{P}_{(k,s) \leftarrow \text{Samp}(1^{\lambda})}[\text{Ver}(k,s) = \top] = 1 \text{negl}(n)$
- Correctness: $\forall \mathsf{QPTA}, \mathbb{P}_{(k,s) \leftarrow \mathsf{Samp}(1^{\lambda})}[\mathsf{Ver}(\mathcal{A}(s), s) = \top] = \mathsf{negl}(n)$
- Notably: Ver can be inefficient!
- Arises naturally from *shadow tomography*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- OWPuzz = (Samp, Ver). [Khurana-Tomer, STOC 2024]
- Samp $(1^{\lambda}) \rightarrow (k, s) \in \{0, 1\}^*$ in quantum polynomial-time (QPT).
 - k : key; s: puzzle.
- Soundness: $\mathbb{P}_{(k,s) \leftarrow \text{Samp}(1^{\lambda})}[\text{Ver}(k,s) = \top] = 1 \text{negl}(n)$
- Correctness: $\forall \mathsf{QPTA}, \mathbb{P}_{(k,s) \leftarrow \mathsf{Samp}(1^{\lambda})}[\mathsf{Ver}(\mathcal{A}(s), s) = \top] = \mathsf{negl}(n)$
- Notably: Ver can be inefficient!
- Arises naturally from *shadow tomography*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

- Example 1: "1010101010101010" (Print "10" 8 times)
- Example 2: "0001010100001011" (???)

Kolmogorov complexity K(x) of a string $x \in \{0, 1\}^*$: minimum length of a program that outputs x.

PROPERTIES

- 1. $\mathsf{K}(x) \leq |x|$.
- 2. Random strings have near maximum Kolmogorov complexity.
- 3. Computing K(x) is impossible!

- Example 1: "1010101010101010" (Print "10" 8 times)
- Example 2: "0001010100001011" (???)

Kolmogorov complexity K(x) of a string $x \in \{0, 1\}^*$: minimum length of a program that outputs x.

PROPERTIES

- 1. $\mathsf{K}(x) \leq |x|$.
- 2. Random strings have near maximum Kolmogorov complexity.
- 3. Computing K(x) is impossible!

- Example 1: "1010101010101010" (Print "10" 8 times)
- Example 2: "0001010100001011" (???)

Kolmogorov complexity K(x) of a string $x \in \{0, 1\}^*$: minimum length of a program that outputs x.

PROPERTIES

- 1. $\mathsf{K}(x) \leq |x|$.
- 2. Random strings have near maximum Kolmogorov complexity.
- 3. Computing K(x) is impossible!

(日)

- Example 1: "1010101010101010" (Print "10" 8 times)
- Example 2: "0001010100001011" (???)

Kolmogorov complexity K(x) of a string $x \in \{0, 1\}^*$: minimum length of a program that outputs x.

PROPERTIES

- 1. $\mathsf{K}(x) \leq |x|$.
- 2. Random strings have near maximum Kolmogorov complexity.
- 3. Computing K(x) is impossible!

(日)

- Example 1: "1010101010101010" (Print "10" 8 times)
- Example 2: "0001010100001011" (???)

Kolmogorov complexity K(x) of a string $x \in \{0, 1\}^*$: minimum length of a program that outputs x.

PROPERTIES

1. $K(x) \leq |x|$.

2. Random strings have near maximum Kolmogorov complexity.

3. Computing K(x) is impossible!

(日)

- Example 1: "1010101010101010" (Print "10" 8 times)
- Example 2: "0001010100001011" (???)

Kolmogorov complexity K(x) of a string $x \in \{0, 1\}^*$: minimum length of a program that outputs x.

PROPERTIES

- 1. $\mathsf{K}(x) \leq |x|$.
- 2. Random strings have near maximum Kolmogorov complexity.
- 3. Computing K(x) is impossible!

- Example 1: "1010101010101010" (Print "10" 8 times)
- Example 2: "0001010100001011" (???)

Kolmogorov complexity K(x) of a string $x \in \{0, 1\}^*$: minimum length of a program that outputs x.

PROPERTIES

- 1. $K(x) \leq |x|$.
- 2. Random strings have near maximum Kolmogorov complexity.
- 3. Computing K(x) is impossible!

Let GapK[$s, s + \Delta$] be the "promise" problem of distinguishing between strings of K.c. at most s and those with K.c. at least $s + \Delta$.

$$\begin{array}{c|c} YES & \Delta = \omega(\log n) & NO \\ \hline s + \Delta & & K(x) \end{array}$$

IRS'20: GapK can be solved in exponential-time on average (PP = PostBQP).

For every PPT-samplable distribution \mathcal{D} and $\Delta = \omega(\log n)$, it's possible to compute GapK[$s, s + \Delta$] on \mathcal{D} with error at most $n^{-O(1)}$ in exponential time. [IRS, STOC20]

Approximating Kolmogorov Complexity (GapK)

Let GapK[$s, s + \Delta$] be the "promise" problem of distinguishing between strings of K.c. at most s and those with K.c. at least $s + \Delta$.

$$\begin{array}{c|c} YES & \Delta = \omega(\log n) & NO \\ \hline s & s + \Delta & K(x) \end{array}$$

IRS'20: GapK can be solved in exponential-time on average (PP = PostBQP).

For every PPT-samplable distribution \mathcal{D} and $\Delta = \omega(\log n)$, it's possible to compute GapK[$s, s + \Delta$] on \mathcal{D} with error at most $n^{-O(1)}$ in exponential time. [IRS, STOC20]

Approximating Kolmogorov Complexity (GapK)

Let GapK[$s, s + \Delta$] be the "promise" problem of distinguishing between strings of K.c. at most s and those with K.c. at least $s + \Delta$.

$$\begin{array}{c|c} YES & \Delta = \omega(\log n) & NO \\ \hline s & s + \Delta & K(x) \end{array}$$

IRS'20: GapK can be solved in exponential-time on average (PP = PostBQP).

For every PPT-samplable distribution \mathcal{D} and $\Delta = \omega(\log n)$, it's possible to compute GapK[$s, s + \Delta$] on \mathcal{D} with error at most $n^{-O(1)}$ in exponential time. [IRS, STOC20]

Approximating Kolmogorov Complexity (GapK)

Let GapK[$s, s + \Delta$] be the "promise" problem of distinguishing between strings of K.c. at most s and those with K.c. at least $s + \Delta$.

IRS'20: GapK can be solved in exponential-time on average (PP = PostBQP).

For every PPT-samplable distribution \mathcal{D} and $\Delta = \omega(\log n)$, it's possible to compute GapK[$s, s + \Delta$] on \mathcal{D} with error at most $n^{-O(1)}$ in exponential time. [IRS, STOC20]

Theorem (Ilango-Ren-Santhanam [IRS], STOC 2020)

The following are equivalent:

- One-way functions exist.
- For some $s = n^{\Omega(1)}$ and $\Delta = \omega(\log n)$, there exists a samplable distribution \mathcal{D} such that GapK[$s, s + \Delta$] is average-case hard on \mathcal{D} .

The OWF encodes a hard probability distribution, and vice-versa.

Quantum Cryptography vs. Kolmogorov complexity

Theorem (C.-Goldin-Gray-Hall [CGGH], EUROCRYPT 2025)

The following are equivalent:

- One-way puzzles exist.
- For some $s = n^{\Omega(1)}$ and $\Delta = \omega(\log n)$, there exists a quantum samplable distribution \mathcal{D} such that $\text{GapK}[s, s + \Delta]$ is average-case hard on \mathcal{D} for quantum algorithms.

The OWPuzz encodes a hard probability distribution, and vice-versa.

Bruno P. Cavalar (Oxford)

Theorem (C.-Goldin-Gray-Hall [CGGH], EUROCRYPT 2025)

The following are equivalent:

- One-way puzzles exist.
- For some $s = n^{\Omega(1)}$ and $\Delta = \omega(\log n)$, there exists a quantum samplable distribution \mathcal{D} such that $\text{GapK}[s, s + \Delta]$ is average-case hard on \mathcal{D} for quantum algorithms.
- Further evidence of OWPuzz's centrality in QCCC!
 - Besides combiners, hardness amplification, etc.
 - Natural generalisation of OWFs
 - Embodies some fundamental hardness via meta-complexity

Breaking OWPuzz \implies Prob. estimation

Classically: use the random bits of the sampler to construct a OWF candidate:

$$f_k(h,r) = \mathcal{D}(r), h, h(r),$$

where h is a hash function mapping to k bits.

Estimate p_x by sampling h, z and inverting (x, h, z) (many times). (Intuition: select a random hash bucket and see if r "is there")

Quantumly: randomness is inherent to the hard distribution!

イロト イボト イヨト

Let \mathcal{D} be a sampler. Let $p_x := \mathbb{P}[x \text{ is sampled by } \mathcal{D}]$.

 δ -Prob. estimation: given $x \leftarrow \mathcal{D}$, output $\mathcal{A}(x) \in [\delta \cdot p_x, p_x]$ w.h.p..

Breaking OWPuzz \implies Prob. estimation

Classically: use the random bits of the sampler to construct a OWF candidate:

$$f_k(h,r) = \mathcal{D}(r), h, h(r),$$

where *h* is a hash function mapping to *k* bits. Estimate *p_x* by sampling *h*, *z* and inverting (*x*, *h*, *z*) (ma

(Intuition: select a random hash bucket and see if r "is there")

Quantumly: randomness is inherent to the hard distribution!

イロト イボト イラト イラト 二日

Probability estimation: crucial intermediate step

Let \mathcal{D} be a sampler. Let $p_x := \mathbb{P}[x \text{ is sampled by } \mathcal{D}]$. δ -Prob. estimation: given $x \leftarrow \mathcal{D}$, output $\mathcal{A}(x) \in [\delta \cdot p_x, p_x]$ w.h.p..

Breaking OWPuzz \implies Prob. estimation

Classically: use the random bits of the sampler to construct a OWF candidate:

$$f_k(h,r) = \mathcal{D}(r), h, h(r),$$

where *h* is a hash function mapping to *k* bits. Estimate p_x by sampling *h*, *z* and inverting (x, h, z) (many

(Intuition: select a random hash bucket and see if r "is there")

Quantumly: randomness is inherent to the hard distribution!

イロト イポト イラト イラト 一日

Probability estimation: crucial intermediate step

Let \mathcal{D} be a sampler. Let $p_x := \mathbb{P}[x \text{ is sampled by } \mathcal{D}]$. δ -Prob. estimation: given $x \leftarrow \mathcal{D}$, output $\mathcal{A}(x) \in [\delta \cdot p_x, p_x]$ w.h.p..

Breaking OWPuzz \implies Prob. estimation

Classically: use the random bits of the sampler to construct a OWF candidate:

$$f_k(h,r) = \mathcal{D}(r), h, h(r),$$

where h is a hash function mapping to k bits.

Estimate p_x by sampling h, z and inverting (x, h, z) (many times). (Intuition: select a random hash bucket and see if r "is there")

Quantumly: randomness is inherent to the hard distribution!

イロト イヨト イヨト イヨト 三日

Breaking OWPuzz \implies Prob. estimation

Classically: use the random bits of the sampler to construct a OWF candidate:

$$f_k(h,r) = \mathcal{D}(r), h, h(r),$$

where h is a hash function mapping to k bits.

Estimate p_x by sampling h, z and inverting (x, h, z) (many times). (Intuition: select a random hash bucket and see if r "is there")

Quantumly: randomness is inherent to the hard distribution!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Breaking OWPuzz \implies Prob. estimation

Classically: use the random bits of the sampler to construct a OWF candidate:

$$f_k(h,r) = \mathcal{D}(r), h, h(r),$$

where h is a hash function mapping to k bits. Estimate p_x by sampling h, z and inverting (x, h, z) (many times). (Intuition: select a random hash bucket and see if r "is there")

Quantumly: randomness is inherent to the hard distribution!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Breaking OWPuzz \implies Prob. estimation

Classically: use the random bits of the sampler to construct a OWF candidate:

$$f_k(h,r) = \mathcal{D}(r), h, h(r),$$

where h is a hash function mapping to k bits. Estimate p_x by sampling h, z and inverting (x, h, z) (many times). (Intuition: select a random hash bucket and see if r "is there")

Quantumly: randomness is inherent to the hard distribution!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シベ()

On Central Primitives for Quantum Cryptography with Classical Communication

Kai-Min Chung¹, Eli Goldin², and Matthew Gray³

¹Academia Sinica (kmchung@iis.sinica.edu.tw) ²New York University (eli.goldin@nyu.edu) ³University of Oxford (matthew.gray@cs.ox.ac.uk)

イロト イヨト イヨト イヨト 三日

• One-way puzzles \iff Distributional one-way puzzles

• **Takeaway:** $\not\exists$ OWPuzz \implies sample from (k, s) conditioned on s.

On Central Primitives for Quantum Cryptography with Classical Communication

Kai-Min Chung¹, Eli Goldin², and Matthew Gray³

¹Academia Sinica (kmchung@iis.sinica.edu.tw) ²New York University (eli.goldin@nyu.edu) ³University of Oxford (matthew.gray@cs.ox.ac.uk)

- One-way puzzles ↔ Distributional one-way puzzles
- **Takeaway:** $\not\exists$ OWPuzz \implies sample from (k, s) conditioned on s.

One-way puzzle: sample $x \leftarrow D$, *h* hash function mapping to *k* bits. Key: *x*, Puzzle: (h, h(x)).

Distributionally invert [CGG]: as k increases, x is isolated by (h, h(x)). (Intuition: fix the "right" random hash bucket, and see if anything else besides x is there.)

The threshold when x starts to become isolated is our estimate for p_x .

One-way puzzle: sample $x \leftarrow D$, *h* hash function mapping to *k* bits. Key: *x*, Puzzle: (h, h(x)). Distributionally invert [CGG]: as *k* increases, *x* is isolated by (h, h(x)). (Intuition: fix the "right" random hash bucket, and see if anything else besides *x* is there.)

The threshold when x starts to become isolated is our estimate for p_x .

イロト イヨト イヨト イヨト 三日

One-way puzzle: sample $x \leftarrow D$, *h* hash function mapping to *k* bits. Key: *x*, Puzzle: (h, h(x)).

Distributionally invert [CGG]: as k increases, x is isolated by (h, h(x)). (Intuition: fix the "right" random hash bucket, and see if anything else besides x is there.)

The threshold when x starts to become isolated is our estimate for p_x .

イロト イポト イラト イラト 一日

200

Just like the classical case [IRS]. Requires a "quantum coding theorem":

$$\mathsf{K}(x) \lessapprox \log\left(rac{1}{\mathbb{P}[\mathcal{D} o x]}
ight) + |\mathcal{D}|$$
 .

We then use probability as a proxy for Kolmogorov complexity. (In other words, low probability \approx high Kolmogorov complexity.)

Just like the classical case [IRS]. Requires a "quantum coding theorem":

$$\mathsf{K}(x) \lessapprox \log\left(rac{1}{\mathbb{P}[\mathcal{D} o x]}
ight) + |\mathcal{D}|\,.$$

We then use probability as a proxy for Kolmogorov complexity. (In other words, low probability \approx high Kolmogorov complexity.)

Breaking one-way puzzles with GapK

CGG: OWPuzz \implies "non-uniform entropy-gap generator".

イロト イポト イヨト イヨト

A **QPT** distribution \mathcal{D} whose entropy is sufficiently far from maximum and which is **QPT**-indistinguishable from uniform.

By coding theorem, low entropy \approx low Kolmogorov complexity. Thus, GapK can break the entropy-gap generator!

Breaking one-way puzzles with GapK

CGG: OWPuzz \implies "non-uniform entropy-gap generator".

イロト イポト イヨト イヨト

A **QPT** distribution \mathcal{D} whose entropy is sufficiently far from maximum and which is **QPT**-indistinguishable from uniform.

By coding theorem, low entropy \approx low Kolmogorov complexity. Thus, GapK can break the entropy-gap generator!

- 1. Khurana-Tomer (STOC 2025): Shows equivalence between probability estimation and one-way puzzles (with tighter approximation factor);
- 2. Hiroka-Morimae (2024): Shows how to construct one-way puzzles from average-case hardness of GapK (with a different proof).

イロト イポト イラト イラト 一日

San

- 1. Characterising with a problem with worst-case complexity bound? (Classical: AM).
- 2. Characterise other primitives? E.g., EFIs, OWSGs.
- 3. Strong average-case hardness?
- 4. Oracle separation does not rule out: construct OWPuzzles from the hardness of a (meta-complexity?) problem in QMA.

- 1. Characterising with a problem with worst-case complexity bound? (Classical: AM).
- 2. Characterise other primitives? E.g., EFIs, OWSGs.
- 3. Strong average-case hardness?
- 4. Oracle separation does not rule out: construct OWPuzzles from the hardness of a (meta-complexity?) problem in QMA.

イロト イポト イヨト イヨト

E

- 1. Characterising with a problem with worst-case complexity bound? (Classical: AM).
- 2. Characterise other primitives? E.g., EFIs, OWSGs.
- 3. Strong average-case hardness?
- 4. Oracle separation does not rule out: construct OWPuzzles from the hardness of a (meta-complexity?) problem in QMA.

イロト イヨト イヨト イヨト 三日

San

- 1. Characterising with a problem with worst-case complexity bound? (Classical: AM).
- 2. Characterise other primitives? E.g., EFIs, OWSGs.
- 3. Strong average-case hardness?
- 4. Oracle separation does not rule out: construct OWPuzzles from the hardness of a (meta-complexity?) problem in QMA.

イロト イヨト イヨト イヨト 三日

- 1. Characterising with a problem with worst-case complexity bound? (Classical: AM).
- 2. Characterise other primitives? E.g., EFIs, OWSGs.
- 3. Strong average-case hardness?
- 4. Oracle separation does not rule out: construct OWPuzzles from the hardness of a (meta-complexity?) problem in QMA.

イロト イポト イラト イラト 一日

NQ C

Thanks!

Bruno P. Cavalar (Oxford)

A Meta-Complexity Characterisation of Quantum Cryptography

イロト イヨト イヨト イヨト 三日

ッへへ 17/17