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The holy grail of cryptography?

Minimal complexity-theoretic assumption required for
cryptography?

P ̸= NP: necessary; sufficient?
▶ Specific constructions: Factoring, LWE, etc.

Quantum complication: PRSs may exist even if BQP = QMA
(in particular, ̸ ∃ pqOWFs) [Kretschmer, TQC 2021]
▶ The classical “holy grail” is no longer relevant

Meta-complexity: classical characterisations!

This talk: an equivalence between quantum cryptography and
complexity theory via meta-complexity.
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Minimal quantum cryptographic primitive?

Credits: Goldin, Morimae, Mutreja, and Yamakawa [2024]

Primitives following from PRS
are not known to be equivalent
(in fact, plenty of oracle
separations)

OWPuzz’s seem minimal in
QCCC and CountCrypt

EFI seems minimal for
quantum communication

This work: OWPuzz
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One-way puzzles

OWPuzz = (Samp,Ver). [Khurana-Tomer, STOC 2024]
Samp(1λ)→ (k , s) ∈ {0, 1}∗ in quantum polynomial-time (QPT).
▶ k : key; s: puzzle.

Soundness: P(k,s)←Samp(1λ)[Ver(k , s) = ⊤] = 1− negl(n)

Correctness: ∀QPTA, P(k,s)←Samp(1λ)[Ver(A(s), s) = ⊤] = negl(n)

Notably: Ver can be inefficient!

Arises naturally from shadow tomography.
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Kolmogorov Complexity

How much information is in a text?

Example 1: “1010101010101010” (Print “10" 8 times)

Example 2: “0001010100001011” (???)

Kolmogorov complexity K(x) of a string x ∈ {0, 1}∗:
minimum length of a program that outputs x .

PROPERTIES

1. K(x) ⩽ |x |.
2. Random strings have near maximum Kolmogorov complexity.

3. Computing K(x) is impossible!
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Approximating Kolmogorov Complexity (GapK)

Let GapK[s, s +∆] be the “promise” problem of distinguishing between
strings of K.c. at most s and those with K.c. at least s +∆.

s s +∆ K(x)

YES ∆ = ω(log n) NO

IRS’20: GapK can be solved in exponential-time on average (PP = PostBQP).

For every PPT-samplable distribution D and ∆ = ω(log n), it’s
possible to compute GapK[s, s +∆] on D with error at most

n−O(1) in exponential time.
[IRS, STOC20]
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Cryptography vs. Kolmogorov complexity

Theorem (Ilango-Ren-Santhanam [IRS], STOC 2020)
The following are equivalent:

One-way functions exist.

For some s = nΩ(1) and ∆ = ω(log n), there exists a samplable
distribution D such that GapK[s, s +∆] is average-case hard on D.

nΩ(1) nΩ(1) +∆ K(x)

YES ∆ = ω(log n) NO

The OWF encodes a hard probability distribution, and vice-versa.
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Quantum Cryptography vs. Kolmogorov complexity

Theorem (C.-Goldin-Gray-Hall [CGGH], EUROCRYPT 2025)
The following are equivalent:

One-way puzzles exist.

For some s = nΩ(1) and ∆ = ω(log n), there exists a quantum
samplable distribution D such that GapK[s, s +∆] is average-case
hard on D for quantum algorithms.

nΩ(1) nΩ(1) +∆ K(x)

YES ∆ = ω(log n) NO

The OWPuzz encodes a hard probability distribution, and vice-versa.
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Quantum Cryptography vs. Kolmogorov complexity

Theorem (C.-Goldin-Gray-Hall [CGGH], EUROCRYPT 2025)
The following are equivalent:

One-way puzzles exist.

For some s = nΩ(1) and ∆ = ω(log n), there exists a quantum
samplable distribution D such that GapK[s, s +∆] is average-case
hard on D for quantum algorithms.

Further evidence of OWPuzz’s centrality in QCCC!
▶ Besides combiners, hardness amplification, etc.
▶ Natural generalisation of OWFs
▶ Embodies some fundamental hardness via meta-complexity
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Probability estimation: crucial intermediate step

Let D be a sampler. Let px := P[x is sampled by D].
δ-Prob. estimation: given x ← D, output A(x) ∈ [δ · px , px ] w.h.p..

Breaking OWPuzz =⇒ Prob. estimation

Classically: use the random bits of the sampler to construct a OWF
candidate:

fk(h, r) = D(r), h, h(r),

where h is a hash function mapping to k bits.
Estimate px by sampling h, z and inverting (x , h, z) (many times).
(Intuition: select a random hash bucket and see if r “is there”)

Quantumly: randomness is inherent to the hard distribution!
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Distributional one-way puzzles

One-way puzzles ⇐⇒ Distributional one-way puzzles

Takeaway: ̸ ∃ OWPuzz =⇒ sample from (k , s) conditioned on s.
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Amplitude estimation with a distributional inverter

One-way puzzle: sample x ← D, h hash function mapping to k bits.
Key: x , Puzzle: (h, h(x)).
Distributionally invert [CGG]: as k increases, x is isolated by (h, h(x)).
(Intuition: fix the “right” random hash bucket, and see if anything else
besides x is there.)
The threshold when x starts to become isolated is our estimate for px .

Bruno P. Cavalar (Oxford) A Meta-Complexity Characterisation of Quantum Cryptography 12 / 17



Amplitude estimation with a distributional inverter

One-way puzzle: sample x ← D, h hash function mapping to k bits.
Key: x , Puzzle: (h, h(x)).
Distributionally invert [CGG]: as k increases, x is isolated by (h, h(x)).
(Intuition: fix the “right” random hash bucket, and see if anything else
besides x is there.)
The threshold when x starts to become isolated is our estimate for px .

Bruno P. Cavalar (Oxford) A Meta-Complexity Characterisation of Quantum Cryptography 12 / 17



Amplitude estimation with a distributional inverter

One-way puzzle: sample x ← D, h hash function mapping to k bits.
Key: x , Puzzle: (h, h(x)).
Distributionally invert [CGG]: as k increases, x is isolated by (h, h(x)).
(Intuition: fix the “right” random hash bucket, and see if anything else
besides x is there.)
The threshold when x starts to become isolated is our estimate for px .
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Computing GapK with probability estimation

Just like the classical case [IRS].
Requires a “quantum coding theorem”:

K(x) ⪅ log

(
1

P[D → x ]

)
+ |D| .

We then use probability as a proxy for Kolmogorov complexity.
(In other words, low probability ≈ high Kolmogorov complexity.)
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Breaking one-way puzzles with GapK

CGG: OWPuzz =⇒ “non-uniform entropy-gap generator”.

A QPT distribution D whose entropy is sufficiently far from
maximum and which is QPT-indistinguishable from uniform.

By coding theorem, low entropy ≈ low Kolmogorov complexity.
Thus, GapK can break the entropy-gap generator!

Bruno P. Cavalar (Oxford) A Meta-Complexity Characterisation of Quantum Cryptography 14 / 17



Breaking one-way puzzles with GapK

CGG: OWPuzz =⇒ “non-uniform entropy-gap generator”.

A QPT distribution D whose entropy is sufficiently far from
maximum and which is QPT-indistinguishable from uniform.

By coding theorem, low entropy ≈ low Kolmogorov complexity.
Thus, GapK can break the entropy-gap generator!

Bruno P. Cavalar (Oxford) A Meta-Complexity Characterisation of Quantum Cryptography 14 / 17



Concurrent work

1. Khurana-Tomer (STOC 2025): Shows equivalence between
probability estimation and one-way puzzles (with tighter
approximation factor);

2. Hiroka-Morimae (2024): Shows how to construct one-way puzzles
from average-case hardness of GapK (with a different proof).
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Open questions

1. Characterising with a problem with worst-case complexity bound?
(Classical: AM).

2. Characterise other primitives? E.g., EFIs, OWSGs.

3. Strong average-case hardness?

4. Oracle separation does not rule out: construct OWPuzzles from the
hardness of a (meta-complexity?) problem in QMA.
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Open questions

Thanks!
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