ETH zürich

Asymptotically Optimal Early Termination for Dishonest Majority Broadcast

Giovanni Deligios, ETH Zurich Ivana Klasovitá, ETH Zurich Chen-Da Liu-Zhang, Lucerne University of Applied Sciences and Arts & Web3 Foundation

Broadcast

- Set of *n* players \mathcal{P} , designated sender P^*
- Sender *P*^{*} holds input *x*
- Every player P_i determines output y_i
- At most *t* corruptions
- Protocol needs to satisfy:
 - Validity: If P^* is honest, then for each honest player P_i the output is $y_i = x$
 - Agreement: For each honest players P_i , P_j , the outputs satisfy $y_i = y_j$
 - Termination: All honest players terminate

Broadcast

- Set of *n* players \mathcal{P} , designated sender P^*
- Sender *P*^{*} holds input *x*
- Every player P_i determines output y_i
- At most *t* corruptions
- Protocol needs to satisfy:
 - Validity: If P^* is honest, then for each honest player P_i the output is $y_i = x$
 - Agreement: For each honest players P_i , P_j , the outputs satisfy $y_i = y_j$
 - Termination: All honest players terminate

Broadcast

- Set of *n* players \mathcal{P} , designated sender P^*
- Sender *P*^{*} holds input *x*
- Every player P_i determines output y_i
- At most *t* corruptions
- Protocol needs to satisfy:
 - Validity: If P^* is honest, then for each honest player P_i the output is $y_i = x$
 - Agreement: For each honest players P_i , P_j , the outputs satisfy $y_i = y_j$
 - Termination: All honest players terminate

General Model

- Deterministic Protocol
- Complete network
- Synchronized Model
- Strongly adaptive, rushing adversary

Broadcast Background

- Pease et al. give upper bounds on the number of byzantine corruptions [PSL80] :
 - t < n/3 without authentication
 - t < n with authentication
- Fischer and Lynch proved the lower bound on runtime of t + 1 rounds [FL82].
 - > Can we do better, when $f \ll t$ players are corrupted?

Early Termination Broadcast

- Dolev et al. distinguish two types of termination [DRS82]:
 - Simultaneous termination: All honest players terminate in the same round.
 - Eventual termination: All honest players eventually terminate.

- Let *f* be the number of actual corruptions.
 - In the worst case, any broadcast protocol with *simultaneous termination* will run for t + 1 rounds, no matter the actual number of corruptions [DRS82].
 - In the worst case, any broadcast protocol with *eventual termination* will run for $\min\{f + 2, t + 1\}$ rounds [DRS90].

Early Termination Broadcast Results Protocols without Authentication

Runtime	Corruption Resilience	Source
$\min\{2f + 5, 2t + 3\}$	t < n/3	[DRS82]
2f + 3	t < n/6	[Rei85]
$\min\{2f + 4, 2t + 2\}$	t < n/3	[TPS87]
$\min\{f(1+1/d) + 5, t(1+1/d)\}$, for any constant $d > 0$	t < n/3	[BGP92]
$\min\{f+2, t+1\}$	$n > 2t^2 + 3t + 5$	[DRS82]
$\min\{f+2, t+1\}$	$n > \max\{4t, 2t^2 - 2t + 2\}$	[DRS90]
$\min\{f+2, t+1\}$	$n > \left\lceil \sqrt{t} \right\rceil \cdot \left\lfloor 4t + \sqrt{t} + 1 \right\rfloor$	[Coa93]
$\min\{f+2, t+1\}$	t < n/8	[GM98]
$min{f + 2, t + 1}$, with exponential message complexity	t < n/3	[BGP92]
$\min\{f+2, t+1\}$	t < n/3	[AD15]

Early Termination Broadcast Results Protocols with Authentication (Signatures)

Runtime	Corruption Resilience	Source
2f + 4	t < n/2	[PT84]
$(d+5) \cdot (\lfloor f/d \rfloor + 2) + 2$, for a fixed constant d	t < n/2	[ELP25]
$0(\min\{f^2, t\})$	t < n	[LN24]

- Our contribution: broadcast protocol resilient against t < n corruptions running in $O(\min\{f^2, t\})$ rounds.
 - If $t < (1 \varepsilon)n$ for some $\varepsilon > 0$, then the protocol runs in O(f) rounds.

Possible Sender Behavior

• Contradicting messages

• No message

Polarisers as Certificates

- Loss and Nielsen [LN24] present the idea of polarisers to use instead of certificates, when the sender does not share a message with a player. We say Pol = (Alive, Corrupt, Accuse) is a polariser, if
 - All players \mathcal{P} into two disjoint sets: Alive and Corrupt
 - For each player P_i in *Alive* and each player P_j in *Corrupt*, there is an accusation $Acc_{i,j}$ from the player P_i towards the player P_j in *Accuse*

- Accusation soundness: honest players do not accuse each other
 - It follows, that all honest players are either in Alive or in Corrupt
 - Thus, a player *P* will accept polariser *Pol* = (*Alive, Corrupt, Accuse*) if
 - Pol is a valid polariser
 - Player $P \in Alive$

From Polarisers to Broadcast

- Loss and Nielsen [LN24] propose the following approach to build broadcast using the mechanic of polarisers
 - 1. Define polariser-cast such that a sender P_j can send their input to all players, and enables honest players to construct a polariser Pol = (Alive, Corrupt, Accuse)such that $P_j \in Corrupt$
 - 2. Use the given polariser-cast to build graded broadcast with justifiable outputs, which means the output of an honest player comes with a proof
 - 3. Use the king-phase paradigm with rotating kings running the graded broadcast to $f \cdot 0$ achieve broadcast

- -

0(f)

Runtime:

0(f)

 $f \cdot 0(f) = \boldsymbol{0}(f^2)$

Generalized Polarizers

- Loss and Nielsen [LN24] present the idea of polarisers to use instead of certificates, when the sender does not share a message with a player. We extend this definition and say that the tuple Pol = (Alive, Corrupt, Accuse, MakeGraph) is a polariser, if
 - *MakeGraph* is an algorithm that takes as input *Accuse* and produces the graph $G = (\mathcal{P}, E)$
 - All players \mathcal{P} are divided into two disjoint sets: Alive and Corrupt
 - For each player P_i in Alive and each player P_j in Corrupt, there is no path in G between player P_i and player P_j
 - Accusation soundness: honest players do not accuse each other
 - Require all honest players to be either in *Alive* or in *Corrupt*

Example 1: Simple MakeGraph Algorithm

- **1.** Initialize $G \leftarrow K_{\mathcal{P}}$
- 2. For each valid accusation $Acc_{i,j}$ remove edge $\{P_i, P_j\}$ from G
- 3. Return G
- The graph is constructed starting from a complete graph on \mathcal{P} and removing edges for any accusation
- The generalized definition of Polariser with this MakeGraph algorithm coincides with the definition given by Loss and Nielsen [LN24]

Shortcoming of Simple MakeGraph

1. Initialize $G \leftarrow K_{\mathcal{P}}$

2. For each valid accusation $Acc_{i,j}$ remove edge $\{P_i, P_j\}$ from G

3. Return G

- We can analyze the shortcoming of this simple algorithm using the following example: Suppose n = 7 with players $\mathcal{P} = \{P^*, P_1, P_2, P_3, P_4, P_5, P_6\}$, and t < 5
- Assume P_6 has observed the following accusations:

 $Acc_{3,*}, Acc_{3,2}, Acc_{4,*}, Acc_{4,1}, Acc_{5,*}, Acc_{5,1}, Acc_{5,2}, Acc_{6,*}, Acc_{6,1}, Acc_{6,2}$

• Using the simple MakeGraph algorithm, *P*₆ computes the following graph:

- Given that $t \le 4$, the number of honest players $h \ge 7 4 = 3$
- Honest players don't accuse each other
- Honest players are guaranteed to be part of a clique of size 3
- Edges that are not part of any clique of size 3 do not connect honest players

Example 2: Clique MakeGraph Algorithm

- Let h = n t be the lower bound on the number of honest players in the following algorithm:
- **1. Initialize** $G \leftarrow K_{\mathcal{P}}$
- 2. For each valid accusation $Acc_{i,j}$ remove edge $\{P_i, P_j\}$ from G
- 3. Find an edge e in G which is not part of any clique of size h and remove e from G. Repeat until no such edges exist.
- 4. Return G
- Suppose n = 7 with players $\mathcal{P} = \{P^*, P_1, P_2, P_3, P_4, P_5, P_6\}$, and t < 5
- Assume P₆ has observed the following accusations: Acc_{3,*}, Acc_{3,2}, Acc_{4,*}, Acc_{4,1}, Acc_{5,*}, Acc_{5,1}, Acc_{5,2}, Acc_{6,*}, Acc_{6,*}, Acc_{6,1}, Acc_{6,2}
- Using the clique MakeGraph algorithm, *P*₆ computes the following graph:

Bounding the Diameter of Resulting Clique Graphs

Lemma: Let *G* be a graph with *n* in which every edge is contained in a clique of size *h*. Then *G* has diameter at most $d \le 2n/h$.

Corollary: Let *G* be a graph with *n* in which every edge is contained in a clique of size h = n - t. Assuming that $t < (1 - \varepsilon)n$ for some constant $\varepsilon > 0$, then the diameter of *G* is constant.

Proof: $d \le 2n/k \le 2n/\epsilon \cdot n = 2/\epsilon$

From Polarisers to Broadcast

- Utilize approach proposed by Loss and Nielsen [LN24] to build broadcast using the generalization of polarisers
 - 1. Construct polariser-cast such that a sender P_j can send their input to all players, and allows honest players that have not received the value from the sender to construct a polariser Pol = (Alive, Corrupt, Accuse, MakeGraph) with $P_i \in Corrupt$
 - 2. Use the given polariser-cast to build graded broadcast with justifiable outputs, which means the output of an honest player comes with a proof
 - Use the king-phase paradigm with rotating kings running the graded broadcast to achieve broadcast

0(1)*

 $0(1)^{*}$

 $f \cdot 0(1) = \boldsymbol{0}(\boldsymbol{f})^*$

References

- [AD15] Ittai Abraham and Danny Dolev. "Byzantine agreement with optimal early stopping, optimal resilience and polynomial complexity". In: Proceedings of the forty-seventh annual ACM symposium on Theory of Computing. 2015, pp. 605–614.
- [BGP92] Piotr Berman, Juan A Garay, and Kenneth J Perry. "Optimal early stopping in distributed consensus". In: Distributed Algorithms: 6th International Workshop, WDAG'92 Haifa, Israel, November 2–4, 1992 Proceedings 6. Springer. 1992, pp. 221–237.
- [Coa93] Brian A Coan. "Efficient agreement using fault diagnosis". In: Distributed computing 7 (1993), pp. 87–98
- [DRS82] Danny Dolev, Ruediger Reischuk, and H Raymond Strong. "Eventual' is earlier than immediate". In: 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). IEEE. 1982, pp. 196–203
- [DRS90] Danny Dolev, Ruediger Reischuk, and H Raymond Strong. "Early stopping in Byzantine agreement". In: Journal of the ACM (JACM) 37.4 (1990), pp. 720–741.
- [ELP25] Fatima Elsheimy, Julian Loss, and Charalampos Papamanthou. "Early Stopping Byzantine Agreement in $(1 + \varepsilon)$. f Rounds". In: International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2025, pp. 398–424.

References

[FL82] Michael J. Fischer and Nancy A. Lynch. "A lower bound for the time to assure interactive consistency". In: Inf. Process. Lett. 14.4 (1982), pp. 183–186.

- [GM98] Juan A Garay and Yoram Moses. "Fully polynomial Byzantine agreement for 3t<n processors in t+1 rounds". In: SIAM Journal on Computing 27.1 (1998), pp. 247–290.
- [LN24] Julian Loss and Jesper Buus Nielsen. "Early Stopping for Any Number of Corruptions". In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Springer. 2024, pp. 457–488.
- [PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. "Reaching agreement in the presence of faults". In: Journal of the ACM (JACM) 27.2 (1980), pp. 228–234.
- [PT84] Kenneth J Perry and Sam Toueg. An authenticated Byzantine generals algorithm with early stopping. Tech. rep. Cornell University, 1984.
- [Rei85] Rüdiger Reischuk. "A new solution for the Byzantine generals problem". In: Information and Control 64.1-3 (1985), pp. 23–42.
- [TPS87] Sam Toueg, Kenneth J Perry, and TK Srikanth. "Fast distributed agreement". In: SIAM Journal on Computing 16.3 (1987), pp. 445–457.