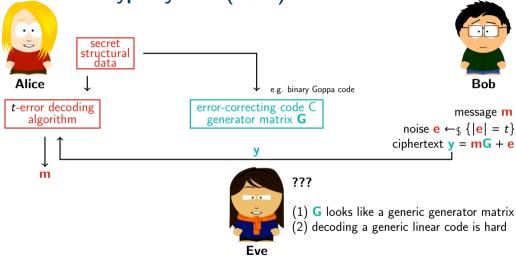


The syzygy distinguisher

Hugues Randriam ANSSI, Laboratoire de cryptographie & Télécom Paris, C²

Eurocrypt 2025, Madrid 2025-05-05

The McEliece cryptosystem (1978)



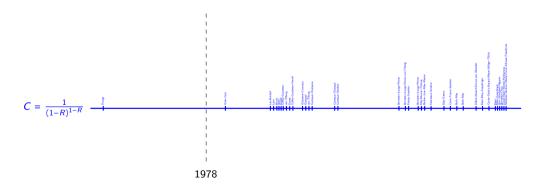
Note:

- (1) ad hoc problem, trapdoor similar to those in today's multivariate cryptography
- (2) well-studied problem, NP-hard, believed to be quantum-resistant

Stability of McEliece cryptanalysis

Asymptotic complexity for rate R, length $n \to \infty$ codes: $(C + o(1))^{\frac{n}{\log n}}$

Blue: information set decoding — improving C would be a major result!

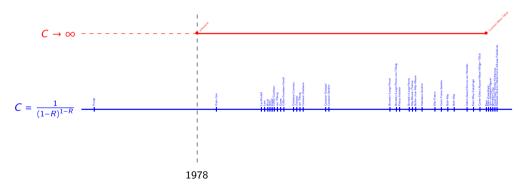


credit: Classic McEliece team 2 /13

Stability of McEliece cryptanalysis

Asymptotic complexity for rate R, length $n \to \infty$ codes: $(C + o(1))^{\frac{n}{\log n}}$

Blue: information set decoding — improving *C* would be a major result!
Red: Goppa structure recovery/distinguisher
(unmentioned results only work for extreme regimes or other types or codes, or need additional information)



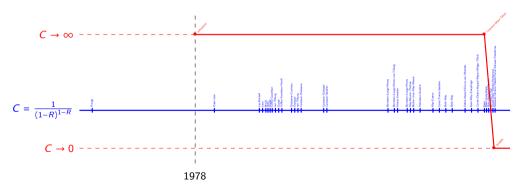
Stability of McEliece cryptanalysis

Asymptotic complexity for rate R, length $n \to \infty$ codes: $(C + o(1))^{\frac{n}{\log n}}$

Blue: information set decoding — improving C would be a major result!

Red: Goppa structure recovery/distinguisher

(unmentioned results only work for extreme regimes or other types or codes, or need additional information)



continuous incremental improvements vs. sudden leaps, potentially devastating

(Dual) Goppa structure

- $\mathbf{x} = (x_1, \dots, x_n) \in (\mathbb{F}_{2^m})^n$ and $g(X) \in \mathbb{F}_{2^m}[X]$ irreducible of degree t
- construct the generalized Vandermonde matrix

$$\mathbf{H}_{\text{priv}} = \begin{pmatrix} 1/g(x_1) & 1/g(x_2) & \dots & 1/g(x_n) \\ x_1/g(x_1) & x_2/g(x_2) & \dots & x_n/g(x_n) \\ \vdots & \vdots & & \vdots \\ x_1^{t-1}/g(x_1) & x_2^{t-1}/g(x_2) & \dots & x_n^{t-1}/g(x_n) \end{pmatrix} \in (\mathbb{F}_{2^m})^{t \times n}$$

▶ identify $\mathbb{F}_{2^m} \simeq (\mathbb{F}_2)^m$ (columns), put in reduced row echelon form, get

$$\mathbf{H}_{\text{pub}} \in (\mathbb{F}_2)^{mt \times n}$$

- ▶ Goppa structure recovery: $\underline{\text{find}}$ some (\mathbf{x}, g) that give \mathbf{H}_{pub}
- ▶ Goppa distinguisher: $\underline{\text{decide}}$ if a given **H** comes from some (\mathbf{x}, g)

Quadratic relations

- $ightharpoonup C \subseteq \mathbb{F}^n$ with basis $\mathbf{c}_1, \ldots, \mathbf{c}_k$
- ▶ evaluation map: ev : $\mathbb{F}[X_1, ..., X_k] \to \mathbb{F}^n$, $X_i \mapsto \mathbf{c}_i$
- ▶ space of quadratic relations: $I_2(C) = \ker(\text{ev}_2 : \mathbb{F}[X_1, \dots, X_k]_2 \to \mathbb{F}^n)$
- ▶ $\dim(I_2(C)) = \frac{k(k+1)}{2} \text{rk}(ev_2) \ge \left(\frac{k(k+1)}{2} n\right)^+$

Example

- $ightharpoonup C = \text{rowspan}_{\mathbb{F}_{2^m}}(\mathbf{H}_{\text{priv}}) = \text{GRS}_t(\mathbf{x}, \mathbf{y}) \text{ where } \mathbf{y} = g(\mathbf{x})^{-1}$
- ▶ basis $\mathbf{c}_i = \mathbf{y}\mathbf{x}^{i-1}$ for $1 \le i \le t$

then for a + b = c + d:

$$\mathbf{c}_a \mathbf{c}_b = \mathbf{c}_c \mathbf{c}_d$$

$$X_a X_b - X_c X_d \in I_2(C)$$

The [FGOPT10] distinguisher

Theorem

There is an explicit lower bound

$$\dim_{\mathbb{F}_2}(I_2(\mathsf{C})) \geq T = T(m, n, t)$$

when $C = rowspan_{\mathbb{F}_2}(\mathbf{H}_{pub})$ is a dual Goppa code.

Proof:

- ightharpoonup dim $_{\mathbb{F}_2}(I_2(\mathsf{C})) = \dim_{\mathbb{F}_2^m}(I_2(\mathsf{C}_{\mathbb{F}_{2^m}}))$ because $\mathsf{rk}(\mathsf{ev}_2)$ doesn't depend on the field
- $\qquad \qquad \mathsf{C}_{\mathbb{F}_{2^m}} = \mathsf{rowspan}_{\mathbb{F}_{2^m}}(\mathsf{H}_{\mathsf{pub}}) = \mathsf{GRS}_t(\mathsf{x},\mathsf{y}) \oplus \mathsf{GRS}_t(\mathsf{x}^2,\mathsf{y}^2) \oplus \cdots \oplus \mathsf{GRS}_t(\mathsf{x}^{2^{m-1}},\mathsf{y}^{2^{m-1}}) \text{ (Delsarte)}$

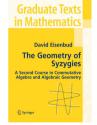
On the other hand for a random $[n, k]_2$ -code (where k = mt) w.h.p. [CCMZ15]

$$\dim_{\mathbb{F}_2}(I_2(\mathsf{C})) = \left(\frac{k(k+1)}{2} - n\right)^+$$

→ can distinguish when (very restrictive!)

$$n>\frac{k(k+1)}{2}-T$$

In nature, poisonous creatures will develop bright colors to warn others of their toxicity



Theorem 2.8. Let X be a set of 7 points in linearly general position in \mathbb{P}^3 . There are just two distinct Betti diagrams possible for the homogeneous coordinate ring $S_{X:}$:

	0	1	2	3			0	1	2	3
		-			and	0	1			
1	-	3	_	-	and	1	-	3	2	-
2	-	1	6	3		2	_	3	6	3

In the first case the points do not lie on any curve of degree 3. In the second case, the ideal J generated by the quadrics containing X is the ideal of the unique curve of degree 3 containing X, which is irreducible.

Figure 1: a distinguisher for [7,4] GRS codes

Linear resolutions

Start from a basis Q_1, \ldots, Q_M of $I_2(C)$:

- \blacktriangleright by definition Q_1, \ldots, Q_M satisfy no linear relation with scalar coefficients
- but can have syzygies: linear relations whose coefficients are polynomials
- ▶ keep it simple: consider only relations whose coefficients are of degree 1.

Now consider a basis of the space of such relations:

$$\begin{array}{ll} R_1: & \ell_{11} Q_1 + \cdots + \ell_{1M} Q_M = 0 \\ \vdots & & \\ R_N: & \ell_{N1} Q_1 + \cdots + \ell_{NM} Q_M = 0 \end{array}$$

- ightharpoonup by definition R_1, \ldots, R_N satisfy no linear relation with scalar coefficients
- but can satisfy linear relations whose coefficients are polynomials
- keep it simple: consider only relations whose coefficients are of degree 1.

Iterate! Relations between relations between relations...

Algebraic geometry view

- $ightharpoonup \mathbf{H} \in \mathbb{F}^{k \times n}$, $C = rowspan_{\mathbb{F}}(\mathbf{H})$
- ▶ columns of **H** define a set of points $\mathfrak{X} = \{\overline{\mathbf{p}}_1, \dots, \overline{\mathbf{p}}_n\} \subseteq \mathbb{P}^{k-1}(\mathbb{F})$
- ▶ homogeneous coordinate ring $S_{\mathfrak{X}}$ is a quotient of $S = \mathbb{F}[X_1, \dots, X_k]$
- $I_2(C)$ = space of quadrics through \mathfrak{X}
- lacktriangle the previous slide defines the linear strand of the minimal resolution of $S_{\mathfrak{X}}$
- ▶ the dimensions of these syzygy spaces form the first row of its Betti diagram
- ▶ all these numbers β_{ii} are code invariants generalizing $\beta_{12} = \dim(I_2(C))$

	0	1	2	3	4	5	6	7	8	9	10	11
•	_				_		_	_	_	_	_	_
1	_	55	320	891	1408	1210	320	55	_	_	_	_
2	_	1	11	55	220	650	1672	1870	1221	485	110	11

Figure 2: Betti diagram of the [23,12]₂ Golay code, and its linear strand

Goppa case: the Eagon-Northcott complex

If C is a dual Goppa code, then $I_2(C_{\mathbb{F}_{2^m}})$ contains the 2×2 minors of a matrix of

linear forms
$$\begin{pmatrix} \ell_1 & \ell_2 & \dots & \ell_f \\ \ell'_1 & \ell'_2 & \dots & \ell'_f \end{pmatrix}$$
:

- ▶ these minors are the $\binom{f}{2}$ quadratic forms $Q_{ii} = \ell_i \ell'_i \ell_i \ell'_i$
- ▶ the Q_{ij} admit the $2\binom{f}{2}$ relations
 - ► R_{ijk} : $\ell_i Q_{jk} \ell_j Q_{ik} + \ell_k Q_{ij} = 0$ ► R'_{iik} : $\ell'_i Q_{ik} \ell'_i Q_{ik} + \ell'_k Q_{ij} = 0$
- ▶ these R_{iik} and R'_{iik} admit the $3\binom{f}{4}$ relations

 - ▶ S_{ijkl} : $\ell_i R_{jkl} \ell_j R_{ikl} + \ell_k R_{ijl} \ell_l R_{ijk} = 0$ ▶ S'_{ijkl} : $\ell_i R'_{jkl} \ell_j R'_{ikl} + \ell_k R'_{ijl} \ell_l R'_{ijk} + \ell'_i R_{jkl} \ell'_j R_{ikl} + \ell'_k R_{ijl} \ell'_l R_{ijk} = 0$
- \triangleright etc., so the length of the linear strand is at least f.

Goppa case: the Eagon-Northcott complex

If C is a dual Goppa code, then $I_2(C_{\mathbb{F}_{2^m}})$ contains the 2×2 minors of a matrix of

linear forms
$$\begin{pmatrix} \ell_1 & \ell_2 & \dots & \ell_f \\ \ell'_1 & \ell'_2 & \dots & \ell'_f \end{pmatrix}$$
:

- ▶ these minors are the $\binom{f}{2}$ quadratic forms $Q_{ii} = \ell_i \ell'_i \ell_i \ell'_i$
- ▶ the Q_{ij} admit the $2\binom{f}{2}$ relations

 - ► R_{ijk} : $\ell_i Q_{jk} \ell_j Q_{ik} + \ell_k Q_{ij} = 0$ ► R'_{iik} : $\ell'_i Q_{ik} \ell'_i Q_{ik} + \ell'_k Q_{ij} = 0$
- ▶ these R_{ijk} and R'_{ijk} admit the $3\binom{f}{4}$ relations

 - ▶ S_{ijkl} : $\ell_i R_{jkl} \ell_j R_{ikl} + \ell_k R_{ijl} \ell_l R_{ijk} = 0$ ▶ S'_{ijkl} : $\ell_i R'_{ikl} \ell_j R'_{ikl} + \ell_k R'_{ijl} \ell_l R'_{ijk} + \ell'_i R_{jkl} \ell'_j R_{ikl} + \ell'_k R_{ijl} \ell'_l R_{ijk} = 0$
 - $S'''_{iij}: \ell'_{i}R'_{iij} \ell'_{i}R'_{iij} + \ell_{i}R'_{iij} \ell_{i}R'_{iij} = 0$
- \triangleright etc., so the length of the linear strand is at least f.

Moreover one can show that this f is unexpectedly close to k.

Random case

- ▶ the r-th linear syzygy space is defined iteratively as the left kernel of a Macaulay matrix constructed from the (r-1)-th space
- ▶ w.h.p. we expect this space is null iff this matrix has # rows < # columns, which happens iff</p>

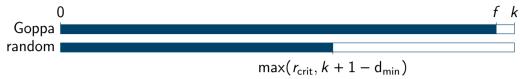
$$r > r_{\rm crit} = \frac{k(k+1)}{n} \approx kR$$

- ► Minimal resolution conjecture (warning: false but "true enough") supports this over an infinite field
- another necessary condition, possibly stronger in the finite field case, is

$$r > k + 1 - \mathsf{d}_{\min}$$

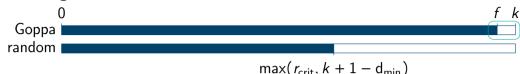
Heuristic, supported experimentally: no other condition

Shortening



Expected complexity is polynomial in $\binom{k}{r_{crit}} \approx \binom{k}{Rk}$ thus exponential in k or n.

Shortening



Expected complexity is polynomial in $\binom{k}{r_{crit}} \approx \binom{k}{Rk}$ thus exponential in k or n.

Recall f very close to k, more precisely: $f \approx \left(1 - \frac{\log \log n}{\log n}\right) k$

Shortening changes parameters:

$$n \rightsquigarrow n-1, \quad k \rightsquigarrow k-1, \quad f \rightsquigarrow f-1, \quad \mathsf{d}_{\min} \rightsquigarrow \geq \mathsf{d}_{\min}-1, \quad R \searrow, \quad r_{\mathsf{crit}} \searrow$$

- ▶ for R small enough, $k + 1 d_{min} < r_{crit}$
- we can shorten and still distinguish as long as $f > r_{crit}$
- works up to $k \rightsquigarrow \frac{\log \log n}{\log n} k$, $R \rightsquigarrow \frac{R}{1-R} \frac{\log \log n}{\log n}$

Shortening

$$\begin{array}{c}
0 & \frac{\log \log n}{\log n} k \\
\text{Goppa} & \\
\text{random} & \\
\end{array}$$

$$\binom{k}{Rk} \rightsquigarrow \binom{\frac{\log\log n}{\log n}k}{\frac{R}{\log\log n}\binom{\log\log n}{\log n}^2k} \approx 2^{\frac{R^2}{1-R}\frac{(\log\log n)^3}{(\log n)^2}n} \text{ subexponential in } \frac{n}{\log n}$$

Recall f very close to k, more precisely: $f \approx \left(1 - \frac{\log \log n}{\log n}\right) k$

Shortening changes parameters:

$$n \rightarrow n-1, \quad k \rightarrow k-1, \quad f \rightarrow f-1, \quad \mathsf{d}_{\min} \rightarrow \mathsf{Ed}_{\min}-1, \quad R \searrow, \quad r_{\mathsf{crit}} \searrow$$

- ▶ for R small enough, $k + 1 d_{min} < r_{crit}$
- we can shorten and still distinguish as long as $f > r_{crit}$
- works up to $k \rightsquigarrow \frac{\log \log n}{\log n} k$, $R \rightsquigarrow \frac{R}{1-R} \frac{\log \log n}{\log n}$

Concrete parameters

Best I can deal with in practice is m = 10, n = 1024, t = 10:

- before shortening, dual codes have parameters [1024, 100]
- \blacktriangleright theoretically distinguishable at r = 10, but too heavy
- ▶ shorten 40 times → shortened codes have parameters [984, 60]
- ▶ distinguishable at r = 4 in practice: $\beta_{3,4} = 30$ for Goppa vs 0 random
- no deviation from the heuristics

Classic McEliece 348864 has m = 12, n = 3488, t = 64:

- before shortening, dual codes have parameters [3488,768]
- ▶ shorten 377 times → shortened codes have parameters [3111, 391]
- ▶ theoretically distinguishable at r = 50, complexity estimate 2^{528} unfeasible

Asymptotic gain $\frac{(\log \log n)^3}{\log n}$ tends to 0 ridiculously slowly!

Conclusion

- ▶ Is McEliece broken? No.
- ▶ Will it be broken soon? I don't know, and I wouldn't bet in any direction.
- ▶ Is our understanding of its security stable? Definitely not!

Two main technical ingredients:

- ► (fancy♥) higher modules of syzygies, Betti numbers
- \blacktriangleright (don't underestimate!) f unexpectedly close to k, allows to shorten a lot.

TODO:

- ▶ Improve complexity/implementation, theoretically and practically.
- ▶ Pursue theoretical study of Betti numbers from coding theory viewpoint.
- This is not a black-box distinguisher, it comes with a lot of structural information → use it (joint with other techniques) for structural recovery?
- Betti numbers are new code invariants. Find other applications?