

Drifting Towards Better Error Probabilities in Fully Homomorphic Encryption Schemes

Motivation

Challenges in FHE Deployments

- Performance overhead due to **noise accumulation**
- **Decryption failure probability** must be minimized
- Trade-offs between efficiency, security, and correctness

Motivation

Challenges in FHE Deployments

- Performance overhead due to **noise accumulation**
- Decryption failure probability must be minimized
- Trade-offs between efficiency, security, and correctness

Questions

- How do **decryption failures** impact practical security?
- Can we develop **low-overhead solutions** to reduce failure probability?
- How do our techniques improve theoretical and applied security?

Ciphertext Drift

Definition and Impact

What is Ciphertext Drift?

- Ciphertext drift refers to the accumulation of small errors introduced during modulus switching in FHE
- It occurs due to rounding effects when converting ciphertexts between different moduli

Ciphertext Drift

Definition and Impact

What is Ciphertext Drift?

- Ciphertext drift refers to the accumulation of small errors introduced during modulus switching in FHE
- It occurs due to rounding effects when converting ciphertexts between different moduli

Why Does Ciphertext Drift Matter?

- Drift increases failure probability, which can be exploited in certain adversarial scenarios
- Reducing drift often requires larger cryptographic parameters, increasing computational cost

Security Models in FHE

IND-CPA Standard security against chosen-plaintext attacks

IND-CPA^D Attacker has [very restricted] access to a decryption oracle

only decryption queries for which corresponding plaintext is known to the attacker are allowed

sIND-CPA^D Strengthened IND-CPA^D model

Security Models in FHE

IND-CPA Standard security against chosen-plaintext attacks

IND-CPA^D Attacker has [very restricted] access to a decryption oracle

only decryption queries for which corresponding plaintext is known to the attacker are allowed

sIND-CPA^D Strengthened IND-CPA^D model

Why Standard IND-CPA May Be Insufficient

- **FHE decryption failures** may reveal information about secret keys
- Attacks leveraging failure probabilities can break security assumptions

Noise Growth and Decryption Failures

Noise accumulation in homomorphic operations

- Each operation increases ciphertext noise
- Bootstrapping required for noise reduction but introduces additional drift

Probabilities in FHE Schemes

Noise Growth and Decryption Failures

Noise accumulation in homomorphic operations

- Each operation increases ciphertext noise
- Bootstrapping required for noise reduction but introduces additional drift

Failure probability in FHE

- When noise exceeds a threshold, decryption fails
- Even negligible failure probabilities impact security in adversarial settings

Noise Growth and Decryption Failures

Noise accumulation in homomorphic operations

- Each operation increases ciphertext noise
- Bootstrapping required for noise reduction but introduces additional drift

Failure probability in FHE

- When noise exceeds a threshold, decryption fails
- Even negligible failure probabilities impact security in adversarial settings

Practical impact on IND-CPA^D security

- Attacker can craft (honestly generated or evaluated) ciphertexts to probe decryption failures
- Failure probabilities must be controlled at all computation steps

Ciphertext Drift & Modulus Switching

Ciphertext drift

Modulus switching

- Accumulated error from rounding during modulus switching
- Leads to decryption failures and security vulnerabilities
- Converts ciphertext modulus from q to q' through rescaling and rounding
- Essential step for bootstrapped FHE [FHEW, TFHE, FINAL, ...]
- Introduces drift, which must be controlled to ensure correctness

in FHE Schemes

Probabilities

Error

Drifting Towards Better

Ciphertext Drift & Modulus Switching

Ciphertext drift

Modulus switching

- Accumulated error from rounding during modulus switching
- Leads to decryption failures and security vulnerabilities
- Converts ciphertext modulus from q to q' through rescaling and rounding
- Essential step for bootstrapped FHE [FHEW, TFHE, FINAL, ...]
- Introduces drift, which must be controlled to ensure correctness
- - Increased drift raises failure probability
 - Failure-aware adversaries can extract secret key information

Conventional IND-CPA parameters may not ensure IND-CPA^D security!

New Theoretical Insights

- Separation between IND-CPA^D and sIND-CPA^D security
- Characterization of failure probability in practical FHE schemes

Our Techniques and Results

New Theoretical Insights

- Separation between IND-CPA^D and sIND-CPA^D security
- **Characterization** of failure probability in practical FHE schemes

New Modulus Switching Methods

- Controlled noise management reducing failure probability
- Requires no significant parameter inflation

Ζ

Illustration: The Case of LWE

Modulus Switching

Input: LWE-type ciphertext modulo q

$$\boldsymbol{C} \leftarrow (a_1, \ldots, a_n, b) \in (\mathbb{Z}/q\mathbb{Z})^{n+1}$$

with $b = \sum_{i=1}^{n} a_i s_i + \Delta m + e_{in}$ and where e_{in} is some input noise error

Output: LWE-type ciphertext modulo 2N

$$\tilde{\boldsymbol{C}} \leftarrow (\tilde{a}_1, \dots, \tilde{a}_n, \tilde{b}) \in (\mathbb{Z}/2N\mathbb{Z})^{n+1}$$

with

$$\begin{cases} \tilde{a}_i = \left\lfloor \frac{a_i}{q} 2N \right\rceil & \text{for } i \in \{1, \dots, n\} \\ \tilde{b} = \left\lfloor \frac{b}{q} 2N \right\rceil \end{cases}$$

Illustration: The Case of LWE

Modulus Switching

Input: LWE-type ciphertext modulo q

$$\boldsymbol{C} \leftarrow (a_1, \ldots, a_n, b) \in (\mathbb{Z}/q\mathbb{Z})^{n+1}$$

with $b = \sum_{i=1}^{n} a_i s_i + \Delta m + e_{in}$ and where e_{in} is some input noise error

Output: LWE-type ciphertext modulo 2N

$$\tilde{\boldsymbol{C}} \leftarrow (\tilde{a}_1, \dots, \tilde{a}_n, \tilde{b}) \in (\mathbb{Z}/2N\mathbb{Z})^{n+1}$$

with

$$\begin{cases} \tilde{a}_i = \left\lfloor \frac{a_i}{q} 2N \right\rceil & \text{for } i \in \{1, \dots, n\} \\ \tilde{b} = \left\lfloor \frac{b}{q} 2N \right\rceil \end{cases}$$

Ciphertext Drift

Write

$$\begin{cases} a_i = \tilde{a}_i \frac{q}{2N} - \alpha_i \\ b = \tilde{b} \frac{q}{2N} - \beta \end{cases}$$

for some $\alpha_i, \beta \in \left[\left[-\frac{q}{4N}, \frac{q}{4N} \right] \right]$

Then

$$\tilde{b} - \sum_{i=1}^{n} \tilde{a}_{i} s_{i} - \frac{2N}{p} m \mod 2N =$$

$$\underbrace{\frac{e_{drift}}{(e_{in} + (\beta - \sum_{i=1}^{n} \alpha_{i} s_{i})) \mod q}}_{q/2N}$$

Two Important Observations

- An LWE ciphertext (a_1, \ldots, a_n, b) can be **publicly** re-randomized
 - simply add an encryption 0
- 2 The drift vector $(\alpha_1, \ldots, \alpha_n, \beta)$ can be publicly computed [Drift error cannot]

Ζ

Two Important Observations

- An LWE ciphertext (a_1, \ldots, a_n, b) can be **publicly** re-randomized
 - simply add an encryption 0
- 2 The drift vector $(\alpha_1, \ldots, \alpha_n, \beta)$ can be publicly computed [Drift error cannot]

Introducing Drift-Aware Modulus Switching (Public by Design)

- Select a ciphertext representative
 - by adding an encryption of 0 to the input ciphertext
- Use the drift vector to test the 'quality' of the representative

(Repeat until a 'good' ciphertext is found)

Error F

Drifting Towards Better

Probabilistic Approach

For a fixed ciphertext $\mathbf{C} = (\alpha_1, \dots, \alpha_n, b)$ with drift vector $(\alpha_1, \dots, \alpha_n, \beta)$, corresponding drift error is $e_{drift} = \beta - \sum_{i=1}^n \alpha_i s_i$

Probabilistic Approach

For a fixed ciphertext $\mathbf{C} = (\alpha_1, \dots, \alpha_n, b)$ with drift vector $(\alpha_1, \dots, \alpha_n, \beta)$, corresponding drift error is $e_{drift} = \beta - \sum_{i=1}^n \alpha_i s_i$

We have

$$\mu := \mathbb{E}[e_{drift}] = \beta - \sum_{i=1}^{n} \alpha_i \mathbb{E}[s_i]$$
$$= \beta - \frac{1}{2} \sum_{i=1}^{n} \alpha_i$$
$$\sigma^2 := \operatorname{Var}(e_{drift}) = \sum_{i=1}^{n} \alpha_i^2 \operatorname{Var}(s_i)$$
$$= \frac{1}{4} \sum_{i=1}^{n} \alpha_i^2$$

Probabilistic Approach

- For a fixed ciphertext $\mathbf{C} = (a_1, \dots, a_n, b)$ with drift vector $(\alpha_1, \dots, \alpha_n, \beta)$, corresponding drift error is $e_{drift} = \beta \sum_{i=1}^n \alpha_i s_i$
- We have

$$\mu := \mathbb{E}[e_{drift}] = \beta - \sum_{i=1}^{n} \alpha_i \mathbb{E}[s_i]$$
$$= \beta - \frac{1}{2} \sum_{i=1}^{n} \alpha_i$$
$$\sigma^2 := \operatorname{Var}(e_{drift}) = \sum_{i=1}^{n} \alpha_i^2 \operatorname{Var}(s_i)$$
$$= \frac{1}{4} \sum_{i=1}^{n} \alpha_i^2$$

r	1-p
7.15	2 ⁻⁴⁰
9.16	2 ⁻⁶⁴
10.29	2 ⁻⁸⁰
13.11	2-128

Probabilistic Approach

- For a fixed ciphertext $\mathbf{C} = (a_1, \dots, a_n, b)$ with drift vector $(\alpha_1, \dots, \alpha_n, \beta)$, corresponding drift error is $e_{drift} = \beta \sum_{i=1}^n \alpha_i s_i$
- We have

$$\mu := \mathbb{E}[e_{drift}] = \beta - \sum_{i=1}^{n} \alpha_i \mathbb{E}[s_i]$$
$$= \beta - \frac{1}{2} \sum_{i=1}^{n} \alpha_i$$
$$\sigma^2 := \operatorname{Var}(e_{drift}) = \sum_{i=1}^{n} \alpha_i^2 \operatorname{Var}(s_i)$$
$$= \frac{1}{4} \sum_{i=1}^{n} \alpha_i^2$$

7.15

9.16

10.29

13.11

1 - p

 2^{-40}

 2^{-64}

 2^{-80}

2-128

Proposed 'Quality' Test Check that $|\mu| + r\sigma \leq T$

where *T* is a bound to the maximum allowed drift error

10

Ζ

in FHE Schemes

Application

Parameter set	q	n	Ν	k	$p_{ m err}$	Т	#trials	p err
3_b^{64}	2 ⁶⁴	739	512	3	2 ⁻⁶⁴	2 ^{59.67}	50 100 1000	2-128.83 2 ^{-130.41} 2 ^{-134.75}
3^{64}_{4b}	2 ⁶⁴	834	2048	1	2 ⁻⁶⁴	2 ^{57.76}	50 100 1000	2 ^{-128.44} 2 ^{-129.94} 2 ^{-134.02}

Validation & Results

- Without our techniques
 - Failure probability is of $2^{-\kappa}$
- With our techniques
 - Failure probability is reduced to roughly $2^{-2\kappa}$

Validation & Results

- Without our techniques
 - Failure probability is of $2^{-\kappa}$
- With our techniques
 - Failure probability is reduced to roughly $2^{-2\kappa}$

Implications

- 🖒 Exponential improvement in failure rate
- 🖒 Unnoticeable performance penalty
- Enables stronger correctness guarantees for existing FHE schemes

Conclusion

Summary of Key Contributions

- Studied ciphertext drift in FHE
- Developed novel modulus switching methods reducing failure probability
- Strengthened FHE security models with **sIND-CPA^D refinements**

oo Read the full paper at ePrint 2024/1718

Contact and Links

michael.walter@zama.ai

zama.ai

GitHub

Community

ZAMA