

ChiLow and ChiChi: New Constructions for Code Encryption Eurocrypt 2025, Madrid, May 5

Yanis Belkheyar, Patrick Derbez, Shibam Ghosh, Gregor Leander, Silvia Mella, Léo Perrin, Shahram Rasoolzadeh, <u>Lukas Stennes</u>, Siwei Sun, Gilles Van Assche, and Damian Vizár

R.

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

Requirements for Our New Design

Authenticated encryption

- Ultra low latency for decryption (1 clock cycle)
- Small block size
- Small authentication tags

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

- Authenticated encryption
- Ultra low latency for decryption (1 clock cycle)
- Small block size
- Small authentication tags

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

- Authenticated encryption
- Ultra low latency for decryption (1 clock cycle)
- Small block size
- Small authentication tags

- Authenticated encryption
- Ultra low latency for decryption (1 clock cycle)
- Small block size
- Small authentication tags

- Authenticated encryption
- Ultra low latency for decryption (1 clock cycle)
- Small block size
- Small authentication tags

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

Our New Design – ChiLow

Our New Design – ChiLow

Linear Layer

$$y = L(x)$$
 with $x, y \in \mathbb{F}_2^{128}$ or 64 or 32 $y_i = x_{lpha i + eta_0} + x_{lpha i + eta_1} + x_{lpha i + eta_2}$

Table: Offsets for the linear maps.

Linear Map	α	β_0	β_1	β_2
L ₃₂	11	5	9	12
L'_{32}	11	1	26	30
L_{64}	3	1	26	50
L ₁₂₈	17	7	11	14

$$\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$
$$y_i = x_i + \overline{x}_{i+1} x_{i+2}$$

- ► Widely used (Ascon, SHA-3, etc.)
- ► Nice properties, including low latency
- Permutation if and only if n is odd
- ► For us: *n* is even

$$\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$
$$y_i = x_i + \overline{x}_{i+1} x_{i+2}$$

- ► Widely used (Ascon, SHA-3, etc.)
- ► Nice properties, including low latency
- Permutation if and only if n is odd
- ► For us: *n* is even

$$\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$
$$y_i = x_i + \overline{x}_{i+1} x_{i+2}$$

- ► Widely used (Ascon, SHA-3, etc.)
- ► Nice properties, including low latency
- Permutation if and only if n is odd
- ► For us: *n* is even

$$\chi_n \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$$
$$y_i = x_i + \overline{x}_{i+1} x_{i+2}$$

- ► Widely used (Ascon, SHA-3, etc.)
- ► Nice properties, including low latency
- Permutation if and only if n is odd
- ► For us: *n* is even

$$n = 2m$$

n =

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

CASA CYBER SECURITY IN THE AGE OF LARGE-SCALE ADVERSARIES

From χ to χ

$$(\chi_n)_i = x_i + \overline{x}_{i+1} x_{i+2}$$

$$(\chi_{2m})_i(x) = \begin{cases} x_m + \overline{x}_{m-2} x_0 & i = m-3 \\ x_{m-1} + \overline{x}_0 x_1 & i = m-2 \\ \overline{x}_{m-3} + \overline{x}_m \overline{x}_{m+1} & i = m-1 \\ x_{m-2} + \overline{x}_{m+1} x_{m+2} & i = m \\ \chi_{m-1} \text{ or } \chi_{m+1} & \text{ otherwise.} \end{cases}$$

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

CASA CYBER SECURITY IN THE AGE OF LARGE-SCALE ADVERSARIES

From χ to χ

$$(\chi_n)_i = x_i + \overline{x}_{i+1} x_{i+2}$$

$$(\chi_{2m})_i(x) = \begin{cases} x_m + \overline{x}_{m-2} x_0 & i = m-3 \\ x_{m-1} + \overline{x}_0 x_1 & i = m-2 \\ \overline{x}_{m-3} + \overline{x}_m \overline{x}_{m+1} & i = m-1 \\ x_{m-2} + \overline{x}_{m+1} x_{m+2} & i = m \\ \chi_{m-1} \text{ or } \chi_{m+1} & \text{otherwise.} \end{cases}$$

Theorem

For m even, χ_{2m} is a bijection.

Inverse of χ

Algorithm (Biryukov, Bouillaguet, Khovratovich 2014)

Input: y, Output: $x = \chi_n^{-1}(y)$ Let $x \leftarrow y$ For $0 \le i < 3\lfloor \frac{n}{2} \rfloor$: $x_{(n-2)i} \leftarrow x_{(n-2)i} \oplus y_{(n-2)i+2} \cdot y_{(n-2)i+1}$

Theorem (Liu, Sarkar, Meier, Isobe 2022)

The formula of χ_n^{-1} is

$$x_i = y_i + \sum_{j=1}^h y_{i-2j+1} \prod_{k=j}^h \overline{y}_{i-2k}$$

for $i \in [0, n-1]$. In particular, the degree of χ_n^{-1} is $h+1 = \frac{n+1}{2}$.

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

Inverse of χ

Algorithm (Biryukov, Bouillaguet, Khovratovich 2014)

Input: y, Output: $x = \chi_n^{-1}(y)$ Let $x \leftarrow y$ For $0 \le i < 3\lfloor \frac{n}{2} \rfloor$: $x_{(n-2)i} \leftarrow x_{(n-2)i} \oplus y_{(n-2)i+2} \cdot y_{(n-2)i+1}$

Theorem (Liu, Sarkar, Meier, Isobe 2022)

The formula of χ_n^{-1} is

$$x_i = y_i + \sum_{j=1}^h y_{i-2j+1} \prod_{k=j}^h \overline{y}_{i-2k}$$

for $i \in [0, n-1]$. In particular, the degree of χ_n^{-1} is $h+1 = \frac{n+1}{2}$.

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

Suffices to give formulas for
$$x_m$$
, $x_m + x_{m-3}$, x_{m-1} , and x_{m-2}

Lemma (Formula for computing x_m)

For m even and $y = \chi_{2m}(x)$, we have

$$x_{m} = y_{m-3} + \left(\sum_{i=0}^{\frac{m}{2}-2} y_{2i} \prod_{k=1}^{i} \overline{y}_{2k-1}\right) \left(\overline{y}_{m} + \left(\sum_{i=1}^{\frac{m}{2}-1} y_{2i+m} \prod_{k=1}^{i} \overline{y}_{2k+m-1}\right) + y_{m-2} \prod_{k=1}^{\frac{m}{2}} \overline{y}_{2k+m-1}\right).$$

Conjecture

Every non-trivial component of the inverse of χ_{2m} has algebraic degree m.

Suffices to give formulas for
$$x_m$$
, $x_m + x_{m-3}$, x_{m-1} , and x_{m-2}

Lemma (Formula for computing x_m)

For m even and $y = \chi_{2m}(x)$, we have

$$x_{m} = y_{m-3} + \left(\sum_{i=0}^{\frac{m}{2}-2} y_{2i} \prod_{k=1}^{i} \overline{y}_{2k-1}\right) \left(\overline{y}_{m} + \left(\sum_{i=1}^{\frac{m}{2}-1} y_{2i+m} \prod_{k=1}^{i} \overline{y}_{2k+m-1}\right) + y_{m-2} \prod_{k=1}^{\frac{m}{2}} \overline{y}_{2k+m-1}\right).$$

Conjecture

Every non-trivial component of the inverse of χ_{2m} has algebraic degree m.

Every non-trivial component of the inverse of χ_{2m} has algebraic degree m.

Inverse of χ

▶ Suffices to give formulas for x_m , $x_m + x_{m-3}$, x_{m-1} , and x_{m-2}

Lemma (Formula for computing x_m)

For m even and $y = \chi_{2m}(x)$, we have

$$x_{m} = y_{m-3} + \left(\sum_{i=0}^{\frac{m}{2}-2} y_{2i} \prod_{k=1}^{i} \overline{y}_{2k-1}\right) \left(\overline{y}_{m} + \left(\sum_{i=1}^{\frac{m}{2}-1} y_{2i+m} \prod_{k=1}^{i} \overline{y}_{2k+m-1}\right) + y_{m-2} \prod_{k=1}^{\frac{m}{2}} \overline{y}_{2k+m-1}\right).$$

Results

Table: Comparison for the Nangate 15nm open cell library.

Cipher	Туре	Key/Tweak/Block	Area		Latency	Power
		[bits/bits/bits]	$[\mu { m m}^2]$	[GE]	[ps]	[mW]
СніLow-(32+16)	TBC+PRF	128/64/32	3581.85	18218.25	282.73	0.2521
Scarf	ТВС	240/48/10	1096.48	5577.00	216.80	0.0793
Prince	BC	128/-/64	2450.08	12461.75	374.04	0.3433
$QARMAv1_5-64$	ТВС	128/64/64	2652.09	13489.25	378.30	0.8172
Orthros	PRF	128/-/128	7372.26	37497.25	354.79	0.8144
Gleeok-128-IP ₆₄	AE	256/-/128	24616.70	125207.01	382.99	4.1930

► X

► Generalize <u>x</u>

- Prove conjecture
- ▶ ..
- ► Work in progress

▶ ChiLow – call to action

- Cryptanalysis
- Side-channel attacks/protection
- Real-world implementation

► XX

► Generalize <u>x</u>

- Prove conjecture
- ▶ ..
- ► Work in progress

▶ ChiLow – call to action

- Cryptanalysis
- Side-channel attacks/protection
- Real-world implementation

ChiLow – call to action

Cryptanalysis

► Work in progress

▶ Generalize <u>x</u>
▶ Prove conjecture

- Side-channel attacks/protection
- Real-world implementation

Future Work

► <u>X</u>

11/11

► X

Future Work

► Generalize <u>x</u>

- Prove conjecture
- ▶ ..
- ► Work in progress

ChiLow – call to action

- Cryptanalysis
- Side-channel attacks/protection
- Real-world implementation

- ► XX
 ► Generalize XX √
 - ► Prove conjecture ✓
 - ▶ ...
 - ► Work in progress
- ▶ ChiLow call to action
 - Cryptanalysis
 - Side-channel attacks/protection
 - Real-world implementation

► XX ► Generalize XX √

- ► Prove conjecture ✓
- ▶ ...
- ► Work in progress

► ChiLow – call to action

- Cryptanalysis
- Side-channel attacks/protection
- Real-world implementation

- ► XX
 ► Generalize XX √
 - ► Prove conjecture ✓
 - ▶ ...
 - ► Work in progress
- ChiLow call to action
 - Cryptanalysis
 - Side-channel attacks/protection
 - Real-world implementation

- ► XX
 ► Generalize XX √
 - ► Prove conjecture ✓
 - ▶ ...
 - ► Work in progress
- ChiLow call to action
 - Cryptanalysis
 - Side-channel attacks/protection
 - Real-world implementation

- ► XX
 ► Generalize XX √
 - Prove conjecture \checkmark
 - ▶ ...
 - ► Work in progress
- ChiLow call to action
 - Cryptanalysis
 - Side-channel attacks/protection
 - Real-world implementation

ChiLow and ChiChi | Eurocrypt 2025, Madrid | May 5

11/11

Future Work

► X

- ► Generalize <u>x</u> √
- ▶ Prove conjecture \checkmark
- ▶ ...
- ► Work in progress

ChiLow – call to action

- Cryptanalysis
- Side-channel attacks/protection
- Real-world implementation

Thank You!

