Cryptanalysis of rank-2 module-LIP: a single real embedding is all it takes

Bill Allombert, Alice Pellet-Mary (Université de Bordeaux), Wessel van Woerden (Université de Bordeaux & PQShield) .

We continue on from the previous talk.

We continue on from the previous talk.

Eurocrypt 2024: solve rank-2 module-LIP over totally real fields

(Mureau, Pellet-Mary, Pliatsok, Wallet)

We continue on from the previous talk.

Eurocrypt 2024: solve rank-2 module-LIP over totally real fields (Mureau, Pellet-Mary, Pliatsok, Wallet)

Previous talk: reduces rank-2 module-LIP for CM fields to nrdPIP over a quaternion algebra.

We continue on from the previous talk.

Eurocrypt 2024: solve rank-2 module-LIP over totally real fields (Mureau, Pellet-Mary, Pliatsok, Wallet)

Previous talk: reduces rank-2 module-LIP for CM fields to nrdPIP over a quaternion algebra.

This talk: What about other number fields?

Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* monic & irreducible, deg(P) = d)

▶ $K = \mathbb{Q}[X]/(X^d - X - 1)$ with d prime \rightsquigarrow NTRU Prime field

Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* monic & irreducible, $\deg(P) = d$)

▶ $K = \mathbb{Q}[X]/(X^d - X - 1)$ with d prime \rightsquigarrow NTRU Prime field

Ring of integers: $\mathcal{O}_K \subset K$ (for this talk $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$)

▶ $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\mathcal{X}]/(\mathcal{X}^d - \mathcal{X} - 1)$ with d prime \rightsquigarrow NTRU Prime ring of integers

Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* monic & irreducible, deg(P) = d)

▶ $K = \mathbb{Q}[X]/(X^d - X - 1)$ with d prime \rightsquigarrow NTRU Prime field

Ring of integers: $\mathcal{O}_K \subset K$ (for this talk $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$)

▶ $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\mathcal{X}]/(\mathcal{X}^d - \mathcal{X} - 1)$ with d prime \rightsquigarrow NTRU Prime ring of integers

Problem: Rank-2 module-LIP for \mathcal{O}_{K}^{2} Given $G = B^{*}B$ with B a basis of \mathcal{O}_{K}^{2} , find B

Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* monic & irreducible, $\deg(P) = d$)

▶ $K = \mathbb{Q}[X]/(X^d - X - 1)$ with d prime \rightsquigarrow NTRU Prime field

Ring of integers: $\mathcal{O}_K \subset K$ (for this talk $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$)

▶ $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\mathcal{X}]/(\mathcal{X}^d - \mathcal{X} - 1)$ with d prime \rightsquigarrow NTRU Prime ring of integers

Problem: Rank-2 module-LIP for \mathcal{O}_{K}^{2} Given $G = B^{*}B$ with B a basis of \mathcal{O}_{K}^{2} , find BDifficulty: Conjugation $B^{*} := \overline{B}^{\top}$ isn't always properly defined in K!

(if not totally real or CM field)

Number field: $K = \mathbb{Q}[X]/P(X)$ (*P* monic & irreducible, $\deg(P) = d$)

▶ $K = \mathbb{Q}[X]/(X^d - X - 1)$ with d prime \rightsquigarrow NTRU Prime field

Ring of integers: $\mathcal{O}_K \subset K$ (for this talk $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$)

▶ $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\mathcal{X}]/(\mathcal{X}^d - \mathcal{X} - 1)$ with d prime \rightsquigarrow NTRU Prime ring of integers

Problem: Rank-2 module-LIP for \mathcal{O}_{K}^{2} . Given $G = B^{*}B$ with B a basis of \mathcal{O}_{K}^{2} , find BDifficulty: Conjugation $B^{*} := \overline{B}^{\top}$ isn't always properly defined in K!

(if not totally real or CM field)

▶ Cause of most technical problems in this work

Complex roots of P(X): $\alpha_1, \cdots, \alpha_d \in \mathbb{C}$

Complex roots of P(X): $\alpha_1, \cdots, \alpha_d \in \mathbb{C}$ Field embeddings: σ_k : $K = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}, X \mapsto \alpha_k$

Complex roots of P(X): $\alpha_1, \cdots, \alpha_d \in \mathbb{C}$

Field embeddings: σ_k : $K = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}, X \mapsto \alpha_k$ Canonical embedding: $\sigma: K = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}^d$ $y \mapsto (\sigma_1(y), \cdots, \sigma_d(y))$

Complex roots of P(X): Field embeddings: σ_{i} Canonical embedding: c

$$\begin{aligned} &\alpha_1, \cdots, \alpha_d \in \mathbb{C} \\ &\sigma_k: \quad \mathcal{K} = \mathbb{Q}[X]/P(X) \quad \to \quad \mathbb{C}, \ X \mapsto \alpha_k \\ &\sigma: \quad \mathcal{K} = \mathbb{Q}[X]/P(X) \quad \to \quad \mathbb{C}^d \\ & y \quad \mapsto \quad (\sigma_1(y), \cdots, \sigma_d(y)) \end{aligned}$$

▶ real embedding:

$$\sigma_k(X) = \alpha_k \in \mathbb{R}.$$

- Complex roots of P(X): $\alpha_1, \cdots, \alpha_d \in \mathbb{C}$ Field embeddings: σ_k : $K = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}, X \mapsto \alpha_k$ Canonical embedding: $\sigma: K = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}^d$ $\mathbf{y} \mapsto (\sigma_1(\mathbf{y}), \cdots, \sigma_d(\mathbf{y}))$
- ▶ real embedding:

$$\sigma_k(X) = \alpha_k \in \mathbb{R}.$$

▶ complex embedding: $\sigma_k(X) = \alpha_k \in \mathbb{C} \setminus \mathbb{R}$ (occur in conjugate pairs)

Conjugation: we have conjugation in \mathbb{C}^d ! Lift to \mathcal{K} : $\overline{y} := \sigma^{-1}(\overline{\sigma(y)})$

Complex roots of P(X): $\alpha_1, \dots, \alpha_d \in \mathbb{C}$ Field embeddings: σ_k : $K = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}, X \mapsto \alpha_k$ Canonical embedding: σ : $K = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}^d$ $y \mapsto (\sigma_1(y), \dots, \sigma_d(y))$ \blacktriangleright real embedding: $\sigma_k(X) = \alpha_k \in \mathbb{R}$. \blacktriangleright complex embedding: $\sigma_k(X) = \alpha_k \in \mathbb{C} \setminus \mathbb{R}$ (occur in conjugate pairs)

Conjugation: we have conjugation in \mathbb{C}^d ! Lift to \mathcal{K} : $\overline{\mathbf{y}} := \sigma^{-1}(\overline{\sigma(\mathbf{y})}) \in \mathcal{K}_{\mathbb{R}} := \mathcal{K} \otimes \mathbb{R}$.

Complex roots of P(X): $\alpha_1, \cdots, \alpha_d \in \mathbb{C}$ Field embeddings: σ_k : $K = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}, X \mapsto \alpha_k$ Canonical embedding: $\sigma: \ \mathcal{K} = \mathbb{Q}[X]/P(X) \rightarrow \mathbb{C}^d$ $y \mapsto (\sigma_1(y), \cdots, \sigma_d(y))$ ▶ real embedding: $\sigma_k(X) = \alpha_k \in \mathbb{R}$. ► complex embedding: $\sigma_k(X) = \alpha_k \in \mathbb{C} \setminus \mathbb{R}$ (occur in conjugate pairs) Conjugation: we have conjugation in \mathbb{C}^d ! Lift to $K: \overline{\mathbf{y}} := \sigma^{-1}(\overline{\sigma(\mathbf{y})}) \in K_{\mathbb{R}} := K \otimes \mathbb{R}$. Problem: Rank-2 module-LIP for $\mathcal{O}_{\mathcal{K}}^2$ Given $G = \sigma(B)^* \sigma(B)$ with B a basis of \mathcal{O}_K^2 , find B

Notations: $K = \mathbb{Q}[X]/P(X), \ \mathcal{O}_{K} = \mathbb{Z}[X]/P(X)$

Objective: Given $\boldsymbol{G} := \sigma(\boldsymbol{B})^* \sigma(\boldsymbol{B})$, recover \boldsymbol{B} (where $\boldsymbol{B} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{\mathcal{K}}^{2 \times 2}$)

Notations: $K = \mathbb{Q}[X]/P(X), \ \mathcal{O}_K = \mathbb{Z}[X]/P(X)$

Objective: Given $G := \sigma(B)^* \sigma(B)$, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{K}^{2 \times 2}$) Current state of cryptanalysis:

Notations: $K = \mathbb{Q}[X]/P(X), \ \mathcal{O}_K = \mathbb{Z}[X]/P(X)$

Objective: Given $G := \sigma(B)^* \sigma(B)$, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{K}^{2 \times 2}$) Current state of cryptanalysis:

Notations: $K = \mathbb{Q}[X]/P(X), \ \mathcal{O}_K = \mathbb{Z}[X]/P(X)$

Objective: Given $G := \sigma(B)^* \sigma(B)$, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{K}^{2 \times 2}$) Current state of cryptanalysis:

Notations: $K = \mathbb{Q}[X]/P(X), \ \mathcal{O}_{K} = \mathbb{Z}[X]/P(X)$

Objective: Given $G := \sigma(B)^* \sigma(B)$, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{\kappa}^{2 \times 2}$) Current state of cryptanalysis:

Notations: $K = \mathbb{Q}[X]/P(X), \ \mathcal{O}_K = \mathbb{Z}[X]/P(X)$

Objective: Given $G := \sigma(B)^* \sigma(B)$, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{\kappa}^{2 \times 2}$) Current state of cryptanalysis:

Notations: $K = \mathbb{Q}[X]/P(X), \ \mathcal{O}_K = \mathbb{Z}[X]/P(X)$

Objective: Given $G := \sigma(B)^* \sigma(B)$, recover B (where $B = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{O}_{\kappa}^{2 \times 2}$) Current state of cryptanalysis:

Totally real:

$$\begin{pmatrix} q_1 & \overline{q_2} \\ q_2 & q_4 \end{pmatrix} := B^*B = \begin{pmatrix} \overline{a}a + \overline{b}b & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & \overline{c}c + \overline{d}d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} = B^TB \in \mathcal{O}_K^2$$

Totally real:

$$\begin{pmatrix} q_1 & \overline{q_2} \\ q_2 & q_4 \end{pmatrix} := B^*B = \begin{pmatrix} \overline{a}a + \overline{b}b & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & \overline{c}c + \overline{d}d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} = B^TB \in \mathcal{O}_K^2$$

▶ Recovers $a^2 + b^2 = q_1!$ But...above is not the case in general

When \boldsymbol{P} has a real root

Totally real:

$$\begin{pmatrix} q_1 & \overline{q_2} \\ q_2 & q_4 \end{pmatrix} := B^*B = \begin{pmatrix} \overline{a}a + \overline{b}b & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & \overline{c}c + \overline{d}d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} = B^TB \in \mathcal{O}_K^2$$

▶ Recovers $a^2 + b^2 = q_1$! But...above is not the case in general Main idea: For a real embedding $\sigma_{\mathbb{R}} : \mathcal{K} \to \mathbb{R} \subset \mathbb{C}$ we do have

$$\sigma_{\mathbb{R}}(a^2+b^2)=\sigma_{\mathbb{R}}(\overline{a}a+\overline{b}b)=\sigma_{\mathbb{R}}(q_1)$$

When \boldsymbol{P} has a real root

Totally real:

$$\begin{pmatrix} q_1 & \overline{q_2} \\ q_2 & q_4 \end{pmatrix} := B^*B = \begin{pmatrix} \overline{a}a + \overline{b}b & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & \overline{c}c + \overline{d}d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} = B^TB \in \mathcal{O}_K^2$$

▶ Recovers $a^2 + b^2 = q_1$! But...above is not the case in general Main idea: For a real embedding $\sigma_{\mathbb{R}} : \mathcal{K} \to \mathbb{R} \subset \mathbb{C}$ we do have

$$\sigma_{\mathbb{R}}(a^2 + b^2) = \sigma_{\mathbb{R}}(\overline{a}a + \overline{b}b) = \sigma_{\mathbb{R}}(q_1)$$

Question: can we recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$?

When \boldsymbol{P} has a real root

Totally real:

$$\begin{pmatrix} q_1 & \overline{q_2} \\ q_2 & q_4 \end{pmatrix} := B^*B = \begin{pmatrix} \overline{a}a + \overline{b}b & \overline{a}c + \overline{b}d \\ a\overline{c} + b\overline{d} & \overline{c}c + \overline{d}d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} = B^TB \in \mathcal{O}_K^2$$

▶ Recovers $a^2 + b^2 = q_1$! But...above is not the case in general Main idea: For a real embedding $\sigma_{\mathbb{R}} : \mathcal{K} \to \mathbb{R} \subset \mathbb{C}$ we do have

$$\sigma_{\mathbb{R}}(a^2 + b^2) = \sigma_{\mathbb{R}}(\overline{a}a + \overline{b}b) = \sigma_{\mathbb{R}}(q_1)$$

Question: can we recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$? Yes!

• Goal: recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$.

- Goal: recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$.
- ▶ In theory: ✓ each embedding is injective (with infinite precision)

- Goal: recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$.
- ▶ In theory: ✓ each embedding is injective (with infinite precision)
- Z-basis o_1, \ldots, o_d of \mathcal{O}_K , $a^2 + b^2 = \sum_{i=1}^d x_i o_i$

- Goal: recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$.
- \blacktriangleright In theory: \checkmark each embedding is injective (with infinite precision)
- Z-basis o_1, \ldots, o_d of \mathcal{O}_K , $a^2 + b^2 = \sum_{i=1}^d x_i o_i$
- ▶ *d* unknowns...1 equation: $\sigma_{\mathbb{R}}(a^2 + b^2) = \sum_{i=1}^d x_i \cdot \sigma_{\mathbb{R}}(o_i) \in \mathbb{R}$

- Goal: recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$.
- \blacktriangleright In theory: \checkmark each embedding is injective (with infinite precision)
- Z-basis o_1, \ldots, o_d of \mathcal{O}_K , $a^2 + b^2 = \sum_{i=1}^d x_i o_i$
- ▶ *d* unknowns...1 equation: $\sigma_{\mathbb{R}}(a^2 + b^2) = \sum_{i=1}^d x_i \cdot \sigma_{\mathbb{R}}(o_i) \in \mathbb{R}$
- ▶ Assume: x_i are small (follows when o_1, \ldots, o_d is LLL reduced)

- Goal: recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$.
- \blacktriangleright In theory: \checkmark each embedding is injective (with infinite precision)
- Z-basis o_1, \ldots, o_d of \mathcal{O}_K , $a^2 + b^2 = \sum_{i=1}^d x_i o_i$
- ▶ *d* unknowns...1 equation: $\sigma_{\mathbb{R}}(a^2 + b^2) = \sum_{i=1}^d x_i \cdot \sigma_{\mathbb{R}}(o_i) \in \mathbb{R}$
- ▶ Assume: x_i are small (follows when o_1, \ldots, o_d is LLL reduced)
- ▶ Find small integer combination of x_i such that:

$$ilde{\sigma}_{\mathbb{R}}(a^2+b^2)\approx\sum_{i=1}^d x_i\cdot ilde{\sigma}_{\mathbb{R}}(o_i)$$

- Goal: recover $a^2 + b^2 \in \mathcal{O}_K$ from $\sigma_{\mathbb{R}}(a^2 + b^2)$.
- ▶ In theory: ✓ each embedding is injective (with infinite precision)
- Z-basis o_1, \ldots, o_d of \mathcal{O}_K , $a^2 + b^2 = \sum_{i=1}^d x_i o_i$
- ▶ *d* unknowns...1 equation: $\sigma_{\mathbb{R}}(a^2 + b^2) = \sum_{i=1}^d x_i \cdot \sigma_{\mathbb{R}}(o_i) \in \mathbb{R}$
- ▶ Assume: x_i are small (follows when o_1, \ldots, o_d is LLL reduced)
- ▶ Find small integer combination of x_i such that:

$$\widetilde{\sigma}_{\mathbb{R}}(a^2+b^2)\approx\sum_{i=1}^d x_i\cdot\widetilde{\sigma}_{\mathbb{R}}(o_i)$$

▶ This is a lattice problem!

Suppose we know (an approximation of) $\mathbf{v} = \mathbf{x}_1 \cdot \pi + \mathbf{x}_2 \cdot \mathbf{e} \in \mathbb{R}$ with $\mathbf{x}_i \in \mathbb{Z}$.

Suppose we know (an approximation of) $\mathbf{v} = \mathbf{x}_1 \cdot \pi + \mathbf{x}_2 \cdot \mathbf{e} \in \mathbb{R}$ with $\mathbf{x}_i \in \mathbb{Z}$.

Suppose we know (an approximation of) $\mathbf{v} = x_1 \cdot \pi + x_2 \cdot e \in \mathbb{R}$ with $x_i \in \mathbb{Z}$.

Suppose we know (an approximation of) $\mathbf{v} = \mathbf{x}_1 \cdot \pi + \mathbf{x}_2 \cdot \mathbf{e} \in \mathbb{R}$ with $\mathbf{x}_i \in \mathbb{Z}$.

integer combination π and e close to \emph{v}

integer combination
$$\begin{pmatrix} \pi \\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} e \\ 1 \end{pmatrix}$ close to $\begin{pmatrix} \mathbf{v} \\ 0 \end{pmatrix}$

- \blacktriangleright Increasing λ moves wrong combinations further away
- \blacktriangleright Distance to correct combination \thickapprox same

- \blacktriangleright Increasing λ moves wrong combinations further away
- \blacktriangleright Distance to correct combination \thickapprox same

- \blacktriangleright Increasing λ moves wrong combinations further away
- \blacktriangleright Distance to correct combination \thickapprox same

integer combination
$$\begin{pmatrix} 2^\lambda\pi\\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 2^\lambda e\\ 1 \end{pmatrix}$ close to $\begin{pmatrix} 2^\lambda\nu\\ 0 \end{pmatrix}$

- \blacktriangleright Increasing λ moves wrong combinations further away
- \blacktriangleright Distance to correct combination \approx same

integer combination
$$\begin{pmatrix} 2^\lambda\pi\\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 2^\lambda e\\ 1 \end{pmatrix}$ close to $\begin{pmatrix} 2^\lambda e\\ 0 \end{pmatrix}$

- \blacktriangleright Increasing λ moves wrong combinations further away
- \blacktriangleright Distance to correct combination \approx same

integer combination
$$\begin{pmatrix} 2^\lambda\pi\\ 0 \end{pmatrix}$$
 and $\begin{pmatrix} 2^\lambda e\\ 1 \end{pmatrix}$ close to $\begin{pmatrix} 2^\lambda\nu\\ 0 \end{pmatrix}$

- \blacktriangleright Increasing λ moves wrong combinations further away
- \blacktriangleright Distance to correct combination \approx same
- \blacktriangleright For large enough λ LLL recovers the closest combination

- \blacktriangleright Increasing λ moves wrong combinations further away
- \blacktriangleright Distance to correct combination pprox same
- \blacktriangleright For large enough λ LLL recovers the closest combination

Required precision for NTRU Prime field

$\texttt{Lemma [PMS21]: } \lambda \geq \mathsf{poly}(\mathsf{log}(|\Delta_{\mathcal{K}}|), \mathsf{log} \, \|\mathcal{P}\|, \mathsf{log}(\|x\|)) \texttt{ is sufficient}$

• We have recovered $B^{\top}B$, in particular we know $a^2 + b^2$

- ▶ We have recovered $B^{\top}B$, in particular we know $a^2 + b^2$
- We now proceed as in totally real attack and previous talk...
 with additional technical obstacles

- ▶ We have recovered $B^{\top}B$, in particular we know $a^2 + b^2$
- We now proceed as in totally real attack and previous talk...
 with additional technical obstacles

The easy part:

• Note that $i \notin K$ (contrary to previous talk), let L := K(i), then:

 $\left[a^{2}+b^{2}=\overline{(a+bi)}(a+bi)=:N_{L/K}(a+bi)\right]$ norm equation!

- ▶ We have recovered $B^{\top}B$, in particular we know $a^2 + b^2$
- We now proceed as in totally real attack and previous talk...
 with additional technical obstacles

The easy part:

• Note that $i \notin K$ (contrary to previous talk), let L := K(i), then:

 $a^{2} + b^{2} = \overline{(a + bi)}(a + bi) =: N_{L/K}(a + bi)$ norm equation!

▶ No need to go to quaternions

- ▶ We have recovered $B^{\top}B$, in particular we know $a^2 + b^2$
- We now proceed as in totally real attack and previous talk...
 with additional technical obstacles

The easy part:

▶ Note that $i \notin K$ (contrary to previous talk), let L := K(i), then:

 $\left(a^{2}+b^{2}=\overline{(a+bi)}(a+bi)=:N_{L/K}(a+bi)\right) \text{ norm equation!}$

- ▶ No need to go to quaternions
- Use trick from previous talk to recover ideal $(a + bi)\mathcal{O}_L$

Notation: z = a + bi, z' = c + di

Lemma: Ideal recovery (previous talk!)

$$z\mathcal{O}_L = \mathcal{O}_L \cap zz'^{-1}\mathcal{O}_L = \mathcal{O}_L \cap q_1(\det(B)i + q_2)^{-1}\mathcal{O}_L.$$

When L is a CM field Gentry-Szydlo recovers z from $z\mathcal{O}_L$ and $\overline{z}z$.

When L is a CM field Gentry-Szydlo recovers z from $z\mathcal{O}_L$ and $\overline{z}z$.

Contribution: Generalized GS-algorithm Let L be any field that is GS-friendly. Given $z\mathcal{O}_L$ and $|\tau_j(z)|$ for all embeddings $\tau_j: L \to \mathbb{C}$, one can recover $z \in \mathcal{O}_L$ in polynomial time.

When L is a CM field Gentry-Szydlo recovers z from $z\mathcal{O}_L$ and $\overline{z}z$.

Contribution: Generalized GS-algorithm Let L be any field that is GS-friendly. Given $z\mathcal{O}_L$ and $|\tau_j(z)|$ for all embeddings $\tau_j: L \to \mathbb{C}$, one can recover $z \in \mathcal{O}_L$ in polynomial time. Conjecture/Heuristic: all fields are GS-friendly (experimentally verified for K = NTRU Prime and L = cyclotomics or random field)

When L is a CM field Gentry-Szydlo recovers z from $z\mathcal{O}_L$ and $\overline{z}z$.

Contribution: Generalized GS-algorithm Let L be any field that is GS-friendly. Given $z\mathcal{O}_L$ and $|\tau_j(z)|$ for all embeddings $\tau_j: L \to \mathbb{C}$, one can recover $z \in \mathcal{O}_L$ in polynomial time. Conjecture/Heuristic: all fields are GS-friendly (experimentally verified for K = NTRU Prime and L = cyclotomics or random field) The difficult part:

$$|\tau_j(a+bi)|^2 = \overline{\tau_j(a+bi)}\tau_j(a+bi) \neq \tau_j(a^2+b^2) \text{ or } \tau_j(\overline{a}a+\overline{b}b)$$

When L is a CM field Gentry-Szydlo recovers z from $z\mathcal{O}_L$ and $\overline{z}z$.

Contribution: Generalized GS-algorithm Let L be any field that is GS-friendly. Given $z\mathcal{O}_L$ and $|\tau_j(z)|$ for all embeddings $\tau_j: L \to \mathbb{C}$, one can recover $z \in \mathcal{O}_L$ in polynomial time. Conjecture/Heuristic: all fields are GS-friendly (experimentally verified for K = NTRU Prime and L = cyclotomics or random field) The difficult part:

$$|\tau_j(a+bi)|^2 = \overline{\tau_j(a+bi)}\tau_j(a+bi) \neq \tau_j(a^2+b^2) \text{ or } \tau_j(\overline{a}a+\overline{b}b)$$

We have 3 approaches to solve this.

Conclusion

- \blacktriangleright Security of rank-2 module-LIP depends on the number field
- ▶ Real embeddings cause problems

Conclusion

▶ Security of rank-2 module-LIP depends on the number field Real embeddings cause problems NTRU Prime field New state of cryptanalysis: **1** real embedding Totally real What about here? Totally imaginary Broken! HAWK (CM field) also broken! [MPMPW24] previous talk: quaternions!

Conclusion

Security of rank-2 module-LIP depends on the number field Real embeddings cause problems NTRU Prime field New state of cryptanalysis: **1** real embedding Totally real What about here? Totally imaginary Broken! HAWK (CM field) also broken! [MPMPW24] previous talk: quaternions! Thank you!