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Context

We continue on from the previous talk.

Eurocrypt 2024: solve rank-2 module-LIP over totally real fields
(Mureau, Pellet-Mary, Pliatsok, Wallet)

Previous talk: reduces rank-2 module-LIP for CM fields to nrdPIP
over a quaternion algebra.

This talk: What about other number fields?

Totally real Totally imaginary

HAWK (CM field)

What about here?
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Number fields and module-LIP

Number field: K = Q[X]/P(X) (P monic & irreducible, deg(P) = d)

▶ K = Q[X]/(Xd − X − 1) with d prime ⇝ NTRU Prime field

Ring of integers: OK ⊂ K (for this talk OK = Z[X]/P(X))

▶ OK = Z[X]/(Xd − X − 1) with d prime ⇝ NTRU Prime ring of integers

Given G = B∗B with B a basis of O2
K , find B

Problem: Rank-2 module-LIP for O2
K

Difficulty: Conjugation B∗ := B⊤ isn’t always properly defined in K!
(if not totally real or CM field)

▶ Cause of most technical problems in this work
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Embeddings

Complex roots of P(X): α1, · · · , αd ∈ C

Field embeddings: σk : K = Q[X]/P(X) → C, X 7→ αk

Canonical embedding: σ : K = Q[X]/P(X) → Cd

y 7→ (σ1(y), · · · , σd(y))

▶ real embedding: σk(X) = αk ∈ R.

▶ complex embedding: σk(X) = αk ∈ C \ R (occur in conjugate pairs)

Conjugation: we have conjugation in Cd !

Lift to K: y := σ−1(σ(y)) ∈ KR := K ⊗ R.

Given G = σ(B)∗σ(B) with B a basis of O2
K , find B

Problem: Rank-2 module-LIP for O2
K
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Cryptanalysis of rank-2 module-LIP

Notations: K = Q[X]/P(X), OK = Z[X]/P(X)

Objective: Given G := σ(B)∗σ(B), recover B (where B =

(
a c
b d

)
∈ O2×2

K )

Current state of cryptanalysis:

Totally real

Broken!
[MPMPW24]

Totally imaginary

HAWK (CM field)
Previous talk!

So4S: a2
1 + a2

2 + b2
1 + b2

2So2S: a2 + b2

What about here?

Number field

of odd degree

NTRU Prime field

1 real embedding

also broken!

(this work)
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When P has a real root

Totally real:(
q1 q2
q2 q4

)
:= B∗B =

(
aa + bb ac + bd
ac + bd cc + dd

)
=

(
a2 + b2 ac + bd
ac + bd c2 + d2

)
= BT B ∈ O2

K

▶ Recovers a2 + b2 = q1! But...above is not the case in general

Main idea: For a real embedding σR : K → R ⊂ C we do have

σR(a2 + b2) = σR(aa + bb) = σR(q1)

Question: can we recover a2 + b2 ∈ OK from σR(a2 + b2)? Yes!
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Recovery from a single real embedding

▶ Goal: recover a2 + b2 ∈ OK from σR(a2 + b2).

▶ In theory: each embedding is injective (with infinite precision)

▶ Z-basis o1, . . . , od of OK , a2 + b2 =
∑d

i=1 xi oi

▶ d unknowns...1 equation: σR(a2 + b2) =
∑d

i=1 xi · σR(oi) ∈ R

▶ Assume: xi are small (follows when o1, . . . , od is LLL reduced)

▶ Find small integer combination of xi such that:

σ̃R(a2 + b2) ≈
∑d

i=1 xi · σ̃R(oi)

▶ This is a lattice problem!
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Recovery from a single real embedding

Suppose we know (an approximation of) v = x1 · π + x2 · e ∈ R with xi ∈ Z.

πZ

eZ

−3π −2π −π 0 π 2π 3π

−3e −2e −e 0 e 2e 3e

πZ + eZ
2π−e

Small combinations only (S = {−2, −1, 0, 1, 2})

πS + eS
2π−e
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Recovery from a single real embedding

eS + πS
2π−e

integer combination π and e close to v
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Required precision for NTRU Prime field

Lemma [PMS21]: λ ≥ poly(log(|∆K |), log ∥P∥ , log(∥x∥)) is sufficient
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q2 (0.0376p2 + 7.25p− 76.90)

q4 (0.0403p2 + 9.80p− 120.88)
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Solving the sum of 2 squares equation

▶ We have recovered B⊤B, in particular we know a2 + b2

▶ We now proceed as in totally real attack and previous talk...
with additional technical obstacles

The easy part:
▶ Note that i ̸∈ K (contrary to previous talk) , let L := K(i), then:

a2 + b2 = (a + bi)(a + bi) =: NL/K(a + bi) norm equation!

▶ No need to go to quaternions
▶ Use trick from previous talk to recover ideal (a + bi)OL

Notation: z = a + bi, z ′ = c + di

zOL = OL ∩ zz ′−1OL = OL ∩ q1(det(B)i + q2)−1OL.

Lemma: Ideal recovery (previous talk!)
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Generalized Gentry-Szydlo algorithm

When L is a CM field Gentry-Szydlo recovers z from zOL and zz.

Let L be any field that is GS-friendly. Given zOL and |τj(z)| for all
embeddings τj : L → C, one can recover z ∈ OL in polynomial time.

Contribution: Generalized GS-algorithm

Conjecture/Heuristic: all fields are GS-friendly
(experimentally verified for K = NTRU Prime and L = cyclotomics or random field)

The difficult part:

|τj(a + bi)|2 = τj(a + bi)τj(a + bi) ̸= τj(a2 + b2) or τj(aa + bb)

We have 3 approaches to solve this.
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Make your choice

2-transitive
Galois group Gal(P)?

Quantum?
Heuristic Quantum
(Log-unit scaling)

Provable Quantum
Heuristic Classical
(L is GS-friendly)

Yes No

Yes No

Can recover
all |τj(z)|

Generalized
GS-algorithm

PIP + log-unit lattice

Use only one |τj(z)| & LLL
(similar to first step)
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Conclusion

▶ Security of rank-2 module-LIP depends on the number field
▶ Real embeddings cause problems

New state of cryptanalysis:

Totally real

Broken!
[MPMPW24]

Totally imaginary

HAWK (CM field)
previous talk:
quaternions!

What about here?

NTRU Prime field

1 real embedding

also broken!
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