Cryptanalysis of rank-2 module-LIP:
a single real embedding is all it takes
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We continue on from the previous talk.

Eurocrypt 2024: solve rank-2 module-LIP over totally real fields

Previous talk: reduces rank-2 module-LIP for CM fields to nrdPIP
over a quaternion algebra.

This talk: What about other number fields?

® r ®

Totally real What about here? Totally imaginary

HAWK (CM field)
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» K =Q[X]/(X?— X —1) with d prime ~~ NTRU Prime field
Ring of integers: Ok C K (for this talk Ok = Z[X]/P(X))

> Ok = Z[X]/(X? — X — 1) with d prime ~» NTRU Prime ring of integers

:[Problem: Rank-2 module-LIP for CD§] ------------------------------- -
E Given G = with B a basis of (’)%(, find B E
Difficulty: Conjugation = isn’t always properly defined in K!

» Cause of most technical problems in this work
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Notations:

Objective: Given G := , recover

Current state of cryptanalysis:

Number field NTRU Prime field
of odd degree 1 real embedding
\ ¥
® ®
0
Totally real What about here? Totally imaginary
Broken! HAWK (CM field)
[MPMPW24] also broken! Previous talk!
S02S: a% + b? (this work) S04S: a% + a% + bf + b%
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When P has a real root

Totally real:

G @\ . pep . [@a+bb ac+bd\ _ ac+bd\ _ _r 2
(qz q4> '_BB_<ac+bd €c+dd] ~ \ac+ bd 2+ d? = BB € Ok
» Recovers = qgi1! But...above is not the case in general

Main idea: For a real embedding or: K — R C C we do have

[ or( ) = or(aa + bb) = or(q1) ]

Question: can we recover € Ok from op( )? Yes!
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» Goal: recover € Ok from op( ).

» In theory: v each embedding is injective

» Z-basis 01,...,04 of Ok, = Z;Ll Xj0j

» d unknowns...l equation: opg( ) =2, x -or(0) ER
» Assume: X; are small

» Find small integer combination of x; such that:

or( ) = L, xi - 5r(0))

» This is a lattice problem!
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Recovery from a single real embedding

Suppose we know (an approximation of) v=x3-7m+x2:-e €R with x; € Z.

° c ° °

Z
" —37&' —.271' —T 0 ™ 27 3n
eZ ° ° ° — ° °
—3e —2e —e 0 e 2e 3e

Small combinations only (S = {-2,-—1,0,1,2})
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Required precision for NTRU Prime field

Lenna [PMS21]: A > poly(log(|Ak|), log || Pl , log(]|x|l)) is sufficient

70001 —— 4 (0.0346p% + 5.35p — 40.92)
6000 ¢ (0.0376p? + 7.25p — 76.90)
1 (0.0403p% + 9.80p — 120.88)
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Solving the sum of 2 squares equation

We have recovered BT B, in particular we know

We now proceed as in totally real attack and previous talk...
with additional technical obstacles

The easy part:

» Note that i € K , let L:= K(i), then:
[ = (a + bi)(a + bi) =: Ny k(a + bi) ] norm equation!
» No need to go to quaternions

» Use trick from previous talk to recover ideal (a+ bi)O,

Notation:
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Let L be any field that is GS-friendly. Given zOy and |7j(z)| for all
embeddings 7j : L — C, one can recover z € O in polynomial time.

Conjecture/Heuristic: all fields are GS-friendly

The difficult part:

I7i(a + bi)|? = 7;(a + bi)7j(a + bi) # 75( ) or 7j(aa+ bb)

We have 3 approaches to solve this.
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NTRU Prime field
New state of cryptanalysis:
1 real embedding

o ' o
g
Totally real What about here? Totally imaginary
Broken! HAWK (CM field)
[MPMPW24] also broken! previous talk:
quaternions!

Thank you!
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