
Black Box Crypto is Useless
for Doubly Efficient PIR

Wei-Kai Lin
University of Virginia

Ethan Mook
Northeastern

Daniel Wichs
Northeastern

& NTT Research

Black Box Crypto is Useless
for Doubly Efficient PIR

Wei-Kai Lin
University of Virginia

Ethan Mook
Northeastern

Daniel Wichs
Northeastern

& NTT Research

Eurocrypt 2025

Private Information Retrieval (PIR)

CS

Interactive protocol between a server and a client S C

Private Information Retrieval (PIR)

CS

Interactive protocol between a server and a client S CDB ∈ {0,1}N

Private Information Retrieval (PIR)

CS
input: i ∈ [N]

Interactive protocol between a server and a client S CDB ∈ {0,1}N

Private Information Retrieval (PIR)

CS
input: i ∈ [N]

Interactive protocol between a server and a client S CDB ∈ {0,1}N

⋮

Private Information Retrieval (PIR)

CS
input: i ∈ [N]

output: DB[i]

Interactive protocol between a server and a client S CDB ∈ {0,1}N

⋮

Private Information Retrieval (PIR)

Security: Server learns
nothing about i

CS
input: i ∈ [N]

output: DB[i]

Interactive protocol between a server and a client S CDB ∈ {0,1}N

⋮

Private Information Retrieval (PIR)

Security: Server learns
nothing about iCommunication: o(N)

CS
input: i ∈ [N]

output: DB[i]

Interactive protocol between a server and a client S CDB ∈ {0,1}N

⋮

Private Information Retrieval (PIR)

Security: Server learns
nothing about iCommunication: o(N)

CS
input: i ∈ [N]

output: DB[i]

Interactive protocol between a server and a client S CDB ∈ {0,1}N

Lower bound: Server
must touch all locations
in ⇒ time DB Ω(N)

⋮

DB ∈ {0,1}N

Doubly Efficient PIR (DEPIR)

CS
input: i ∈ [N]

output: DB[i]
⋮

DB ∈ {0,1}N

Doubly Efficient PIR (DEPIR)

CS
input: i ∈ [N]

output: DB[i]
⋮

offline phase:

DB ∈ {0,1}N

Doubly Efficient PIR (DEPIR)
 DB-ind. and statick

CS
input: i ∈ [N]

output: DB[i]
⋮

k ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)offline phase:

, k

DB ∈ {0,1}N

Doubly Efficient PIR (DEPIR)

 one-time
preprocessed
DB

 DB-ind. and statick

CS
input: i ∈ [N]

output: DB[i]
⋮

k ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)

D̃B ← 𝖯𝗋𝖾𝗉(DB, k)

offline phase:

, k

Doubly Efficient PIR (DEPIR)

 one-time
preprocessed
DB

 DB-ind. and statick

CS
input: i ∈ [N]

output: DB[i]

D̃B ∈ {0,1}poly(N)

⋮

k ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)

D̃B ← 𝖯𝗋𝖾𝗉(DB, k)

offline phase:

, k

Doubly Efficient PIR (DEPIR)

 one-time
preprocessed
DB

 DB-ind. and statick

Security: Server learns
nothing about iCommunication: o(N)

CS
input: i ∈ [N]

output: DB[i]

D̃B ∈ {0,1}poly(N)

⋮

k ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)

D̃B ← 𝖯𝗋𝖾𝗉(DB, k)

offline phase:

, k

Doubly Efficient PIR (DEPIR)

 one-time
preprocessed
DB

 DB-ind. and statick

Security: Server learns
nothing about iCommunication: o(N)

CS
input: i ∈ [N]

output: DB[i]

D̃B ∈ {0,1}poly(N)

⋮

k ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)

D̃B ← 𝖯𝗋𝖾𝗉(DB, k)

offline phase:

Efficiency: Server
touches locationso(N)

, k

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

Prior constructions

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

Prior constructions

sk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, sk)

C

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

Prior constructions

sk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, sk)

pk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, pk)

C

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

Prior constructions

sk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, sk)

pk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, pk)

D̃B := 𝖯𝗋𝖾𝗉(DB)

C

S

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

[CHR’17,BIPW’17]: From
“permuted codes with noise”

Prior constructions

sk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, sk)

pk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, pk)

D̃B := 𝖯𝗋𝖾𝗉(DB)

C

S

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

[CHR’17,BIPW’17]: From
“permuted codes with noise”

Prior constructions

[CHR’17,BIPW’17]: From
SK-DEPIR + heuristic obf.

sk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, sk)

pk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, pk)

D̃B := 𝖯𝗋𝖾𝗉(DB)

C

S

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

[CHR’17,BIPW’17]: From
“permuted codes with noise”

Prior constructions

[CHR’17,BIPW’17]: From
SK-DEPIR + heuristic obf.

[LMW’23]: From RingLWE

sk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, sk)

pk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, pk)

D̃B := 𝖯𝗋𝖾𝗉(DB)

C

S

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

[CHR’17,BIPW’17]: From
“permuted codes with noise”

Prior constructions

[CHR’17,BIPW’17]: From
SK-DEPIR + heuristic obf.

[LMW’23]: From RingLWE

⇒
⇒

sk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, sk)

pk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, pk)

D̃B := 𝖯𝗋𝖾𝗉(DB)

C

S

Three Flavors of DEPIR
Secret-Key
(SK-DEPIR)

Public-Key
(PK-DEPIR)

Unkeyed
(UK-DEPIR)

[CHR’17,BIPW’17]: From
“permuted codes with noise”

Prior constructions

[CHR’17,BIPW’17]: From
SK-DEPIR + heuristic obf.

[LMW’23]: From RingLWE

⇒
⇒

sk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, sk)

pk ← 𝖪𝖾𝗒𝖦𝖾𝗇(𝟣λ)
D̃B ← 𝖯𝗋𝖾𝗉(DB, pk)

D̃B := 𝖯𝗋𝖾𝗉(DB)

C

S

(Standard) PIR

⇒

How does (SK,PK,UK)-DEPIR relate to other
crypto primitives?

SK

How does (SK,PK,UK)-DEPIR relate to other
crypto primitives?

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Theorem 1: Let be a crypto primitive that exists wrt a crypto oracleP large class (to be specified)

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Theorem 1: Let be a crypto primitive that exists wrt a crypto oracleP
• If: there is a BB construction of SK-DEPIR from P

large class (to be specified)

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Theorem 1: Let be a crypto primitive that exists wrt a crypto oracleP
• If: there is a BB construction of SK-DEPIR from P
• Then: there is a BB construction of SK-DEPIR from OWFs

large class (to be specified)

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Theorem 1: Let be a crypto primitive that exists wrt a crypto oracleP
• If: there is a BB construction of SK-DEPIR from P
• Then: there is a BB construction of SK-DEPIR from OWFs

Partial progress ruling out SK-DEPIR from OWFs

large class (to be specified)

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Theorem 1: Let be a crypto primitive that exists wrt a crypto oracleP
• If: there is a BB construction of SK-DEPIR from P
• Then: there is a BB construction of SK-DEPIR from OWFs

Partial progress ruling out SK-DEPIR from OWFs

Theorem 2: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFs

large class (to be specified)

Techniques
Starting point: An SK-DEPIR that exists in an idealized world

 𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝒪P, C𝒪P, S𝒪P)

Techniques
Starting point: An SK-DEPIR that exists in an idealized world

 𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝒪P, C𝒪P, S𝒪P)

oracle implementing 𝒪P = P

Techniques
Starting point: An SK-DEPIR that exists in an idealized world

 𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝒪P, C𝒪P, S𝒪P)

oracle implementing 𝒪P = P

Key insight: No hiding property from the client
⇒ client can make the server’s oracle calls for it

Techniques
Starting point: An SK-DEPIR that exists in an idealized world

 𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝒪P, C𝒪P, S𝒪P)

oracle implementing 𝒪P = P

Inspired by techniques of
[Dujmovic-Hajiabadi’24]

Key insight: No hiding property from the client
⇒ client can make the server’s oracle calls for it

Techniques
Starting point: An SK-DEPIR that exists in an idealized world

 𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝒪P, C𝒪P, S𝒪P)

Compile into an SK-DEPIR where the server doesn’t use the oracle
 𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝒪P, C̃𝒪P, S̃)

oracle implementing 𝒪P = P

Inspired by techniques of
[Dujmovic-Hajiabadi’24]

Key insight: No hiding property from the client
⇒ client can make the server’s oracle calls for it

Techniques
Starting point: An SK-DEPIR that exists in an idealized world

 𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝒪P, C𝒪P, S𝒪P)

Compile into an SK-DEPIR where the server doesn’t use the oracle
 𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝒪P, C̃𝒪P, S̃)

If is “nice”, then the client can emulate with just a PRF

𝒪P 𝒪P
𝖣𝖤𝖯𝖨𝖱 = (𝖯𝗋𝖾𝗉𝖯𝖱𝖥, C𝖯𝖱𝖥, S̃)

oracle implementing 𝒪P = P

Inspired by techniques of
[Dujmovic-Hajiabadi’24]

Key insight: No hiding property from the client
⇒ client can make the server’s oracle calls for it

Removing the Server’s Oracle

CS

D̃B

Removing the Server’s Oracle

CS

𝒪PD̃B

Removing the Server’s Oracle

CS

𝒪PD̃B

Removing the Server’s Oracle

CS

𝒪PD̃B

Removing the Server’s Oracle

CS

𝒪PD̃B

Removing the Server’s Oracle

CS

𝒪PD̃B

Removing the Server’s Oracle

CS

𝒪PD̃B

Removing the Server’s Oracle

CS

𝒪P

⋮

D̃B

Removing the Server’s Oracle

CS

𝒪P

⋮

D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS
⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS
⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS
⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS

j1

⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS

j1

⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS

j1
D̃B[j1]

⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS

j1
D̃B[j1]

jℓ
D̃B[jℓ]

⋮⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS

j1
D̃B[j1]

jℓ
D̃B[jℓ]

⋮

Communication & efficiency:S̃
O(# locations read) = o(N)

⋮

D̃B D̃B

Removing the Server’s Oracle

CS

𝒪P

C̃
S̃

𝒪P

CS

j1
D̃B[j1]

jℓ
D̃B[jℓ]

⋮

 is purely passiveS̃ Communication & efficiency:S̃
O(# locations read) = o(N)

⋮

D̃B D̃B

Removing the Oracle Altogether

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

Suppose is a crypto oracle𝒪P = BR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

𝖯𝗋𝖾𝗉 C̃ S̃

Suppose is a crypto oracle𝒪P = BR

Passive server SK-DEPIR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

𝖯𝗋𝖾𝗉 C̃ S̃

B

Suppose is a crypto oracle𝒪P = BR

Passive server SK-DEPIR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

𝖯𝗋𝖾𝗉 C̃ S̃

B

R

Suppose is a crypto oracle𝒪P = BR

Passive server SK-DEPIR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

𝖯𝗋𝖾𝗉 C̃ S̃

B

R

Suppose is a crypto oracle𝒪P = BR

Passive server SK-DEPIR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

𝖯𝗋𝖾𝗉 C̃ S̃

B

R
𝖯𝗋𝖾𝗉 C

S̃

Suppose is a crypto oracle𝒪P = BR

Passive server SK-DEPIR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

𝖯𝗋𝖾𝗉 C̃ S̃

B

R
𝖯𝗋𝖾𝗉 C

𝖯𝗋𝖾𝗉 C̃ S̃

Suppose is a crypto oracle𝒪P = BR

Passive server SK-DEPIR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

𝖯𝗋𝖾𝗉 C̃ S̃

B

R
𝖯𝗋𝖾𝗉 C

𝖯𝗋𝖾𝗉

B

C̃

B

S̃

Suppose is a crypto oracle𝒪P = BR

Passive server SK-DEPIR

Removing the Oracle Altogether
Definition: A crypto oracle is an oracle of the form whereBR

• is a poly time (stateless, deterministic) Turing machineB
• is a private random function available only to R B

𝖯𝗋𝖾𝗉 C̃ S̃

B

R
𝖯𝗋𝖾𝗉 C

𝖯𝗋𝖾𝗉

B

C̃

B

𝖯𝖱𝖥

S̃

Suppose is a crypto oracle𝒪P = BR

Passive server SK-DEPIR

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Theorem 1: Let be a crypto primitive that exists wrt a crypto oracle
• If: there is a BB construction of SK-DEPIR from
• Then: there is a BB construction of SK-DEPIR from OWFs

P
P

Partial progress ruling out SK-DEPIR from OWFs

Theorem 2: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFs

large class (to be specified)

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Theorem 1: Let be a crypto primitive that exists wrt a crypto oracle
• If: there is a BB construction of SK-DEPIR from
• Then: there is a BB construction of SK-DEPIR from OWFs

P
P

Partial progress ruling out SK-DEPIR from OWFs

Theorem 2: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFs

Our Results
Black-box use of advanced crypto is useless for constructing DEPIR

Theorem 1: Let be a crypto primitive that exists wrt a crypto oracle
• If: there is a BB construction of SK-DEPIR from
• Then: there is a BB construction of SK-DEPIR from OWFs

P
P

Partial progress ruling out SK-DEPIR from OWFs

Theorem 2: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFs

Adapted from [CHR’17] info. theoretic lower bound
↳see paper for details

How Strong are Crypto Oracles?

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle
Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)
Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)

𝖮𝖻𝖿R

Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)

𝖮𝖻𝖿R

𝖤𝗏𝖺𝗅R

Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)

𝖮𝖻𝖿R

𝖤𝗏𝖺𝗅R

C, r
Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)

𝖮𝖻𝖿R

𝖤𝗏𝖺𝗅R

C, r
𝖠𝗎𝗍𝗁𝖤𝗇𝖼R(C; r)

Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)

𝖮𝖻𝖿R

𝖤𝗏𝖺𝗅R

C, r
𝖠𝗎𝗍𝗁𝖤𝗇𝖼R(C; r)

Ĉ, x

Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)

𝖮𝖻𝖿R

𝖤𝗏𝖺𝗅R

C, r
𝖠𝗎𝗍𝗁𝖤𝗇𝖼R(C; r)

Ĉ, x
C := 𝖣𝖾𝖼R(Ĉ)

Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)

𝖮𝖻𝖿R

𝖤𝗏𝖺𝗅R

C, r
𝖠𝗎𝗍𝗁𝖤𝗇𝖼R(C; r)

Ĉ, x
C(x) or ⊥C := 𝖣𝖾𝖼R(Ĉ)

Proof sketch:

How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

Lemma: The generic multi-linear group model can be realized as a
crypto oracle ⇒ OT, FHE, … can as well

BR = (𝖮𝖻𝖿R, 𝖤𝗏𝖺𝗅R)

𝖮𝖻𝖿R

𝖤𝗏𝖺𝗅R

C, r
𝖠𝗎𝗍𝗁𝖤𝗇𝖼R(C; r)

Ĉ, x
C(x) or ⊥C := 𝖣𝖾𝖼R(Ĉ)

Proof sketch:

Corollaries & Interpretation

Corollary:
• If: there is a BB construction of SK-DEPIR from
• Then: there is a BB construction of SK-DEPIR from OWFs

P

Crypto oracles capture a wide array of primitives, even combinations

Corollary: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFs

Corollaries & Interpretation

Corollary:
• If: there is a BB construction of SK-DEPIR from
• Then: there is a BB construction of SK-DEPIR from OWFs

P

Crypto oracles capture a wide array of primitives, even combinations

Corollary: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFsFHE

FHE

Corollaries & Interpretation

Corollary:
• If: there is a BB construction of SK-DEPIR from
• Then: there is a BB construction of SK-DEPIR from OWFs

P

Crypto oracles capture a wide array of primitives, even combinations

Corollary: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFsFHEiO

FHEiO

Corollaries & Interpretation

Corollary:
• If: there is a BB construction of SK-DEPIR from
• Then: there is a BB construction of SK-DEPIR from OWFs

P

Crypto oracles capture a wide array of primitives, even combinations

Corollary: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFsFHEiOiO+FHE

FHEiOiO+FHE

Corollaries & Interpretation

Corollary:
• If: there is a BB construction of SK-DEPIR from
• Then: there is a BB construction of SK-DEPIR from OWFs

P

Crypto oracles capture a wide array of primitives, even combinations

Corollary: There is no BB construction of 2-round, passive server
SK-DEPIR from OWFsFHEiOiO+FHE

FHEiOiO+FHE

Prior lemma gives VBB for oracle-aided circuits
⇒ capture non-BB techniques like “eval crypto under obfuscation”

Corollaries & Interpretation
Our compiler is agnostic to the presence of other assumptions

Corollaries & Interpretation

Corollary (e.g.): Let be a primitive that exists wrt a crypto oracleP

Our compiler is agnostic to the presence of other assumptions

Corollaries & Interpretation

Corollary (e.g.): Let be a primitive that exists wrt a crypto oracleP
• If: there is a construction of SK-DEPIR making BB use of and

assuming DDH
P

Our compiler is agnostic to the presence of other assumptions

Corollaries & Interpretation

Corollary (e.g.): Let be a primitive that exists wrt a crypto oracleP
• If: there is a construction of SK-DEPIR making BB use of and

assuming DDH
P

• Then: there is a construction of SK-DEPIR assuming just DDH

Our compiler is agnostic to the presence of other assumptions

Corollaries & Interpretation

Corollary (e.g.): Let be a primitive that exists wrt a crypto oracleP
• If: there is a construction of SK-DEPIR making BB use of and

assuming DDH
P

• Then: there is a construction of SK-DEPIR assuming just DDH

Our compiler is agnostic to the presence of other assumptions

Crucial: need DDH over a concrete group (e.g.),
the generic group can be realized as crypto oracle

ℤ*p

Corollaries & Interpretation

Corollaries & Interpretation
Recall: Prior positive results
• SK-DEPIR from “permuted codes with noise” [CHR’17,BIPW’17]
• UK-DEPIR from RingLWE [LMW’23]

Corollaries & Interpretation
Recall: Prior positive results
• SK-DEPIR from “permuted codes with noise” [CHR’17,BIPW’17]
• UK-DEPIR from RingLWE [LMW’23]

Both make use of concrete algebraic structure of the underlying
assumption

Corollaries & Interpretation
Recall: Prior positive results
• SK-DEPIR from “permuted codes with noise” [CHR’17,BIPW’17]
• UK-DEPIR from RingLWE [LMW’23]

Both make use of concrete algebraic structure of the underlying
assumption
• [CHR’17,BIPW’17]: Hardness over a locally decodable code

Corollaries & Interpretation
Recall: Prior positive results
• SK-DEPIR from “permuted codes with noise” [CHR’17,BIPW’17]
• UK-DEPIR from RingLWE [LMW’23]

Both make use of concrete algebraic structure of the underlying
assumption
• [CHR’17,BIPW’17]: Hardness over a locally decodable code
• [LMW’23]: RingLWE ring is conducive to some preprocessing

Corollaries & Interpretation
Recall: Prior positive results
• SK-DEPIR from “permuted codes with noise” [CHR’17,BIPW’17]
• UK-DEPIR from RingLWE [LMW’23]

Both make use of concrete algebraic structure of the underlying
assumption
• [CHR’17,BIPW’17]: Hardness over a locally decodable code
• [LMW’23]: RingLWE ring is conducive to some preprocessing

Our result: This concreteness is inherent

Summary

Theorem 1: For a large class of primitives
• If: BB construction of SK-DEPIR from
• Then: BB construction of SK-DEPIR from OWFs

P
P

Theorem 2: There is no BB construction of
2-round, passive server SK-DEPIR from OWFs

The class: constructible relative to crypto oracle

Summary

Open Questions:Theorem 1: For a large class of primitives
• If: BB construction of SK-DEPIR from
• Then: BB construction of SK-DEPIR from OWFs

P
P

Theorem 2: There is no BB construction of
2-round, passive server SK-DEPIR from OWFs

The class: constructible relative to crypto oracle

Summary

Open Questions:
• Fully rule out SK-DEPIR from

OWFs

Theorem 1: For a large class of primitives
• If: BB construction of SK-DEPIR from
• Then: BB construction of SK-DEPIR from OWFs

P
P

Theorem 2: There is no BB construction of
2-round, passive server SK-DEPIR from OWFs

The class: constructible relative to crypto oracle

Summary

Open Questions:
• Fully rule out SK-DEPIR from

OWFs
• DEPIR from new (concrete)

assumptions
• Weaker than RingLWE, more

standard than permuted
codes with noise

Theorem 1: For a large class of primitives
• If: BB construction of SK-DEPIR from
• Then: BB construction of SK-DEPIR from OWFs

P
P

Theorem 2: There is no BB construction of
2-round, passive server SK-DEPIR from OWFs

The class: constructible relative to crypto oracle

Summary

Open Questions:
• Fully rule out SK-DEPIR from

OWFs
• DEPIR from new (concrete)

assumptions
• Weaker than RingLWE, more

standard than permuted
codes with noise

Theorem 1: For a large class of primitives
• If: BB construction of SK-DEPIR from
• Then: BB construction of SK-DEPIR from OWFs

P
P

Theorem 2: There is no BB construction of
2-round, passive server SK-DEPIR from OWFs

The class: constructible relative to crypto oracle

Thank you!

eprint: 2025/552

