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• Then: there is a BB construction of SK-DEPIR from OWFs
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Adapted from [CHR’17] info. theoretic lower bound
↳see paper for details
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How Strong are Crypto Oracles?

Lemma: Virtual black-box obfuscation exists relative to a crypto oracle

Lemma: The generic multi-linear group model can be realized as a 
crypto oracle ⇒ OT, FHE, … can as well
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Corollaries & Interpretation

Corollary:  
• If: there is a BB construction of SK-DEPIR from  
• Then: there is a BB construction of SK-DEPIR from OWFs

P

Crypto oracles capture a wide array of primitives, even combinations

Corollary: There is no BB construction of 2-round, passive server 
SK-DEPIR from OWFsFHEiOiO+FHE

FHEiOiO+FHE

Prior lemma gives VBB for oracle-aided circuits  
⇒ capture non-BB techniques like “eval crypto under obfuscation”
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Corollaries & Interpretation

Corollary (e.g.): Let  be a primitive that exists wrt a crypto oracleP
• If: there is a construction of SK-DEPIR making BB use of  and 

assuming DDH
P

• Then: there is a construction of SK-DEPIR assuming just DDH

Our compiler is agnostic to the presence of other assumptions

Crucial: need DDH over a concrete group (e.g. ), 
the generic group can be realized as crypto oracle

ℤ*p
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Recall: Prior positive results 
• SK-DEPIR from “permuted codes with noise” [CHR’17,BIPW’17] 
• UK-DEPIR from RingLWE [LMW’23]

Both make use of concrete algebraic structure of the underlying 
assumption
• [CHR’17,BIPW’17]: Hardness over a locally decodable code
• [LMW’23]: RingLWE ring is conducive to some preprocessing

Our result: This concreteness is inherent
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Summary

Open Questions:
• Fully rule out SK-DEPIR from 

OWFs
• DEPIR from new (concrete) 

assumptions
• Weaker than RingLWE, more 

standard than permuted 
codes with noise

Theorem 1: For a large class of primitives  
• If: BB construction of SK-DEPIR from  
• Then: BB construction of SK-DEPIR from OWFs

P
P

Theorem 2: There is no BB construction of  
2-round, passive server SK-DEPIR from OWFs

The class: constructible relative to crypto oracle

Thank you!

eprint: 2025/552


