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Motivation

• Most NIST pqc proposals utilize the Fujisaki-Okamoto (FO) transformation to enhance their
security.

• One of the steps in the FO transformation, called re-encryption, solves the problem of
ciphertext malleability.

• At the same time, the re-encryption step is vulnerable to side-channel attacks.

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma. Curse of re-encryption: A generic
power/EM analysis on post-quantum KEMs
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Our contribution

• We perform a comprehensive study the alternative used by NTRU and McEliece in place of
re-encryption.

• We formalize a computational notion, provided also by re-encryption, and show how to use it
to obtain Chosen Ciphertext Attack (CCA) security.

• We prove a novel QROM security result for KEMs with explicit rejection mechanism based
on deterministic PKEs.

• We show that all the alternatives to re-encryption have the same side-channel vulnerability
in case of derandomized PKE schemes.
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Outline

• The Fujisaki-Okamoto transformation
• The FO transform
• Modular analysis of FO transform

• A Generalization of Re-Encryption
• Computational Rigidity
• Range-checking Oracles vs Range-checking Algorithms

• New modular analysis of the FO transform
• From deterministic to rigid PKE
• From PKE to KEM
• From randomized to deterministic PKE
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The Fujisaki-Okamoto transformation
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The Fujisaki-Okamoto transformation
The FO transform

To a PKE Π = (KG, Enc, Dec) and two random oracles G and H, we associate a KEM as

FO[Π, G, H] = (KG, Encaps, Decaps⊥),

where Encaps and Decaps⊥ are defined as follows

Encaps(pk)
01 m←$ M
02 c← Enc(pk, m; G(m))
03 K := H(m)
04 return (K, c)

Decaps⊥(sk, c)
05 m′ := Dec(sk, c)
06 c′ := Enc(pk, m′; G(m′))
07 if m′ = ⊥ or c′ ̸= c
08 return ⊥
09 else
10 return K := H(m′)

E. Fujisaki, T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption Scheme
Alexander W. Dent. A Designer’s Guide to KEMs
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The Fujisaki-Okamoto transformation
Modular analysis of FO transform

Π Π′ KEMm

T [Π, G] Um[Π′, H]

FOm

The T transform. Given a PKE scheme Π
and a random oracle G, it derandomizes
encryption, performs the re-encryption step,
and outputs a deterministic PKE.

The U transform. Given a deterministic PKE
scheme Π′ and a random oracle H, it outputs
an IND-CCA KEM with explicit or implicit
rejection mechanism.

D. Hofheinz, K. Hövelmanns, E. Kiltz, A Modular Analysis of the Fujisaki-Okamoto Transformation
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The Fujisaki-Okamoto transformation
Rigidity

What guarantee does re-encryption provide?

Rigidity
Given a deterministic PKE Π = (KG, Enc, Dec), we say that Π is rigid if for every key pair (pk, sk) and
every ciphertext c it holds

Dec(sk, c) =⊥ ∨ Enc(pk, Dec(sk, c)) = c.

D. J. Bernstein, E. Persichetti, Towards KEM Unification
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A Generalization of Re-Encryption
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A Generalization of Re-Encryption
Computational Rigidity

We say that a ciphertext c is non-rigid if ∃(pk, sk)← KG() such that

Enc(pk, Dec(sk, c)) ̸= c.

Given a PKE Π and an adversary A, we define the Find Non Rigid Ciphertext (FNRC)
game as follows

FNRCΠ(A):
01 (pk, sk)← KG()
02 LC ← AO(pk)
03 return JLC contains a non-rigid ciphertext K
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A Generalization of Re-Encryption
How to get a non-rigid ciphertext for deterministic PKE

Assume that c is a non-rigid ciphertext.

m c m′ c′
Enc(pk, ·) Dec(sk, ·) Enc(pk, ·)

m
Enc(pk, ·)Enc(pk, ·)

We have two possibilities:

1. The ciphertext c is the encryption of a message m =⇒ m triggers a decryption failure.

2. Ciphertext c cannot be obtained through encryption.
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A Generalization of Re-Encryption
How to get a non-rigid ciphertext for deterministic PKE

Assume that c is a non-rigid ciphertext.

m c m′ c′
Enc(pk, ·) Dec(sk, ·) Enc(pk, ·)

m
Enc(pk, ·)

Enc(pk, ·)

We have two possibilities:

1. The ciphertext c is the encryption of a message m =⇒ m triggers a decryption failure.

2. Ciphertext c cannot be obtained through encryption.

Disclaimer. Since the former case can be addressed using known techniques, we will focus on
the latter.
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A Generalization of Re-Encryption
Range-checking Oracles/Algorithms

We need a way to check whether a ciphertext is the encryption of a message or not.

Given a PKE scheme, we define its Range-Checking Oracle (RCO) as the oracle that takes
as input a ciphertext and answers the question:

"Is this ciphertext the encryption of a message?

We call an implementation of such an oracle range-checking algorithm.

For example, re-encryption is a range-checking algorithm.

We formalize the intuition that an implementation might not be perfect introducing a
computational notion.
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A Generalization of Re-Encryption
NTRU and McEliece range-checking algorithms

Examples of range-checking algorithms other than re-encryption, both using different
predicates Px

RangeMcEliece(sk, c):
01 m′ := Dec(sk, c)
02 if Ppriv(c, m′) = false
03 return 0
04 else return 1

RangeNTRU(sk, c):
05 if Ppub(c) = false
06 return 0
07 (m′, r′) := Dec(sk, c)
08 if Ppriv(m′, r′) = false
09 return 0
10 else return 1

Daniel J. Bernstein, Understanding binary-Goppa decoding
NTRU. Algorithm Specifications And Supporting Documentation
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New modular analysis of the FO
transform
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New modular analysis of the FO transform
Overview of our results

PKE OW PKEder
OW, det.

PKErig OW,
comp.rigid

KEM⊥
m

IND-CCA
Der Rig U⊥

m

rgU⊥
m

FO⊥,rg
m

The figure shows a slight simplification of our results for KEMs with explicit rejection.
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New modular analysis of the FO transform
Rigidity step

PKE PKEder PKErig KEM⊥
m

Der Rig U⊥
m

rgU⊥
m

FO⊥,rg
m

We define Rig[Π, Range] := (KGrig, Enc, Decrig), where

KGrig():
01 (pk, sk)← KG()
02 sk′ := (sk, pk)
03 return (pk, sk′)

Decrig(sk′, c):
04 m′ := Dec(sk, c)
05 if m′ = ⊥ ∨ Range(sk′, c) = 0
06 return ⊥
07 return m′
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New modular analysis of the FO transform
Rigidity step

PKE PKEder PKErig KEM⊥
m

Der Rig U⊥
m

rgU⊥
m

FO⊥,rg
m

PKEder PKErig
Rig

Properties of Rig
Given a deterministic PKE Π and a range-checking algorithm Range, we have

• if Π is correct and Range is a good approximation =⇒ Rig[Π, Range] is correct and computationally
rigid.

• if Π is OW secure =⇒ Rig[Π, Range] is OW secure.
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New modular analysis of the FO transform
From PKE to KEM

PKE PKEder PKErig KEM⊥
m

Der Rig U⊥
m

rgU⊥
m

FO⊥,rg
m

We define U⊥
m[Π, H] = (KG, Encaps, Decaps⊥

m), where

Encaps(pk)
01 m←$ M
02 c← Enc(pk, m)
03 K := H(m)
04 return (K, c)

Decaps⊥
m(sk, c)

05 m′ := Dec(sk, c)
06 if m′ = ⊥
07 return ⊥
08 return K := H(m′)
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New modular analysis of the FO transform
From PKE to KEM

PKE PKEder PKErig KEM⊥
m

Der Rig U⊥
m

rgU⊥
m

FO⊥,rg
m

Properties of U⊥
m

Given a deterministic, computationally rigid PKE Π and a random oracle H, we have

• if Π is OW secure ROM===⇒ U⊥
m[Π, H] is IND-CCA secure.

• if Π is OW-VCA secure QROM====⇒ U⊥
m[Π, H] is IND-CCA secure.
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New modular analysis of the FO transform
Derandomization step

PKE PKEder PKErig KEM⊥
m

Der Rig U⊥
m

rgU⊥
m

FO⊥,rg
m

We define Der[Π, G] := (KG, Encder, Dec), where

Encder(pk, m) := Enc(pk, m; G(m)).
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New modular analysis of the FO transform
The curse is unavoidable

PKE PKEder PKErig KEM⊥
m

Der Rig U⊥
m

rgU⊥
m

FO⊥,rg
m

The curse is unavoidable
If the Der transformation is applied, to define a good range-checking algorithm, we must query the
random oracle used during the derandomization step.
In this case, the attack described by Ueno et al. is still a threat.

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma. Curse of re-encryption: A generic
power/EM analysis on post-quantum KEMs
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New modular analysis of the FO transform
Summary

1. We formalize the notion of computational rigidity.
2. We analyze alternatives to re-encryption to achieve rigidity.
3. We introduce the notion of range-checking oracle/algorithm as a generalization of the
re-encryption step.
4. We prove how these new notions can be used to enforce CCA security both in the ROM
and in the QROM.
5. We prove that, for derandomize PKE schemes using a random oracle, all alternatives to
re-encryption suffer from the same side-channel weakness.
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