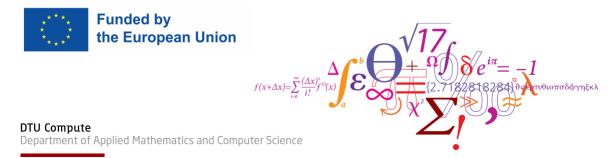
(Un)breakable curses - re-encryption in the Fujisaki-Okamoto transform

Kathrin Hövelmanns¹, Andreas Hülsing^{1,2}, Christian Majenz³, Fabrizio Sisinni³

 1 Eindhoven University of Technology, 2 SandboxAQ, 3 Technical University of Denmark



- Most NIST pgc proposals utilize the Fujisaki-Okamoto (FO) transformation to enhance their security.
- One of the steps in the FO transformation, called re-encryption, solves the problem of ciphertext malleability.
- At the same time, the re-encryption step is vulnerable to side-channel attacks.

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma. Curse of re-encryption: A generic power/EM analysis on post-quantum KEMs DTU Compute 2

• We perform a comprehensive study the alternative used by NTRU and McEliece in place of re-encryption.

- We perform a comprehensive study the alternative used by NTRU and McEliece in place of re-encryption.
- We formalize a computational notion, provided also by re-encryption, and show how to use it to obtain Chosen Ciphertext Attack (CCA) security.

- We perform a comprehensive study the alternative used by NTRU and McEliece in place of re-encryption.
- We formalize a computational notion, provided also by re-encryption, and show how to use it to obtain Chosen Ciphertext Attack (CCA) security.
- We prove a novel QROM security result for KEMs with explicit rejection mechanism based on deterministic PKEs.

- We perform a comprehensive study the alternative used by NTRU and McEliece in place of re-encryption.
- We formalize a computational notion, provided also by re-encryption, and show how to use it to obtain Chosen Ciphertext Attack (CCA) security.
- We prove a novel QROM security result for KEMs with explicit rejection mechanism based on deterministic PKEs.
- We show that all the alternatives to re-encryption have the same side-channel vulnerability in case of derandomized PKE schemes.

DTU

Outline

- The Fujisaki-Okamoto transformation
 - The FO transform
 - Modular analysis of FO transform
- A Generalization of Re-Encryption
 - Computational Rigidity
 - Range-checking Oracles vs Range-checking Algorithms
- New modular analysis of the FO transform
 - From deterministic to rigid PKE
 - From PKE to KEM
 - From randomized to deterministic PKE

The Fujisaki-Okamoto transformation

The Fujisaki-Okamoto transformation The FO transform

To a PKE $\Pi = (KG, Enc, Dec)$ and two random oracles G and H, we associate a KEM as

 $FO[\Pi,G,H] = (\mathsf{KG},\mathsf{Encaps},\mathsf{Decaps}^{\bot}),$

where Encaps and Decaps^\perp are defined as follows

Encaps(pk)	$Decaps^{\perp}(sk,c)$
01 $m \leftarrow_{\$} \mathcal{M}$	05 $m' := Dec(sk, c)$
02 $c \leftarrow Enc(pk,m;G(m))$	06 $c':=Enc(pk,m';G(m'))$
03 $K := H(m)$	07 if $m'=\perp$ or $c' eq c$
04 return (K, c)	08 return ⊥
	09 else
	10 return $K := H(m')$

E. Fujisaki, T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption Scheme Alexander W. Dent. A Designer's Guide to KEMs

6 DTU Compute

The Fujisaki-Okamoto transformation The FO transform

To a PKE $\Pi = (KG, Enc, Dec)$ and two random oracles G and H, we associate a KEM as

 $FO[\Pi, G, H] = (\mathsf{KG}, \mathsf{Encaps}, \mathsf{Decaps}^{\perp}),$

where Encaps and Decaps^\perp are defined as follows

Encaps(pk)	$Decaps^{\bot}(sk,c)$
01 $m \leftarrow_{\$} \mathcal{M}$	05 $m' := Dec(sk, c)$
02 $c \leftarrow \text{Enc}(pk, m; G(m))$	06 $c':=Enc(pk,m';G(m'))$
03 $K := H(m)$	07 if $m' = \perp$ or $c' eq c$
04 return (K, c)	08 return ⊥
(, -)	09 else
	10 return $K := H(m')$

E. Fujisaki, T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption Scheme Alexander W. Dent. A Designer's Guide to KEMs

6 DTU Compute

The Fujisaki-Okamoto transformation The FO transform

To a PKE $\Pi = (KG, Enc, Dec)$ and two random oracles G and H, we associate a KEM as

 $FO[\Pi, G, H] = (\mathsf{KG}, \mathsf{Encaps}, \mathsf{Decaps}^{\perp}),$

where Encaps and Decaps^\perp are defined as follows

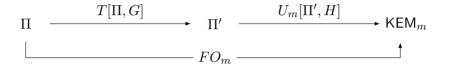
Encaps(pk)	$Decaps^{\perp}(sk,c)$
01 $m \leftarrow_{\$} \mathcal{M}$	05 $m' := Dec(sk, c)$
02 $c \leftarrow \operatorname{Enc}(pk, m; G(m))$	OG $c':=Enc(pk,m';G(m'))$
03 $K := H(m)$	07 if $m'=\perp$ or $c' eq c$
04 return (K, c)	08 return ⊥
	09 else
	10 return $K := H(m')$

E. Fujisaki, T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption Scheme Alexander W. Dent. A Designer's Guide to KEMs

6 DTU Compute

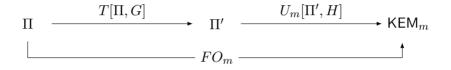
The Fujisaki-Okamoto transformation Modular analysis of FO transform

7



D. Hofheinz, K. Hövelmanns, E. Kiltz, A Modular Analysis of the Fujisaki-Okamoto Transformation DTU Compute (Un)breakable curses - re-encryption in the Fujisaki-Okamoto transform

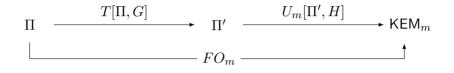
The Fujisaki-Okamoto transformation Modular analysis of FO transform



The T **transform.** Given a PKE scheme Π and a random oracle G, it derandomizes encryption, performs the re-encryption step, and outputs a deterministic PKE.

D. Hofheinz, K. Hövelmanns, E. Kiltz, A Modular Analysis of the Fujisaki-Okamoto Transformation DTU Compute (Un)breakable curses - re-encryption in the Fujisaki-Okamoto transform

The Fujisaki-Okamoto transformation Modular analysis of FO transform



The T **transform.** Given a PKE scheme Π and a random oracle G, it derandomizes encryption, performs the re-encryption step, and outputs a deterministic PKE.

The U **transform.** Given a deterministic PKE scheme Π' and a random oracle H, it outputs an IND-CCA KEM with explicit or implicit rejection mechanism.

D. Hofheinz, K. Hövelmanns, E. Kiltz, A Modular Analysis of the Fujisaki-Okamoto Transformation DTU Compute (Un)breakable curses - re-encryption in the Fujisaki-Okamoto transform The Fujisaki-Okamoto transformation Rigidity

What guarantee does re-encryption provide?

D. J. Bernstein, E. Persichetti, Towards KEM Unification

The Fujisaki-Okamoto transformation Rigidity

What guarantee does re-encryption provide?

Rigidity

Given a deterministic PKE $\Pi = (KG, Enc, Dec)$, we say that Π is **rigid** if for every key pair (pk, sk) and every ciphertext c it holds

 $\mathsf{Dec}(sk,c) = \bot \quad \lor \quad \mathsf{Enc}(pk,\mathsf{Dec}(sk,c)) = c.$

D. J. Bernstein, E. Persichetti, Towards KEM Unification

8 DTU Compute

A Generalization of Re-Encryption

A Generalization of Re-Encryption Computational Rigidity

We say that a ciphertext c is **non-rigid** if $\exists (pk,sk) \leftarrow \mathsf{KG}()$ such that

 $\operatorname{Enc}(pk,\operatorname{Dec}(sk,c)) \neq c.$

A Generalization of Re-Encryption Computational Rigidity

We say that a ciphertext c is **non-rigid** if $\exists (pk, sk) \leftarrow \mathsf{KG}()$ such that

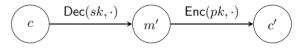
 $\mathsf{Enc}(pk,\mathsf{Dec}(sk,c))\neq c.$

Given a PKE Π and an adversary A, we define the **Find Non Rigid Ciphertext (FNRC)** game as follows

 $\begin{array}{c} \mathsf{FNRC}_{\Pi}(A):\\ \hline \texttt{01} \ (pk,sk) \leftarrow \mathsf{KG}()\\ \texttt{02} \ \mathscr{L}_{\mathcal{C}} \leftarrow A^{\mathcal{O}}(pk)\\ \texttt{03} \ \mathbf{return} \ \llbracket \mathscr{L}_{\mathcal{C}} \ \texttt{contains a non-rigid ciphertext} \ \rrbracket \end{array}$

DTU

Assume that c is a non-rigid ciphertext.



We have two possibilities:

DTU

Assume that c is a non-rigid ciphertext.

$$(m) \xrightarrow{\mathsf{Enc}(pk,\cdot)} (c) \xrightarrow{\mathsf{Dec}(sk,\cdot)} (m') \xrightarrow{\mathsf{Enc}(pk,\cdot)} (c')$$

We have two possibilities:

1. The ciphertext c is the encryption of a message $m \implies m$ triggers a decryption failure.

DTU

Assume that c is a non-rigid ciphertext.

$$\overbrace{\hspace{1.5cm}}^{} \underbrace{\mathsf{Enc}(pk,\cdot)}_{c} \xrightarrow{} \overbrace{\hspace{1.5cm}}^{} \underbrace{\mathsf{Dec}(sk,\cdot)}_{m'} \xrightarrow{} \underbrace{\mathsf{Enc}(pk,\cdot)}_{c'} \xrightarrow{} \overbrace{\hspace{1.5cm}}^{} c'$$

We have two possibilities:

- **1.** The ciphertext c is the encryption of a message $m \implies m$ triggers a decryption failure.
- **2.** Ciphertext *c* cannot be obtained through encryption.

Assume that c is a non-rigid ciphertext.

$$\overbrace{\hspace{1.5cm}}^{} \underbrace{\mathsf{Enc}(pk,\cdot)}_{c} \xrightarrow{} \overbrace{\hspace{1.5cm}}^{} \underbrace{\mathsf{Dec}(sk,\cdot)}_{m'} \xrightarrow{} \underbrace{\mathsf{Enc}(pk,\cdot)}_{c'} \xrightarrow{} \overbrace{\hspace{1.5cm}}^{} c'$$

We have two possibilities:

- **1.** The ciphertext c is the encryption of a message $m \implies m$ triggers a decryption failure.
- **2.** Ciphertext *c* cannot be obtained through encryption.

Disclaimer. Since the former case can be addressed using known techniques, we will focus on the latter.

DTU

=

We need a way to check whether a ciphertext is the encryption of a message or not.

We need a way to check whether a ciphertext is the encryption of a message or not.

Given a PKE scheme, we define its <u>**R**ange-C</u>hecking <u>O</u>racle (RCO) as the oracle that takes as input a ciphertext and answers the question:

"Is this ciphertext the encryption of a message?

We need a way to check whether a ciphertext is the encryption of a message or not.

Given a PKE scheme, we define its <u>**R**ange-C</u>hecking <u>O</u>racle (RCO) as the oracle that takes as input a ciphertext and answers the question:

"Is this ciphertext the encryption of a message?

We call an implementation of such an oracle range-checking algorithm.

We need a way to check whether a ciphertext is the encryption of a message or not.

Given a PKE scheme, we define its <u>**R**ange-C</u>hecking <u>O</u>racle (RCO) as the oracle that takes as input a ciphertext and answers the question:

"Is this ciphertext the encryption of a message?

We call an implementation of such an oracle range-checking algorithm.

For example, re-encryption is a range-checking algorithm.

We need a way to check whether a ciphertext is the encryption of a message or not.

Given a PKE scheme, we define its <u>**R**ange-C</u>hecking <u>O</u>racle (RCO) as the oracle that takes as input a ciphertext and answers the question:

"Is this ciphertext the encryption of a message?

We call an implementation of such an oracle range-checking algorithm.

For example, re-encryption is a range-checking algorithm.

We formalize the intuition that an implementation might not be perfect introducing a computational notion.

A Generalization of Re-Encryption NTRU and McEliece range-checking algorithms

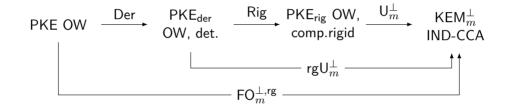
Examples of range-checking algorithms other than re-encryption, both using different predicates P_{x}

$Range_{McEliece}(sk,c)\mathbf{:}$	$Range_{NTRU}(sk,c):$
01 $m' := Dec(sk, c)$	05 if $P_{pub}(c) = false$
02 if $P_{priv}(c,m') = false$	06 return 0
03 return 0	07 $(m',r'):=Dec(sk,c)$
04 else return 1	08 if $P_{priv}(m',r') = false$
	09 return 0
	10 else return 1

Daniel J. Bernstein, Understanding binary-Goppa decoding NTRU. Algorithm Specifications And Supporting Documentation

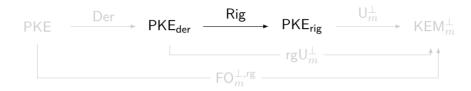
New modular analysis of the FO transform

New modular analysis of the FO transform Overview of our results



The figure shows a slight simplification of our results for KEMs with explicit rejection.

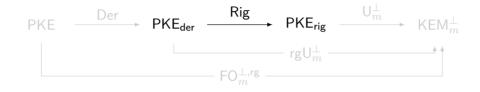
New modular analysis of the FO transform Rigidity step



We define $Rig[\Pi, Range] := (KG_{rig}, Enc, Dec_{rig})$, where

KG _{rig} ():	$Dec_{rig}(sk',c)$:
$\boxed{01 \ (pk, sk)} \leftarrow KG()$	$\overline{\texttt{04} \ m' := Dec}(sk, c)$
02 $sk' := (sk, pk)$	05 if $m' = \perp \lor Range(sk',c) = 0$
03 return (pk, sk')	06 return ⊥
	07 return m'

New modular analysis of the FO transform Rigidity step

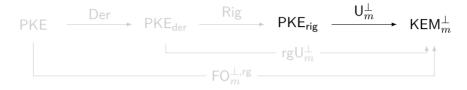


Properties of Rig

Given a deterministic PKE Π and a range-checking algorithm Range, we have

- if Π is correct and Range is a good approximation $\implies {\sf Rig}[\Pi,{\sf Range}]$ is correct and computationally rigid.
- if Π is OW secure \implies Rig[Π , Range] is OW secure.

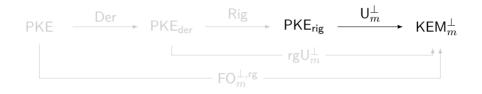
New modular analysis of the FO transform From PKE to KEM



We define $U_m^{\perp}[\Pi, H] = (KG, Encaps, Decaps_m^{\perp})$, where

Encaps(pk)	$Decaps_m^\perp(sk,c)$
01 $m \leftarrow_{\$} \overline{\mathcal{M}}$	05 $m' := Dec(sk,c)$
02 $c \leftarrow \operatorname{Enc}(pk,m)$	06 if $m'=ot$
03 $K := H(m)$	07 return ⊥
04 return (K, c)	08 return $K := H(m')$

New modular analysis of the FO transform From PKE to KEM



Properties of U_m^{\perp}

Given a deterministic, computationally rigid PKE Π and a random oracle H, we have

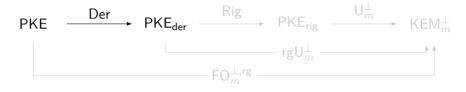
• if Π is OW secure $\xrightarrow{\text{ROM}} \mathrm{U}_m^\perp[\Pi,H]$ is IND-CCA secure.

• if
$$\Pi$$
 is OW-VCA secure $\xrightarrow{\text{QROM}} \text{U}_m^{\perp}[\Pi, H]$ is IND-CCA secure.

19

DTU Compute

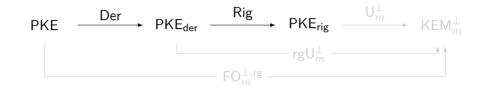
New modular analysis of the FO transform **Derandomization step**



We define $\text{Der}[\Pi, G] := (\text{KG}, \text{Enc}_{\text{der}}, \text{Dec})$, where

$$\operatorname{Enc}_{\operatorname{der}}(pk,m) := \operatorname{Enc}(pk,m;G(m)).$$

New modular analysis of the FO transform The curse is unavoidable



The curse is unavoidable

If the Der transformation is applied, to define a good range-checking algorithm, we must query the random oracle used during the derandomization step. In this case, the attack described by Ueno et al. is still a threat.

R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma. Curse of re-encryption: A generic power/EM analysis on post-quantum KEMs

21 DTU Compute

- 1. We formalize the notion of computational rigidity.
- 2. We analyze alternatives to re-encryption to achieve rigidity.
- **3.** We introduce the notion of range-checking oracle/algorithm as a generalization of the re-encryption step.
- **4.** We prove how these new notions can be used to enforce CCA security both in the ROM and in the QROM.
- **5.** We prove that, for derandomize PKE schemes using a random oracle, all alternatives to re-encryption suffer from the same side-channel weakness.