Random Oracle Compiners

Merkle-Damgard Style

Yevgenly Dodis, Eli Goldin, Peter Hall '

NYU

Hash) Combpiners

Hey | have this great
system using my all-
new super hash
function!

Hash) Combpiners

Hey | have this great

system using my all-

new super hash
INction!

Cool but our
regulations require
you to use SHAS3

Hash) Combpiners

Hey | have this great

system using my all-

new super hash
INction!

Cool but our
regulations require
you to use SHAS3

HmMm but my hash is
much better than
SHAS...

Hash) Combiners

Hey | have this great

system using my all-

new super hash
INction!

Cool but our
regulations require
you to use SHAS3

HmMm but my hash is
much better than
SHAS...

How can they both be happy??

Hash) Combiners

Hash Combiner

\4
(CSHAS, super hash = g perSHA

Hash) Combiners

A
-
N\

\
.

\
hd -

If oneis secure’’
in some sense...

(CSHAS, super hash = g perSHA

Hash) Combiners

-
Y

If oneis secure’’
in some sense...

(CSHAS, super hash = gyperSHA Then so is this!

Monolithic Hasnh .

ash Transforms

-Unction

ash Transforms

The Merkle-Damgéard Approach (m = mimomas...Mnp.1Mp)

ash Transforms

The Merkle-Damgéard Approach (m = mimomas...Mnp.1Mp)

%‘

ash Transforms

The Merkle-Damgéard Approach (m = mimomas...Mnp.1Mp)

N

0 H(O, m1) H(O, m1, mo)

ash Transforms

The Merkle-Damgéard Approach (m = mimomas...Mnp.1Mp)

ash Transforms

The Merkle-Damgard Approach (m = mimomas...MmMp-1Mp)

000 %A

ash Transforms

The Merkle-Damgard Approach (m = mimomas...MmMp-1Mp)

The Merkle-.

ash Transforms

Damgard Approach

Advantage: underlying hash H

can be much less compressing

than overall hash compression!

Background

Concatenation Barrier

« Collision Resistance barrier

Ch.9(m) =h(m) || g(m)

. Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

Concatenation Barrier

« Collision Resistance barrier

Ch.9(m) =h(m) || g(m)

. Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

. [PietrzakO7/ 08]: Length doubling is optimal tor collision-resistance

Concatenation Barrier

« Collision Resistance barrier

Ch.9(m) =h(m) || g(m)

- Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

. [PietrzakO7/ 08]: Length doubling is optimal tor collision-resistance

. [Mittelbach 13]: Cryptophia’s short combiners, way around this assuming random oracles

Ranadom Oracle Combiners
'DFGHP CRYPTO23]

. |Introduced notion of Random Oracle (RO) Combiners

 |dea: It one of the hashes is RO, then the combiner C is essentially BIG-RO

"

h

Hash Combiner

Ch.g

|)

[nditferentiapility Framework
MRHO4, CDMPO5|

- Real-ideal world framework, where we want indistinguishability between
. interacting with RO h and the combiner C

. Interacting with a simulator Sim and RO H

|)

[nditferentiapility Framework
MRHO4, CDMPO5|

- Real-ideal world framework, where we want indistinguishability between
. interacting with RO h and the combiner C

. Interacting with a simulator Sim and RO H

Real |deal

Ranadom Oracle Combiners
'DFGHP CRYPTO23]

. |Introduced notion of Random Oracle (RO) Combiners

 |dea: It one of the hashes is RO, then the combiner is essentially a RO

g

Hash Combiner

Ch.g

Ranadom Oracle Combiners
'DFGHP CRYPTO23]

. |Introduced notion of Random Oracle (RO) Combiners

 |dea: It one of the hashes is RO, then the combiner C is essentially BIG-RO

~

e Hash Combiner

g RO

Hash Combiner

Ch. g CRO, g*°

Random Orac
'DFGHP CRYPTO23]

 Introduced notion of Random O

e Combiners

racle (RO) Combiners

 |dea: It one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

Ch. g

g RO

~

Goal: Cis indifferentiable from RO

Hash Combiner

CRO, g"° X/ BIG-RO

gRO

Ranadom Oracle Combiners
'DFGHP CRYPTO23]

. |Introduced notion of Random Oracle (RO) Combiners

 |dea: It one of the hashes is RO, then the combiner C is essentially BIG-RO

g Sim
\

— Hash Combiner

v Goal: C is indifferentiable from RO .

gSim

Hash Combiner

Ranadom Oracle Combiners

'DFGHP, CRYPTOZ23]

. |Introduced notion of Random Oracle (RO) Combiners

 |dea: It one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

g Sim(Z)

~

Goal: Cis indifferentiable from RO

Note: C must be salted

— Hash Combiner

BIG-RO

gSim(Z)

asn Compiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression

C%,(m) = h(m, Z)) ® g(m, Z,)

Downside: for applications, does not give evidence when h (and g) Merkle-Damgard
—> despite the fact that the above is indif. from RO and M-D is indif. from RO
—> composition of the two only works for single-stage games, which RO Comb. is not

—> in particular, g can depend arbitrarily on underlying compression of h

asn Compiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression

Cy%,.(m) = h(m, Z)) ® g(m, Z,)

Desired goals for Merkle-Damgard combiner:
1. Assumes only that one of h or g is a RO of mild compression

2. Only calls M-D transformation of h*, g*on inputs

3. Supports arbitrarily long input messages, but message output is still less than 2 times output of h=h".

Our Results

Main Result

We construct the following RO Combiner:

Cy%, (m) = h*(m. Z)) ® g*(m. Z,)

Parameters (previous): Parameters (us):

« Compression of individual hash: n + 0 . Compression of individual hash: n + 0

« Compression of overall hashes h, g:n + 0 . Compression of overall hashes h*, g: 0 - £

. Length of salts Zy, Zo: | M| + 4 . Length of salts Z1, Zo: | M| + A

What Fails with Merkle-Damgard?

- In monolithic, proof critically used the fact that Z is longer than messages to show that
g(m’, Z2) cannot compute h(m, Z1) for any messages m.

. This way, Sim can answer h(m’, Z1) = H(mM') @ g(m’, Z2) without any “recursion”

- Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)'(m’ Z2) can
compute completions of h'(m, Z3).

What Fails with Merkle-Damgard?

- Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)'(m’ Z2) can
compute completions of h'(m, Z3).

What Fails with Merkle-Damgard?

- Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)'(m’ Z2) can
compute completions of h'(m, Z3).

. Consider & : {0,1}?" = {0,1}" Then, for a message m, consider:

m's = (h(m Z0, 70, ...,z;k—w),z;@)

Where k is the last block of Z1 and Z10) is the i-th block of Z1.

What Fails with Merkle-Damgard?

- Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)'(m’ Z2) can
compute completions of h'(m, Z3).

. Consider & : {0,1}?" = {0,1}" Then, for a message m, consider:

m'; = (h*(m Zl(”,Zl@), ...,Zf"‘”),Zf”)
Where k is the last block of Z1 and Z10 is the i-th block of Z1. Then, easy to define gh so that:

(gM*(m',Z,) = h(m’) = h((h*(m, Zl(l),Zl(z), ...,Zl(kl)>,Z1(k))> = h*(m, Z,)

What Fails with Merkle-Damgard?

- Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)'(m’ Z2) can
compute completions of h'(m, Z3).

. Consider & : {0,1}?" = {0,1}" Then, for a message m, consider:

m': = (h*(m, Zl(l),Zl(z), ...,Zl(k_l)>,Zl(k)>
Where k is the last block of Z1 and Z10 is the i-th block of Z1. Then, easy to define gh so that:

(gM*(m',Z,) = h(m') = h(<h*<m ASNVASS ...,zl<’<1>),zl<’<>)> = h*(m,Z,)

Lesson: intuitions for monolithic may not carry over to Merkle-Damgard case

Proor

r-

Prool
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (85™)*(m, Z,) = H(m) <= Sim (m, Z,) = H(m) @ (g>™)*(m, Z,)

- Sim must answer all queries (a, b) — ¢ at random while also satistying above “global” guestion
- Challenges:

1. Need to spot all such constraints

2. Need the last value of h satisfying the equation to be “free”

3. Runtime of simulator must be polynomial given distinguisher D is query bounded

r-

Prool
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢°™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

- Sim must answer all queries (a, b) —c¢ at random while also satistying above “global” guestion
- Challenges:
1. Need to spot all such constraints

2. Need the last value of h satisfying the equation to be “free”

Q3. Runtime of simulator must be polynomial given distinguisher D is query bounded

In essence the trickiest, will imply 1+2 if done right...

Proor
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢°™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Istinputa | 2ndinputb | Outputc

r_

Proo:

Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢°™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Istinput a

2nd input b

Output c

Got a message of
length [+k...
have to be consistent
here

r_

Prool
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢°™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Sim

Query Istinputa | 2ndinputb | Outputc

(O, m) O 1895 I
(11, M12) I1 1905 Io
(12 Z1.1) I /1.1 I3

(ra, Z1.2) I3 71 9 H(m) @ (857)*(m, Z,)

r_

Prool
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢°™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

nat did g” call
nere’

| need to fill in those as
well

Okay, w

Istinputa | 2ndinputb | Outputc

/12 H(m) @ (§5™)*(m, Z,)

Sim

‘ne worry
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢>™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Query Istinputa | Z2ndinputb | Outputc g-Query Istinputa | Z2ndinputb | Outputc
(O,) O M g (a1, b1) a1 1 I

(1, Mo) Iy My I (A2, 02) a o7 I's
(12.Z1.1) I /11 I3

(ra, Z1.2) I3 719 H(m) @ (g5™)0m, Z,)

‘ne worry
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢>™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Sim

Query Istinputa | 2ndinputb | Outputc g-Query Istinputa | 2ndinputb | Outputc

(O, my) 0 my I (a1, b1) a1 b1

(r1, M) I1 my o
(T2, Z1.1) I /11 I3
Hm...this also calls
(T3 71) - 7.5 B something of length [+k...

have to recurse again

‘ne worry
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢>™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Sim

Query Istinputa | 2ndinputb | Outputc g-Query Istinputa | 2ndinputb | Outputc

(11, M12) I1 M5 Io

(2. Z1.1) I /1.1 I3 A

Hm...this also calls
(13, Z1.2) I3 /1.2 H(m) & (¢5™)(m, 2,) something of length [+k...

have to recurse again

Sim

‘ne worry
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢°™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Query Istinputa | 2ndinputb | Outputc g-Query Istinputa | 2ndinputb | Outputc
(O, 1) 0 M g (a1, 1) al b1 r'y

N
(1’1 mz) I'1 1112 I2 ~

‘ C_

(r2.Z1,1) r2 /1.1 I's ﬁ\\v
s 70) : . PR ((Hm...this also calls
el ’ L - something of length I+k...

have to recurse again

‘ne worry
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢>™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Sim

Need to argue no infinite (or just overwhelming) recursion!

[3

(ra, Z1.2) I3 /12 H(m) & (g°™)*(m, Z,) ‘

HmM...this also calls
something of length [+k...
have to recurse again

Termination

- As said before, cannot argue directly that g never gueries some (m’, Z1)

. We will settle for weaker claim:

‘ermination

- As said before, cannot argue directly that g never gueries some (m’, Z1)

« We instead settle for a sufficient weaker claim:

Claim:

For D to find a message m such that (gh)(m, Z2) queries some h*(m’, Z1),
D must have queried h*(m’) itself.

lermimation

- As said before, cannot argue directly that g never gueries some (m’, Z1)

. We instead settle for a sufficient weaker claim:

Claim:

For you to find a message m such that (g")'(m, Z2) queries some h*'(m’, Z1),
then you must have queried h*(m’) yourself.

. |f this is true, then #(queries made by recursive g calls) < #(queries D made) — bounded!

‘ermination

Key

= direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive
Sim gueries

lermimnation

Note: only queries of length up to I followed by some 71 blocks "matter'

Key

. = direct Sim queries

= current recursive
SIm gueries

= permanent recursive
Sim gueries

Termination

Note: only queries of length up to I followed by some 71 blocks ‘matter’

Key

Lengthl-,y-klllllllllllllllllllllllllllllllllll
= direct Sim queries

L

I_engthllllllllllllllllllllllllllllllllllll

= current recursive
SIM qUEries

= permanent recursive
Sim gueries

—

lermimnation

Note: only queries of length up to I followed by some 71 blocks "matter'

Key
g . = direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive

Sim gueries

I_engthllllllllllllllllllllllllllllllllllll

Need to bound how
many queries reach
here!!

Termination

Note: only queries of length up to I followed by some 71 blocks ‘matter’

Key

Lengthl-,y-klllllllllllllllllllllllllllllllllll
= direct Sim queries

L

I_engthllllllllllllllllllllllllllllllllllll

= current recursive
SIM qUEries

= permanent recursive
Sim gueries

Termination

Note: only queries of length up to I followed by some 71 blocks ‘matter’

Key

Lengthl-,’-klllllllllllllllllllllllllllllllllll
= direct Sim queries

L

= current recursive
SIM qUEries

= permanent recursive
Sim gueries

I_engthllllllllllllllllllllllllllllllllllll

o

Termination

Note: only queries of length up to I followed by some 71 blocks ‘matter’

Key

Lengthl-,’-klllllllllllllllllllllllllllllllllll
= direct Sim queries

L

I_engthllllllllllllllllllllllllllllllllllll

= current recursive
SIM qUEries

= permanent recursive
Sim gueries

lermimnation

Note: only queries of length up to I followed by some 71 blocks "matter'

Key

Lengthl-,’-klllllllllllllllllllllllllllllllllll
= direct Sim queries

&

= current recursive
SIm gueries

= permanent recursive
Sim gueries

Length [= == =

lermimation

Note: only queries of length up to I followed by some 71 blocks "matter'

Key

E E EEEEEEEEEEEEEEEEEEEEEEEEEDO
= direct Sim queries

L

Length [+k= = = =

= current recursive
Sim gueries

= permanent recursive
Sim gueries

Length [m ===

lermimation

Note: only queries of length up to I followed by some 71 blocks "matter'

Key

E E EEEEEEEEEEEEEEEEEEEEEEEEEDO
= direct Sim queries

L

Length [+k= = = =

= current recursive
Sim gueries

= permanent recursive
Sim gueries

.

Length [m ===

lermimnation

Note: only queries of length up to I followed by some 71 blocks "matter'

Key

E E EEEEEEEEEEEEEEEEEEEEEEEEEDO
= direct Sim queries

L

Length [+k= = = =

= current recursive
Sim gueries

= permanent recursive
Sim gueries

Length [m ===

lermimnation

Note: only queries of length up to I followed by some 71 blocks "matter'

Key

E E EEEEEEEEEEEEEEEEEEEEEEEEEDO
= direct Sim queries

L

Length [+k= = = =

= current recursive
Sim gueries

= permanent recursive
Sim gueries

Length [m ===

lermimnation

Note: only queries of length up to I followed by some 71 blocks "matter'

Key

E E EEEEEEEEEEEEEEEEEEEEEEEEEDO
= direct Sim queries

L

Length [+k= = = =

= current recursive
Sim gueries

= permanent recursive
Sim gueries

Length [m ===

—

lermimnation

Property: blue query cannot follow orange query

L

Length [+k= = = =

Length [m ===

Key

= direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive
Sim gueries

—

lermimation

Property: blue query cannot follow orange query

Key

Length [+k= = = =

Why? = direct Sim queries

= current recursive
SIm gueries

It it could, we could generate
all blue queries without
‘ange gqueries

= permanent recursive
Sim gueries

Length [m ===

—

lermimation

Property: blue query cannot follow orange query

Key

Length [+k= = = =

Why? = direct Sim queries

= current recursive
SIm gueries

It it could, we could generate
all blue queries without
orange queries

= permanent recursive
Sim gueries

Length [m ===

Then, we could predict
ndom oracle outputs

Length [+k= = = =

Length [m ===

lermimation

L

Key

= direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive
Sim gueries

—

lermimation

Property: green query cannot tollow orange query

L

Length [+k= = = =

Length [m ===

Key

= direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive
Sim gueries

—

lermimation

Property: green query cannot tollow orange query

Key

Length [+k= = = =
g = direct Sim gueries

Similar argument as before,
but now Sim guesses the
random oracle outputs

= current recursive
SIm gueries

= permanent recursive
Sim gueries

Length [m ===

Length [+k= = = =

Length [m ===

lermimation

L

Key

= direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive
Sim gueries

—

lermimation

Property: orange query can't find all of

L

Length [+k= = = =

Length [m ===

Key

= direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive
Sim gueries

—

lermimation

Property: orange query can't find all of

Key

Length [+k= = = = . . .
= direct Sim queries

= current recursive
SIm gueries

71| = |m| + A >ml, so any m’ fed
to a recursive call cannot
possibly hold all of Z;

= permanent recursive
Sim gueries

Length [m ===

Property 1. blue query cannot follow orange query

lermimation

Property 2: green query cannot follow orange query

Property 3: orange query can't rind all of 71

Length |+k

Length |

Property 1. blue query cannot follow orange query

lermimation

Property 2: green query cannot follow orange query

Property 3: orange query can't rind all of 71

Length |+k | .
Putting these properties

together, we see that orange
querles can only complete
plue paths (triggering
recursion) that extend past I=
m|, so there must be fewer
recursive paths than blue ones!

Length |

Property 1. blue query cannot follow orange query

lermimation

Property 2: green query cannot follow orange query

Property 3: orange query can't rind all of 71

L

Length [+k= = = =

Putting these properties
together, we see that orange
queries can only complete

plue paths (triggering
recursion) that extend past I=
m|, so there must be fewer
"mEEEEEE recursive paths than blue ones!

Length [m ===

Completes termination

argument - hard part apout
showing Sim works in ideal

Conclusions

Conclusion and Open Questions

Conclusions

« We expand the practical utility of RO Combiners by constructing a RO Combiner for
standard, Merkle-Damgard-based constructions

« We only rely on underlying compression functions being a RO using delicate termination
argument

Conclusion and Open Questions

Conclusions

1. Can we construct a RO Combiner for Merkle-Damgard hashes with:

A. Small O()\) salts Z1, Z>

B. A constant number of calls to h+, g*?

4. Alternatively, can we show such a RO Combiner cannot exist? Tradeoffs?

Thank youl

(=] e [m]

Il

Dl

2025/6089

