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CSHA3, super hash  = superSHA

If one is ``secure’’ 
in some sense…

Then so is this!
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The Merkle-Damgård Approach

Hash Transforms
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…

…

H*(m) = H( H( … (H(0, m1), m2), m3) … mn)

Advantage: underlying hash H 
can be much less compressing 
than overall hash compression!
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Concatenation Barrier

• Collision Resistance barrier 

• Similar for one-wayness, other constructions for pseudorandomness, MAC, etc. 

• [Pietrzak07, 08]: Length doubling is optimal for collision-resistance 

• [Mittelbach 13]: Cryptophia’s short combiners, way around this assuming random oracles

Ch, g(m) = h(m) || g(m)



Random Oracle Combiners

• Introduced notion of Random Oracle (RO) Combiners 

• Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

h g

Ch, g

[DFGHP, CRYPTO23]
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• Interacting with a simulator Sim and RO H
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[DFGHP, CRYPTO23]

Random Oracle Combiners

• Introduced notion of Random Oracle (RO) Combiners 

• Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

h g

Ch, g
Goal: C is indifferentiable from RO

Note: C must be saltedZ

Hash Combiner

Sim(Z) gSim(Z)

  BIG-RO



Hash Combiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression 

Downside: for applications, does not give evidence when h (and g) Merkle-Damgård 

  —> despite the fact that the above is indif. from RO and M-D is indif. from RO 

  —> composition of the two only works for single-stage games, which RO Comb. is not 

  —> in particular, g can depend arbitrarily on underlying compression of h

Ch,g
Z1,Z2

(m) = h(m, Z1) ⊕ g(m, Z2)h h gg



Hash Combiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression 

Desired goals for Merkle-Damgård combiner: 

1. Assumes only that one of h or g is a RO of mild compression  

2. Only calls M-D transformation of h*, g* on inputs 

3. Supports arbitrarily long input messages, but message output is still less than 2 times output of h=h*. 

Ch,g
Z1,Z2

(m) = h(m, Z1) ⊕ g(m, Z2)h h gg
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Main Result

We construct the following RO Combiner:

Ch,g
Z1,Z2

(m) = h*(m, Z1) ⊕ g*(m, Z2)h h* g*g

Parameters (previous): 

• Compression of individual hash:  

• Compression of overall hashes h, g:  

• Length of salts Z1, Z2: 

n + δ

n + δ

|M | + λ

Parameters (us): 

• Compression of individual hash:  

• Compression of overall hashes h*, g*:  

• Length of salts Z1, Z2: 

n + δ

δ ⋅ ℓ

|M | + λ



What Fails with Merkle-Damgård?
• In monolithic, proof critically used the fact that Z is longer than messages to show that      

g(m', Z2) cannot compute h(m, Z1) for any messages m.  

• This way, Sim can answer h(m’, Z1) = H(m’)  g(m’, Z2) without any “recursion” 

• Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)*(m’, Z2) can 
compute completions of h*(m, Z1).

⊕
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What Fails with Merkle-Damgård?
• Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)*(m’, Z2) can 

compute completions of h*(m, Z1). 

• Consider . Then, for a message m, consider: 

Where k is the last block of Z1 and Z1(i) is the i-th block of Z1. Then, easy to define gh so that: 

Lesson: intuitions for monolithic may not carry over to Merkle-Damgård case

h : {0,1}2n → {0,1}n

m′ : = (h*(m, Z(1)
1 , Z(2)

1 , …, Z(k−1)
1 ), Z(k)

1 )

(gh)*(m′ , Z2): = h(m′ ) = h((h*(m, Z(1)
1 , Z(2)

1 , …, Z(k−1)
1 ), Z(k)

1 )) = h*(m, Z1)
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Need to build Sim such that Sim*(m, Z1)  (gSim)*(m, Z2) = H(m)⊕
Proof

• Sim must answer all queries (a, b)     c at random while also satisfying above “global” question 

• Challenges: 

1. Need to spot all such constraints 

2. Need the last value of h satisfying the equation to be “free”  

3. Runtime of simulator must be polynomial given distinguisher D is query bounded
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In essence the trickiest, will imply 1+2 if done right…
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Need to build Sim such that Sim*(m, Z1)  (gSim)*(m, Z2) = H(m)⊕
Proof

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2
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Sim:

H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Okay, what did g* call 
here?  

I need to fill in those as 
well
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Need to build Sim such that Sim*(m, Z1)  (gSim)*(m, Z2) = H(m)⊕
The worry

Query 1st input a 2nd input b Output c

(0, 0 r1

(r1, ) r1 r2

(r2, Z1, 1) r2 Z1, 1 r3
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Hm…this also calls 
something of length l+k…

have to recurse again

Hm…this also calls 
something of length l+k…

have to recurse again

Need to argue no infinite (or just overwhelming) recursion!
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Termination

• As said before, cannot argue directly that g never queries some (m’, Z1) 

• We instead settle for a sufficient weaker claim: 

• If this is true, then #(queries made by recursive g calls) ≤ #(queries D made) — bounded!

Claim: 

For you to find a message m such that (gh)*(m, Z2) queries some h*(m’, Z1), 
then you must have queried h*(m’) yourself. 
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Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l

Need to bound how 
many queries reach 

here!!



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Property: blue query cannot follow orange query

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l



Z1

Property: blue query cannot follow orange query

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l

Why? 

If it could, we could generate 
all blue queries without 

orange queries 

Then, we could predict 
random oracle outputs



Z1

Property: blue query cannot follow orange query

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries

Length l+k

Length l

Why? 

If it could, we could generate 
all blue queries without 

orange queries 

Then, we could predict 
random oracle outputs



Z1

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries 

Length l+k

Length l



Z1

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries 

Length l+k

Length l

Property: green query cannot follow orange query



Z1

Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries 

Length l+k

Length l

Property: green query cannot follow orange query

Similar argument as before, 
but now Sim guesses the 

random oracle outputs
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Termination

Key

= direct Sim queries

= current recursive        
.  Sim queries

= permanent recursive 
.  Sim queries 

Length l+k

Length l

Property: orange query can’t find all of Z1

Why? 

|Z1| = |m| + λ >|m|, so any m’ fed 
to a recursive call cannot 

possibly hold all of Z1
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Length l

Property 1: blue query cannot follow orange query 

Property 2: green query cannot follow orange query 

Property 3: orange query can’t find all of Z1

Putting these properties 
together, we see that orange 
queries can only complete 

blue paths (triggering 
recursion) that extend past l=|

m|, so there must be fewer 
recursive paths than blue ones!

Completes termination 
argument - hard part about 
showing Sim works in ideal



Conclusions



Conclusions

Conclusion and Open Questions

• We expand the practical utility of RO Combiners by constructing a RO Combiner for 
standard, Merkle-Damgård-based constructions 

• We only rely on underlying compression functions being a RO using delicate termination 
argument



Conclusions

Conclusion and Open Questions

1. Can we construct a RO Combiner for Merkle-Damgård hashes with: 

A. Small O(λ) salts Z1, Z2 

 

B. A constant number of calls to h*, g*? 

4. Alternatively, can we show such a RO Combiner cannot exist? Tradeoffs?



Thank you!
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