Random Oracle Combiners Merkle-Damgärd Style

Yevgeniy Dodis, Eli Goldin, Peter Hall

Hey I have this great system using my allnew super hash function!

Hey I have this great system using my allnew super hash function!

Cool but our regulations require you to use SHA3

Hmm but my hash is much better than SHA3...

How can they both be happy??

Hey I have this great system using my allnew super hash function!

Cool but our regulations require you to use SHA3

Hmm but my hash is much better than SHA3...

Hash Transforms Monolithic Hash Function

$(m = m_1 m_2 m_3 \dots m_{n-1} m_n)$

$H^{*}(m) = H(H(...(H(0, m_{1}), m_{2}), m_{3})...m_{n})$

Advantage: underlying hash H can be much less compressing than overall hash compression! н Η H(O, ., (m_{n-2}) H(O, ..., m_{n-1}` $H^{*}(m) = H(H(...(H(0, m_{1}))m_{2}), m_{3})...m_{n})$

Background

Concatenation Barrier

- Collision Resistance barrier
- Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

$C^{h,g}(m) = h(m) || g(m)$

Concatenation Barrier

- Collision Resistance barrier
- Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

• [Pietrzak07, 08]: Length doubling is optimal for collision-resistance

$C^{h,g}(m) = h(m) || g(m)$

Concatenation Barrier

Collision Resistance barrier

$C^{h,g}(m) = h(m) || g(m)$

Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

- [Pietrzak07, 08]: Length doubling is optimal for collision-resistance

• [Mittelbach 13]: Cryptophia's short combiners, way around this assuming random oracles

- Introduced notion of Random Oracle (RO) Combiners
- Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Indifferentiability Framework [MRH04, CDMP05]

- Real-ideal world framework, where we want indistinguishability between
 - interacting with RO *h* and the combiner *C*
 - Interacting with a simulator Sim and RO H

Indifferentiability Framework [MRH04, CDMP05]

- Real-ideal world framework, where we want indistinguishability between
 - interacting with RO h and the combiner ${f C}$
 - Interacting with a simulator Sim and RO H

- Introduced notion of Random Oracle (RO) Combiners
- Idea: If one of the hashes is RO, then the combiner is essentially a RO

- Introduced notion of Random Oracle (RO) Combiners
- Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

- Introduced notion of Random Oracle (RO) Combiners
- Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

- Introduced notion of Random Oracle (RO) Combiners
- Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

- Introduced notion of Random Oracle (RO) Combiners
- Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression

$$C_{Z_1,Z_2}^{h,g}(m) = h$$

Downside: for applications, does not give evidence when h (and g) Merkle-Damgård

- --> despite the fact that the above is indif. from RO and M-D is indif. from RO
- -> composition of the two only works for single-stage games, which RO Comb. is not
- -> in particular, g can depend arbitrarily on underlying compression of h

$(m, Z_1) \bigoplus g(m, Z_2)$

Hash Combiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression

$$C_{Z_1,Z_2}^{h,g}(m) = h$$

Desired goals for Merkle-Damgård combiner:

- 1. Assumes only that one of h or g is a RO of mild compression
- 2. Only calls M-D transformation of h^{*}, g^{*} on inputs

$(m, Z_1) \bigoplus g(m, Z_2)$

3. Supports arbitrarily long input messages, but message output is still less than 2 times output of h=h*.

Our Results

Main Result

We construct the following RO Combiner:

Parameters (previous):

- Compression of individual hash: $n + \delta$
- **Compression of** overall hashes h, g: $n + \delta$
- Length of salts Z₁, Z₂: $|M| + \lambda$

$C_{Z_1,Z_2}^{h,g}(m) = h^*(m,Z_1) \bigoplus g^*(m,Z_2)$

Parameters (us):

- Compression of individual hash: $n + \delta$
- Compression of overall hashes h*, g*: $\delta \cdot \ell$
- Length of salts Z₁, Z₂: $|M| + \lambda$

- In monolithic, proof critically used the fact that Z is longer than messages to show that $g(m', Z_2)$ cannot compute $h(m, Z_1)$ for any messages m.
- compute completions of $h^*(m, Z_1)$.

• This way, Sim can answer $h(m', Z_1) = H(m') \bigoplus g(m', Z_2)$ without any "recursion"

• Unfortunately for M-D, it is easy to construct compute completions of $h^*(m, Z_1)$.

compute completions of $h^*(m, Z_1)$.

• Consider $h: \{0,1\}^{2n} \rightarrow \{0,1\}^n$. Then, for a message m, consider: $m':=\left(h^*\!\left(m,Z_1^{(1)}\right)\right)$

Where k is the last block of Z_1 and $Z_1^{(i)}$ is the i-th block of Z_1 .

$$\binom{(1)}{1}, Z_1^{(2)}, \dots, Z_1^{(k-1)}, Z_1^{(k)}$$

compute completions of $h^*(m, Z_1)$.

• Consider $h: \{0,1\}^{2n} \rightarrow \{0,1\}^n$. Then, for a message m, consider: $m':=\left(h^*\!\left(m,Z_1^{(1)}\right)\right)$

Where k is the last block of Z_1 and $Z_1^{(i)}$ is the i-th block of Z_1 . Then, easy to define g^h so that:

$$(g^{h})*(m',Z_{2}) = h(m') = h\left(\left(h*\left(m,Z_{1}^{(1)},Z_{1}^{(2)},\ldots,Z_{1}^{(k-1)}\right),Z_{1}^{(k)}\right)\right) = h*(m,Z_{1})$$

$$(1), Z_1^{(2)}, \dots, Z_1^{(k-1)}), Z_1^{(k)}$$
What Fails with Merkle-Damgård?

compute completions of $h^*(m, Z_1)$.

• Consider $h: \{0,1\}^{2n} \rightarrow \{0,1\}^n$. Then, for a message m, consider: $m':=\left(h^*\!\left(m,Z_1^{(1)}\right)\right)$

Where k is the last block of Z_1 and $Z_1^{(i)}$ is the i-th block of Z_1 . Then, easy to define g^h so that:

$$(g^{h})^{*}(m', Z_{2}) = h(m') = h\left(\left(h^{*}\left(m, Z_{1}^{(1)}, Z_{1}^{(2)}, \dots, Z_{1}^{(k-1)}\right), Z_{1}^{(k)}\right)\right) = h^{*}(m, Z_{1})$$

Lesson: intuitions for monolithic may not carry over to Merkle-Damgård case

• Unfortunately for M-D, it is easy to construct (m, m') and define g^h such that $(g^h)^*(m', Z_2)$ can

$$(1), Z_1^{(2)}, \dots, Z_1^{(k-1)}), Z_1^{(k)}$$

Proof

Pront Need to build Sim such that $Sim^*(m, Z_1) \oplus (g^{Sim})^*(m, Z_2) = H(m)$ $\operatorname{Sim}^{*}(m, Z_{1}) \oplus (g^{\operatorname{Sim}})^{*}(m, Z_{2}) = H(m) \iff \operatorname{Sim}^{*}(m, Z_{1}) = H(m) \oplus (g^{\operatorname{Sim}})^{*}(m, Z_{2})$

- Challenges:
 - 1. Need to spot all such constraints
 - 2. Need the last value of h satisfying the equation to be "free"

• Sim must answer all queries (a, b) \rightarrow c at random while also satisfying above "global" question

3. Runtime of simulator must be polynomial given distinguisher D is query bounded

ProotNeed to build Sim such that $Sim^*(m, Z_1) \oplus (g^{Sim})^*(m, Z_2) = H(m)$ $\operatorname{Sim}^{*}(m, Z_{1}) \oplus (g^{\operatorname{Sim}})^{*}(m, Z_{2}) = H(m) \iff \operatorname{Sim}^{*}(m, Z_{1}) = H(m) \oplus (g^{\operatorname{Sim}})^{*}(m, Z_{2})$

- Challenges:
 - 1. Need to spot all such constraints
 - 2. Need the last value of h satisfying the equation to be "free"

• Sim must answer all queries $(a, b) \rightarrow c$ at random while also satisfying above "global" question

 \bigcirc . Runtime of simulator must be polynomial given distinguisher D is query bounded \bigcirc

In essence the trickiest, will imply 1+2 if done right...

Sim									
	Query	1st input a	2nd input b	Outj					
	(0, m ₁)	0	m_1]					
	(r ₁ , m ₂)	r ₁	m ₂	ľ					
	(r _{2,} Z _{1, 1})	r ₂	Z _{1, 1}	ľ					
	(r ₃ , Z _{1, 2})	ľ3	Z _{1, 2}						

put c	
[1	
2	
3	

Sir	Sim								
	Query	1st input a	2nd input b	Output c					
	(0, m ₁)	0	m_1	rı					
	(r ₁ , m ₂)	r ₁	m ₂	r ₂					
	(r _{2,} Z _{1, 1})	ľ2	Z _{1, 1}	ГЗ					
	(r ₃ , Z _{1, 2})	ľ3	Z _{1, 2}						

 $\operatorname{Sim}^{*}(m, Z_{1}) \oplus (g^{\operatorname{Sim}})^{*}(m, Z_{2}) = H(m) \iff \operatorname{Sim}^{*}(m, Z_{1}) = H(m) \oplus (g^{\operatorname{Sim}})^{*}(m, Z_{2})$

Got a message of length *I+k*... have to be consistent here

Sir	n :			
	Query	1st input a	2nd input b	Outj
	(0, m ₁)	0	m_1]
	(r ₁ , m ₂)	r ₁	m ₂	ז
	(r _{2,} Z _{1, 1})	r ₂	Z _{1, 1}	ľ
	(r ₃ , Z _{1, 2})	ľ3	Z _{1, 2}	$H(m) \oplus (g$

Sir	n :			
	Query	1st input a	2nd input b	Outj
	(0, m ₁)	0	m_1]
	(r ₁ , m ₂)	r ₁	m ₂	ז
	(r _{2,} Z _{1, 1})	r ₂	Z _{1, 1}	ľ
	(r ₃ , Z _{1, 2})	ľ3	Z _{1, 2}	$H(m) \oplus (g$

Sir	Sim								
	Query	1st input a	2nd input b	Output c	g-Query	1st input a	2nd input b	Output c	
	(0, m ₁)	0	m ₁	r ₁	(a ₁ , b ₁)	a ₁	b ₁	ľ1	
	(r ₁ , m ₂)	r ₁	m ₂	ľ2	(a ₂ , b ₂)	a ₂	b ₂	ľ3	
	(r _{2,} Z _{1, 1})	r ₂	Z _{1, 1}	ГЗ					
	(r ₃ , Z _{1, 2})	r3	Z _{1, 2}	$H(m) \oplus (g^{Sim})^*(m, Z_2)$					

Sim									
	Query	1st input a	2nd input b	Output c	g-Query	1st input a	2nd input b	Output c	
	(0, m ₁)	0	m_1	r ₁	(a ₁ , b ₁)	a ₁	b ₁	ľ1	
	(r ₁ , m ₂)	r ₁	m ₂	r ₂					
	(r _{2,} Z _{1, 1})	r ₂	Z _{1, 1}	ľ3		Hm this	also calls		
	(r ₃ , Z _{1, 2})	ГЗ	Z _{1, 2}	$H(m) \oplus (g^{Sim})^*(m, \mathbb{Z}_2)$		something c have to rec	of length <i>I+k</i> curse again		
							U		

Sim								
Query	1st input a	2nd input b	Output c	g-Query	1st input a	2nd input b	Output c	
(0, m ₁)	0	m ₁	r ₁	(a ₁ , b ₁)	aı	b ₁	ľı	
(r ₁ , m ₂)	r ₁	m ₂	r ₂					
(r _{2,} Z _{1, 1})	r ₂	Z _{1, 1}	ľ3					
(r ₃ , Z _{1, 2})	ľ3	Z _{1, 2}	$H(m) \oplus (g^{Sim})^*(m, \mathbb{Z}_2)$		Hmth something have to r	is also calls 1 of length I+k recurse again		
	n: Query (0, m ₁) (r ₁ , m ₂) (r ₂ , Z ₁ , 1) (r ₃ , Z ₁ , 2)	n: Query 1st input a (0, m1) 0 (r1, m2) r1 (r2, Z1, 1) r2 (r3, Z1, 2) r3	n: Query 1st input a 2nd input b (0, m1) 0 m1 (r1, m2) r1 m2 (r2, Z1, 1) r2 Z1, 1 (r3, Z1, 2) r3 Z1, 2	n: Query 1st input a 2nd input b Output c (0, m1) 0 m1 r1 (r1, m2) r1 m2 r2 (r2, Z1, 1) r2 Z1, 1 r3 (r3, Z1, 2) r3 Z1, 2 H(m) ⊕ (g^{sim})*(m, Z_2)	n: Query 1st input a 2nd input b Output c g-Query (0, m1) 0 m1 r1 (a1, b1) (r1, m2) r1 m2 r2 (r2, Z1, 1) r2 Z1, 1 r3 Image: Sim (m, Z2) (r3, Z1, 2) r3 Z1, 2 H(m) ⊕ (g^{Sim (m, Z2)})	n :Query1st input a2nd input bOutput cg-Query1st input a $(0, m_1)$ 0 m_1 r_1 (a_1, b_1) a_1 (r_1, m_2) r_1 m_2 r_2 $(r_2, Z_{1,1})$ r_2 $Z_{1,1}$ r_3 $\mathcal{H}_{m,th}$ $(r_3, Z_{1,2})$ r_3 $Z_{1,2}$ $\mathcal{H}_{m,0} \oplus (g^{Sm})^{s}(m,Z_2)$ $\mathcal{H}_{m,th}$	n: Query 1st input a 2nd input b Output c g-Query 1st input a 2nd input b (0, m1) 0 m1 r1 ((a1, b1)) a1 b1 (r1, m2) r1 m2 r2 (r2, Z1, 1) r2 Z1 1 r3 Hmthis also calls something of length <i>I+k</i> have to recurse again	

Sir	Sim									
	Query	1st input a	2nd input b	Output c	g-Query	1st input a	2nd input b	Output c		
	(0, m ₁)	0	m_1	r ₁	(a ₁ , b ₁)	a ₁	b ₁	ľ'1		
	(r ₁ , m ₂)	r ₁	m ₂	r ₂						
	(r _{2,} Z _{1, 1})	r ₂	Z _{1, 1}	ľ3						
	(r ₃ , Z _{1, 2})	r3	Z _{1, 2}	$H(m) \oplus (g^{Sim})^*(m, \mathbb{Z}_2)$		Hmt somethir	this also calls ng of length I+	-k		
	have to recurse again									

$\operatorname{Sim}^{*}(m, Z_{1}) \oplus (g^{\operatorname{Sim}})^{*}(m, Z_{2}) = H(m) \Longleftrightarrow \operatorname{Sim}^{*}(m, Z_{1}) = H(m) \oplus (g^{\operatorname{Sim}})^{*}(m, Z_{2})$

Sir	M :			
	Need to	argue n	oinfinit	;e (o
	(r _{2,} Z _{1, 1})	r ₂	Z _{1, 1}	ſ
	(r ₃ , Z _{1, 2})	ľ3	Z _{1, 2}	$H(m) \oplus (g^{S})$

r just overwhelming) recursion!

 $f_{.3}$ $f_{.sim}, *(m, Z_2)$ Hm...this also calls something of length *I+k*... have to recurse again

- As said before, cannot argue directly that g never queries some (m', Z_1)
 - We will settle for weaker claim:

- As said before, cannot argue directly that g never queries some (m', Z_1)
 - We instead settle for a sufficient weaker claim:

Claim:

For D to find a message m such that $(g^h)^*(m, Z_2)$ queries some $h^*(m', Z_1)$, D must have queried h*(m') itself.

- As said before, cannot argue directly that g never queries some (m', Z_1)
 - We instead settle for a sufficient weaker claim:

Claim:

For you to find a message m such that $(g^h)^*(m, Z_2)$ queries some $h^*(m', Z_1)$, then you must have queried h*(m') yourself.

• If this is true, then #(queries made by recursive g calls) \leq #(queries D made) — bounded!

Termination Note: only queries of length up to l followed by some Z₁ blocks "matter"

$\begin{array}{l} Termination \\ \text{Note: only queries of length up to } \textit{l} \text{ followed by some } Z_1 \text{ blocks ``matter''} \end{array}$

Need to bound how many queries reach here!!

$\begin{array}{l} Termination \\ \text{Note: only queries of length up to } \textit{l} \text{ followed by some } Z_1 \text{ blocks ``matter''} \end{array}$

Termination Property: blue query cannot follow orange query

Termination Property: blue query cannot follow orange query

Why?

If it could, we could generate all blue queries without orange queries

Termination Property: blue query cannot follow orange query

Why?

If it could, we could generate all blue queries without orange queries

Then, we could predict random oracle outputs

Termination Property: green query cannot follow orange query

Termination Property: green query cannot follow orange query

$\begin{array}{l} Termination \\ \mbox{Property: orange query can't find all of Z_1} \end{array}$

Termination Property: orange query can't find all of Z_1

to a recursive call cannot possibly hold all of Z₁

Termination

Property 1: blue query cannot follow orange query

Property 2: green query cannot follow orange query

Property 3: orange query can't find all of Z_1

Termination

Property 1: blue query cannot follow orange query

Property 2: green query cannot follow orange query

Property 3: orange query can't find all of Z_1

Putting these properties together, we see that orange queries can only complete blue paths (triggering recursion) that extend past *l*=| m|, so there must be fewer recursive paths than blue ones!

Termination

Property 1: blue query cannot follow orange query

Property 2: green query cannot follow orange query

Property 3: orange query can't find all of Z_1

Putting these properties together, we see that orange queries can only complete blue paths (triggering recursion) that extend past *l*=| m|, so there must be fewer recursive paths than blue ones!

Completes termination argument - hard part about showing Sim works in ideal

Conclusions

Conclusion and Open Questions Conclusions

standard, Merkle-Damgård-based constructions

argument

We expand the practical utility of RO Combiners by constructing a RO Combiner for

• We only rely on underlying compression functions being a RO using delicate termination

Conclusion and Open Questions Conclusions

1. Can we construct a RO Combiner for Merkle-Damgård hashes with:

A. Small O(λ) salts Z₁, Z₂

B. A constant number of calls to h*, g*?

4. Alternatively, can we show such a RO Combiner cannot exist? Tradeoffs?

2025/609