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The Merkle-.

ash Transforms

Damgard Approach

Advantage: underlying hash H

can be much less compressing

than overall hash compression!
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Concatenation Barrier

« Collision Resistance barrier

Ch.9(m) =h(m) || g(m)

- Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

. [PietrzakO7/ 08]: Length doubling is optimal tor collision-resistance

. [Mittelbach 13]: Cryptophia’s short combiners, way around this assuming random oracles
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Ranadom Oracle Combiners

'DFGHP, CRYPTOZ23]

. |Introduced notion of Random Oracle (RO) Combiners

 |dea: It one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

g Sim(Z)

~

Goal: Cis indifferentiable from RO

Note: C must be salted

— Hash Combiner

BIG-RO

gSim(Z)



asn Compiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression

C%,(m) = h(m, Z)) ® g(m, Z,)

Downside: for applications, does not give evidence when h (and g) Merkle-Damgard
—> despite the fact that the above is indif. from RO and M-D is indif. from RO
—> composition of the two only works for single-stage games, which RO Comb. is not

—> in particular, g can depend arbitrarily on underlying compression of h



asn Compiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression

Cy%,.(m) = h(m, Z)) ® g(m, Z,)

Desired goals for Merkle-Damgard combiner:
1. Assumes only that one of h or g is a RO of mild compression

2. Only calls M-D transformation of h*, g*on inputs

3. Supports arbitrarily long input messages, but message output is still less than 2 times output of h=h".
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Main Result

We construct the following RO Combiner:

Cy%, (m) = h*(m. Z)) ® g*(m. Z,)

Parameters (previous): Parameters (us):

« Compression of individual hash: n + 0 . Compression of individual hash: n + 0

« Compression of overall hashes h, g:n + 0 . Compression of overall hashes h*, g: 0 - £

. Length of salts Zy, Zo: | M| + 4 . Length of salts Z1, Zo: | M| + A




What Fails with Merkle-Damgard?

- In monolithic, proof critically used the fact that Z is longer than messages to show that
g(m’, Z2) cannot compute h(m, Z1) for any messages m.

. This way, Sim can answer h(m’, Z1) = H(mM') @ g(m’, Z2) without any “recursion”

- Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)'(m’ Z2) can
compute completions of h'(m, Z3).
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What Fails with Merkle-Damgard?

- Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)'(m’ Z2) can
compute completions of h'(m, Z3).

. Consider & : {0,1}?" = {0,1}" Then, for a message m, consider:

m': = (h*(m, Zl(l),Zl(z), ...,Zl(k_l)>,Zl(k)>
Where k is the last block of Z1 and Z10 is the i-th block of Z1. Then, easy to define gh so that:

(gM*(m',Z,) = h(m') = h( <h*<m ASNVASS ...,zl<’<1>),zl<’<>)> = h*(m,Z,)

Lesson: intuitions for monolithic may not carry over to Merkle-Damgard case
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Sim"(m, Z,) @ (85™)*(m, Z,) = H(m) <= Sim (m, Z,) = H(m) @ (g>™)*(m, Z,)

- Sim must answer all queries (a, b) — ¢ at random while also satistying above “global” guestion
- Challenges:

1. Need to spot all such constraints

2. Need the last value of h satisfying the equation to be “free”

3. Runtime of simulator must be polynomial given distinguisher D is query bounded
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2. Need the last value of h satisfying the equation to be “free”

Q3. Runtime of simulator must be polynomial given distinguisher D is query bounded

In essence the trickiest, will imply 1+2 if done right...
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here



r_

Prool
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢°™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Sim

Query Istinputa | 2ndinputb | Outputc

(O, m) O 1895 I
(11, M12) I1 1905 Io
(12 Z1.1) I /1.1 I3

(ra, Z1.2) I3 71 9 H(m) @ (857)*(m, Z,)




r_

Prool
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢°™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

nat did g” call
nere’

| need to fill in those as
well

Okay, w

Istinputa | 2ndinputb | Outputc

/12 H(m) @ (§5™)*(m, Z,)
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‘ne worry
Need to build Sim such that SIm™(m, Z1) @ (gSim)(m, Z») = H(m)

Sim"(m, Z,) @ (¢>™)*(m, Z,) = H(m) <> Sim’(m, Z;) = H(m) @ (g>™)*(m, Z,)

Sim

Need to argue no infinite (or just overwhelming) recursion!

[3

(ra, Z1.2) I3 /12 H(m) & (g°™)*(m, Z,) ‘

HmM...this also calls
something of length [+k...
have to recurse again
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- As said before, cannot argue directly that g never gueries some (m’, Z1)

. We instead settle for a sufficient weaker claim:

Claim:

For you to find a message m such that (g")'(m, Z2) queries some h*'(m’, Z1),
then you must have queried h*(m’) yourself.

. |f this is true, then #(queries made by recursive g calls) < #(queries D made) — bounded!
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all blue queries without
orange queries

= permanent recursive
Sim gueries

Length [m ===

Then, we could predict
ndom oracle outputs




Length [+k= = = =

Length [m ===

lermimation

L

Key

= direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive
Sim gueries




—

lermimation

Property: green query cannot tollow orange query

L

Length [+k= = = =

Length [m ===

Key

= direct Sim queries

= curre

Nt recursive

SIm o

ueries

= permanent recursive
Sim gueries




—

lermimation

Property: green query cannot tollow orange query

Key

Length [+k= = = =
g = direct Sim gueries

Similar argument as before,
but now Sim guesses the
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Key

Length [+k= = = = . . .
= direct Sim queries

= current recursive
SIm gueries

71| = |m| + A >ml, so any m’ fed
to a recursive call cannot
possibly hold all of Z;

= permanent recursive
Sim gueries

Length [m ===
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querles can only complete
plue paths (triggering
recursion) that extend past I=
m|, so there must be fewer
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Property 1. blue query cannot follow orange query

lermimation

Property 2: green query cannot follow orange query

Property 3: orange query can't rind all of 71

L

Length [+k= = = =

Putting these properties
together, we see that orange
queries can only complete

plue paths (triggering
recursion) that extend past I=
m|, so there must be fewer
"mEEEEEE recursive paths than blue ones!

Length [m ===

Completes termination

argument - hard part apout
showing Sim works in ideal
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Conclusion and Open Questions

Conclusions

« We expand the practical utility of RO Combiners by constructing a RO Combiner for
standard, Merkle-Damgard-based constructions

« We only rely on underlying compression functions being a RO using delicate termination
argument



Conclusion and Open Questions

Conclusions

1. Can we construct a RO Combiner for Merkle-Damgard hashes with:

A. Small O()\) salts Z1, Z>

B. A constant number of calls to h+, g*?

4. Alternatively, can we show such a RO Combiner cannot exist? Tradeoffs?
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