
Yevgeniy Dodis, Eli Goldin, Peter Hall

Merkle-Damgärd Style

Random Oracle Combiners

(Hash) Combiners
Hey I have this great
system using my all-

new super hash
function!

(Hash) Combiners
Hey I have this great
system using my all-

new super hash
function!

Cool but our
regulations require
you to use SHA3

(Hash) Combiners
Hey I have this great
system using my all-

new super hash
function!

Cool but our
regulations require
you to use SHA3

Hmm but my hash is
much better than

SHA3…

(Hash) Combiners
Hey I have this great
system using my all-

new super hash
function!

Cool but our
regulations require
you to use SHA3

Hmm but my hash is
much better than

SHA3…

How can they both be happy??

(Hash) Combiners

super hashSHA3

Hash Combiner

CSHA3, super hash = superSHA

(Hash) Combiners

super hashSHA3

Hash Combiner

CSHA3, super hash = superSHA

If one is ``secure’’
in some sense…

(Hash) Combiners

super hashSHA3

Hash Combiner

CSHA3, super hash = superSHA

If one is ``secure’’
in some sense…

Then so is this!

Monolithic Hash Function

Hash Transforms

m
H

H(m)

The Merkle-Damgård Approach (m = m1m2m3…mn-1mn)

Hash Transforms

H

The Merkle-Damgård Approach (m = m1m2m3…mn-1mn)

Hash Transforms

H
0

m
1

H(0, m1)

The Merkle-Damgård Approach (m = m1m2m3…mn-1mn)

Hash Transforms

H
0 H(0, m1)

H
H(0, m1, m2)

m
1

m
2

The Merkle-Damgård Approach (m = m1m2m3…mn-1mn)

Hash Transforms

H
0 H(0, m1)

H
H(0, m1, m2)

m
1

m
2 …

…

The Merkle-Damgård Approach (m = m1m2m3…mn-1mn)

Hash Transforms

H
0 H(0, m1)

H H
H(0, m1, m2)

m
1

m
2

m
n-1

H(0, …, mn-2) H(0, …, mn-1)

…

…

The Merkle-Damgård Approach (m = m1m2m3…mn-1mn)

Hash Transforms

H
0 H(0, m1)

H H H
H(0, m1, m2)

m
1

m
2

m
n-1

m
n

H(0, …, mn-2) H(0, …, mn-1)

…

…

H*(m) = H(H(… (H(0, m1), m2), m3) … mn)

The Merkle-Damgård Approach

Hash Transforms

H
0 H(0, m1)

H H H
H(0, m1, m2)

m
1

m
2

m
n-1

m
n

H(0, …, mn-2) H(0, …, mn-1)

…

…

H*(m) = H(H(… (H(0, m1), m2), m3) … mn)

Advantage: underlying hash H
can be much less compressing
than overall hash compression!

Background

Concatenation Barrier

• Collision Resistance barrier

• Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

Ch, g(m) = h(m) || g(m)

Concatenation Barrier

• Collision Resistance barrier

• Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

• [Pietrzak07, 08]: Length doubling is optimal for collision-resistance

Ch, g(m) = h(m) || g(m)

Concatenation Barrier

• Collision Resistance barrier

• Similar for one-wayness, other constructions for pseudorandomness, MAC, etc.

• [Pietrzak07, 08]: Length doubling is optimal for collision-resistance

• [Mittelbach 13]: Cryptophia’s short combiners, way around this assuming random oracles

Ch, g(m) = h(m) || g(m)

Random Oracle Combiners

• Introduced notion of Random Oracle (RO) Combiners

• Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

h g

Ch, g

[DFGHP, CRYPTO23]

[MRH04, CDMP05]

Indifferentiability Framework

• Real-ideal world framework, where we want indistinguishability between

• interacting with RO h and the combiner C

• Interacting with a simulator Sim and RO H

[MRH04, CDMP05]

Indifferentiability Framework

• Real-ideal world framework, where we want indistinguishability between

• interacting with RO h and the combiner C

• Interacting with a simulator Sim and RO H

Real Ideal

h Ch HSim

D

≈

Random Oracle Combiners

• Introduced notion of Random Oracle (RO) Combiners

• Idea: If one of the hashes is RO, then the combiner is essentially a RO

Hash Combiner

h g

Ch, g

[DFGHP, CRYPTO23]

Random Oracle Combiners

• Introduced notion of Random Oracle (RO) Combiners

• Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

h g

Ch, g

Hash Combiner

RO gRO

[DFGHP, CRYPTO23]

CRO, gRO

Random Oracle Combiners

• Introduced notion of Random Oracle (RO) Combiners

• Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

h g

Ch, g
Goal: C is indifferentiable from RO

[DFGHP, CRYPTO23]

Hash Combiner

RO gRO

CRO, g BIG-RO≈RO

[DFGHP, CRYPTO23]

Random Oracle Combiners

• Introduced notion of Random Oracle (RO) Combiners

• Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

h g

Ch, g
Goal: C is indifferentiable from RO

Hash Combiner

Sim gSim

 BIG-RO

[DFGHP, CRYPTO23]

Random Oracle Combiners

• Introduced notion of Random Oracle (RO) Combiners

• Idea: If one of the hashes is RO, then the combiner C is essentially BIG-RO

Hash Combiner

h g

Ch, g
Goal: C is indifferentiable from RO

Note: C must be saltedZ

Hash Combiner

Sim(Z) gSim(Z)

 BIG-RO

Hash Combiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression

Downside: for applications, does not give evidence when h (and g) Merkle-Damgård

 —> despite the fact that the above is indif. from RO and M-D is indif. from RO

 —> composition of the two only works for single-stage games, which RO Comb. is not

 —> in particular, g can depend arbitrarily on underlying compression of h

Ch,g
Z1,Z2

(m) = h(m, Z1) ⊕ g(m, Z2)h h gg

Hash Combiners on Long Inputs

[DFG+23] gave basically optimal construction for hashes with good compression

Desired goals for Merkle-Damgård combiner:

1. Assumes only that one of h or g is a RO of mild compression

2. Only calls M-D transformation of h*, g* on inputs

3. Supports arbitrarily long input messages, but message output is still less than 2 times output of h=h*.

Ch,g
Z1,Z2

(m) = h(m, Z1) ⊕ g(m, Z2)h h gg

Our Results

Main Result

We construct the following RO Combiner:

Ch,g
Z1,Z2

(m) = h*(m, Z1) ⊕ g*(m, Z2)h h* g*g

Parameters (previous):

• Compression of individual hash:

• Compression of overall hashes h, g:

• Length of salts Z1, Z2:

n + δ

n + δ

|M | + λ

Parameters (us):

• Compression of individual hash:

• Compression of overall hashes h*, g*:

• Length of salts Z1, Z2:

n + δ

δ ⋅ ℓ

|M | + λ

What Fails with Merkle-Damgård?
• In monolithic, proof critically used the fact that Z is longer than messages to show that

g(m', Z2) cannot compute h(m, Z1) for any messages m.

• This way, Sim can answer h(m’, Z1) = H(m’) g(m’, Z2) without any “recursion”

• Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)*(m’, Z2) can
compute completions of h*(m, Z1).

⊕

What Fails with Merkle-Damgård?
• Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)*(m’, Z2) can

compute completions of h*(m, Z1).

What Fails with Merkle-Damgård?
• Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)*(m’, Z2) can

compute completions of h*(m, Z1).

• Consider . Then, for a message m, consider:

Where k is the last block of Z1 and Z1(i) is the i-th block of Z1.

h : {0,1}2n → {0,1}n

m′ : = (h*(m, Z(1)
1 , Z(2)

1 , …, Z(k−1)
1), Z(k)

1)

What Fails with Merkle-Damgård?
• Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)*(m’, Z2) can

compute completions of h*(m, Z1).

• Consider . Then, for a message m, consider:

Where k is the last block of Z1 and Z1(i) is the i-th block of Z1. Then, easy to define gh so that:

h : {0,1}2n → {0,1}n

m′ : = (h*(m, Z(1)
1 , Z(2)

1 , …, Z(k−1)
1), Z(k)

1)

(gh)*(m′ , Z2): = h(m′) = h((h*(m, Z(1)
1 , Z(2)

1 , …, Z(k−1)
1), Z(k)

1)) = h*(m, Z1)

What Fails with Merkle-Damgård?
• Unfortunately for M-D, it is easy to construct (m, m’) and define gh such that (gh)*(m’, Z2) can

compute completions of h*(m, Z1).

• Consider . Then, for a message m, consider:

Where k is the last block of Z1 and Z1(i) is the i-th block of Z1. Then, easy to define gh so that:

Lesson: intuitions for monolithic may not carry over to Merkle-Damgård case

h : {0,1}2n → {0,1}n

m′ : = (h*(m, Z(1)
1 , Z(2)

1 , …, Z(k−1)
1), Z(k)

1)

(gh)*(m′ , Z2): = h(m′) = h((h*(m, Z(1)
1 , Z(2)

1 , …, Z(k−1)
1), Z(k)

1)) = h*(m, Z1)

Proof

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
Proof

• Sim must answer all queries (a, b) c at random while also satisfying above “global” question

• Challenges:

1. Need to spot all such constraints

2. Need the last value of h satisfying the equation to be “free”

3. Runtime of simulator must be polynomial given distinguisher D is query bounded

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
Proof

• Sim must answer all queries (a, b) c at random while also satisfying above “global” question

• Challenges:

1. Need to spot all such constraints

2. Need the last value of h satisfying the equation to be “free”

3. Runtime of simulator must be polynomial given distinguisher D is query bounded

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

In essence the trickiest, will imply 1+2 if done right…

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
Proof

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
Proof

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:
Got a message of

length l+k…
have to be consistent

here

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
Proof

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:

H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
Proof

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:

H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Okay, what did g* call
here?

I need to fill in those as
well

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
The worry

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:

H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

g-Query 1st input a 2nd input b Output c

(a1, b1) a1 b1 r’1

(a2, b2) a2 b2 r'3

… … … …

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
The worry

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:

H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

g-Query 1st input a 2nd input b Output c

(a1, b1) a1 b1 r’1

… … … …

Hm…this also calls
something of length l+k…

have to recurse again

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
The worry

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:

H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

g-Query 1st input a 2nd input b Output c

(a1, b1) a1 b1 r’1

… … … …

Hm…this also calls
something of length l+k…

have to recurse again

Hm…this also calls
something of length l+k…

have to recurse again

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
The worry

Query 1st input a 2nd input b Output c

(0, m1) 0 m1 r1

(r1, m2) r1 m2 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:

H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

g-Query 1st input a 2nd input b Output c

(a1, b1) a1 b1 r’1

… … … …

Hm…this also calls
something of length l+k…

have to recurse again

Hm…this also calls
something of length l+k…

have to recurse again

Hm…this also calls
something of length l+k…

have to recurse again

Need to build Sim such that Sim*(m, Z1) (gSim)*(m, Z2) = H(m)⊕
The worry

Query 1st input a 2nd input b Output c

(0, 0 r1

(r1,) r1 r2

(r2, Z1, 1) r2 Z1, 1 r3

(r3, Z1, 2) r3 Z1, 2

𝖲𝗂𝗆*(m, Z1) ⊕ (g𝖲𝗂𝗆)*(m, Z2) = H(m) ⟺ 𝖲𝗂𝗆*(m, Z1) = H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

Sim:

H(m) ⊕ (g𝖲𝗂𝗆)*(m, Z2)

g-Query 1st input a 2nd input b Output c

(a1, b1) a1 b1 r’1

… … … …

Hm…this also calls
something of length l+k…

have to recurse again

Hm…this also calls
something of length l+k…

have to recurse again

Hm…this also calls
something of length l+k…

have to recurse again

Need to argue no infinite (or just overwhelming) recursion!

Termination

• As said before, cannot argue directly that g never queries some (m’, Z1)

• We will settle for weaker claim:

Termination

• As said before, cannot argue directly that g never queries some (m’, Z1)

• We instead settle for a sufficient weaker claim:

Claim:

For D to find a message m such that (gh)*(m, Z2) queries some h*(m’, Z1),
D must have queried h*(m’) itself.

Termination

• As said before, cannot argue directly that g never queries some (m’, Z1)

• We instead settle for a sufficient weaker claim:

• If this is true, then #(queries made by recursive g calls) ≤ #(queries D made) — bounded!

Claim:

For you to find a message m such that (gh)*(m, Z2) queries some h*(m’, Z1),
then you must have queried h*(m’) yourself.

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Need to bound how
many queries reach

here!!

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Note: only queries of length up to l followed by some Z1 blocks “matter"

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Property: blue query cannot follow orange query

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Property: blue query cannot follow orange query

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Why?

If it could, we could generate
all blue queries without

orange queries

Then, we could predict
random oracle outputs

Z1

Property: blue query cannot follow orange query

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Why?

If it could, we could generate
all blue queries without

orange queries

Then, we could predict
random oracle outputs

Z1

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Property: green query cannot follow orange query

Z1

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Property: green query cannot follow orange query

Similar argument as before,
but now Sim guesses the

random oracle outputs

Z1

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Z1

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Property: orange query can’t find all of Z1

Z1

Termination

Key

= direct Sim queries

= current recursive
. Sim queries

= permanent recursive
. Sim queries

Length l+k

Length l

Property: orange query can’t find all of Z1

Why?

|Z1| = |m| + λ >|m|, so any m’ fed
to a recursive call cannot

possibly hold all of Z1

Z1

Termination

Length l+k

Length l

Property 1: blue query cannot follow orange query

Property 2: green query cannot follow orange query

Property 3: orange query can’t find all of Z1

Z1

Termination

Length l+k

Length l

Property 1: blue query cannot follow orange query

Property 2: green query cannot follow orange query

Property 3: orange query can’t find all of Z1

Putting these properties
together, we see that orange
queries can only complete

blue paths (triggering
recursion) that extend past l=|

m|, so there must be fewer
recursive paths than blue ones!

Z1

Termination

Length l+k

Length l

Property 1: blue query cannot follow orange query

Property 2: green query cannot follow orange query

Property 3: orange query can’t find all of Z1

Putting these properties
together, we see that orange
queries can only complete

blue paths (triggering
recursion) that extend past l=|

m|, so there must be fewer
recursive paths than blue ones!

Completes termination
argument - hard part about
showing Sim works in ideal

Conclusions

Conclusions

Conclusion and Open Questions

• We expand the practical utility of RO Combiners by constructing a RO Combiner for
standard, Merkle-Damgård-based constructions

• We only rely on underlying compression functions being a RO using delicate termination
argument

Conclusions

Conclusion and Open Questions

1. Can we construct a RO Combiner for Merkle-Damgård hashes with:

A. Small O(λ) salts Z1, Z2

B. A constant number of calls to h*, g*?

4. Alternatively, can we show such a RO Combiner cannot exist? Tradeoffs?

Thank you!

2025/609

