
SHIP

A SHALLOW AND HIGHLY PARALLELIZABLE

CKKS BOOTSTRAPPING ALGORITHM

JUNG HEE CHEON, GUILLAUME HANROT,
JONGMIN KIM & DAMIEN STEHLÉ

MADRID --- MAY 6, 2025

Eprint 2025/784

MAIN RESULT

2J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

A new bootstrapping (BTS) algorithm for CKKS

• Small multiplicative depth smaller Ring-LWE ring degree

• High-grain parallelizability works well in multi-threaded environment

FHE & BTS

3

client

𝑐 = Enc(𝑚1, … , 𝑚𝑘); 𝑓

𝑚1, … , 𝑚𝑘; 𝑓 𝑐′ ≔ Eval(𝑓; 𝑐)

𝑐′

server

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

FHE & BTS

3

client

𝑐 = Enc(𝑚1, … , 𝑚𝑘); 𝑓

𝑚1, … , 𝑚𝑘; 𝑓 𝑐′ ≔ Eval(𝑓; 𝑐)

𝑐′

server Gentry’s blueprint for building an FHE:

• Start with an encryption scheme that is

homomorphic for some circuits

• Find a bootstrapping algorithm, i.e.,

a plaintext-preserving procedure that allows

to extend homomorphism to all circuits

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

For all known FHE schemes, BTS drives the cost

CKKS

4

Cleartexts: vectors of ℂ𝑁/2
• up to some precision

• for some power-of-two 𝑁

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

Ciphertexts: pairs over 𝑅𝑞 = ℤ𝑞 𝑋 / (𝑋𝑁 + 1)

𝑐𝑡 = 𝑎, 𝑏 ∈ 𝑅𝑞
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞]

secret key
ternary plaintext ≪ 𝑞

Plaintexts: elements of 𝑅𝑞 = ℤ[𝑋] / (𝑋𝑁 + 1)

• ptxt = DFT−1(ctxt)

CKKS

4

Cleartexts: vectors of ℂ𝑁/2
• up to some precision

• for some power-of-two 𝑁

Operations

• mult in // consumes 1 level decreases 𝒒
• add in //, conj in // consume 0 level keep 𝑞
• rotate coords consumes 0 level keeps 𝑞
• BTS regains levels increases 𝒒

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

Ciphertexts: pairs over 𝑅𝑞 = ℤ𝑞 𝑋 / (𝑋𝑁 + 1)

𝑐𝑡 = 𝑎, 𝑏 ∈ 𝑅𝑞
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞]

secret key
ternary plaintext ≪ 𝑞

Plaintexts: elements of 𝑅𝑞 = ℤ[𝑋] / (𝑋𝑁 + 1)

• ptxt = DFT−1(ctxt)

LATENCY OF THE CKKS BTS

5J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

Parameters
• ring degree 216 215

• largest modulus 1555 bits 771bits

• precision 22.0 bits 16.7 bits

• non-BTS levels 9 1

1 core 8 cores 16 cores 32 cores

Param16 8.7 s 1.9 s 1.4 s 1.1 s

Param15 3.4 s 0.90 s 0.64 s 0.62 s

CPU: two 24-core AMD EPYC 7473X @2.8GHz with AVX2 & OpenMP

128-bit security & BTS failure probability ≤ 2−128

Can we decrease

the latency?

CONVENTIONAL CKKS BTS

6

𝑎, 𝑏 ∈ 𝑅𝑞0
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞0]

𝑎′, 𝑏′ ∈ 𝑅𝑄
2 : 𝑎′ ⋅ 𝑠 + 𝑏′ ≈ 𝑚 𝑄 for some 𝑄 ≫ 𝑞0

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

CONVENTIONAL CKKS BTS

6

1. S2C: Inverse DFT consumes 2-3 levels

2. ModRaise: Viewing 𝑎, 𝑏 ∈ 𝑅𝑞0
2 as 𝑎, 𝑏 ∈ 𝑅𝑄

2 for 𝑚′ = 𝑚 + 𝑞0 ⋅ 𝐼

3. C2S: DFT consumes 2-3 levels

4. EvalMod: Remove 𝑞0 ⋅ 𝐼 in 𝑚′ = 𝑚 + 𝑞0 ⋅ 𝐼 consumes 8-12 levels

𝑎, 𝑏 ∈ 𝑅𝑞0
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞0]

𝑎′, 𝑏′ ∈ 𝑅𝑄
2 : 𝑎′ ⋅ 𝑠 + 𝑏′ ≈ 𝑚 𝑄 for some 𝑄 ≫ 𝑞0

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

CONVENTIONAL CKKS BTS

6

1. S2C: Inverse DFT consumes 2-3 levels

2. ModRaise: Viewing 𝑎, 𝑏 ∈ 𝑅𝑞0
2 as 𝑎, 𝑏 ∈ 𝑅𝑄

2 for 𝑚′ = 𝑚 + 𝑞0 ⋅ 𝐼

3. C2S: DFT consumes 2-3 levels

4. EvalMod: Remove 𝑞0 ⋅ 𝐼 in 𝑚′ = 𝑚 + 𝑞0 ⋅ 𝐼 consumes 8-12 levels

𝑎, 𝑏 ∈ 𝑅𝑞0
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞0]

𝑎′, 𝑏′ ∈ 𝑅𝑄
2 : 𝑎′ ⋅ 𝑠 + 𝑏′ ≈ 𝑚 𝑄 for some 𝑄 ≫ 𝑞0

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

Many levels

High modulus consumption

Needs a large degree 𝑁 for security

Higher latency

BOOTSTRAPPING VIA ROOTS OF UNITY

7J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

Input: 𝑎, 𝑏 ∈ 𝑅𝑞0
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞0]

Goal: 𝑎′, 𝑏′ ∈ 𝑅𝑄
2 : 𝑎′ ⋅ 𝑠 + 𝑏′ ≈ DFT−1 (𝜔𝑚0 , 𝜔𝑚1 , … , 𝜔𝑚𝑁−1) [𝑄]

Why is it sufficient?

1. Slots are correct: Im(𝜔𝑚𝑖) = sin
2𝜋

𝑞0
𝑚𝑖 ≈

2𝜋

𝑞0
𝑚𝑖

2. To put the 𝑚𝑖’s in coeffs, use S2C.

𝑚𝑖 ≪ 𝑞0

𝜔 = exp
2𝑖𝜋

𝑞0
∈ ℂ

BOOTSTRAPPING VIA ROOTS OF UNITY

7J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

Input: 𝑎, 𝑏 ∈ 𝑅𝑞0
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞0]

𝜔 = exp
2𝑖𝜋

𝑞0
∈ ℂ

Goal: 𝑎′, 𝑏′ ∈ 𝑅𝑄
2 : 𝑎′ ⋅ 𝑠 + 𝑏′ ≈ DFT−1 (𝜔𝑚0 , 𝜔𝑚1 , … , 𝜔𝑚𝑁−1) [𝑄]

Why is it sufficient?

1. Slots are correct: Im(𝜔𝑚𝑖) = sin
2𝜋

𝑞0
𝑚𝑖 ≈

2𝜋

𝑞0
𝑚𝑖

2. To put the 𝑚𝑖’s in coeffs, use S2C.

𝑚𝑖 ≪ 𝑞0

Cleartexts have

only
𝑁

2
< 𝑁 slots…

Let’s ignore that for the talk

REDUCING TO A BINARY PRODUCT TREE

8J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

𝜔𝑚𝑖 = 𝜔 𝑎⋅𝑠+𝑏 𝑖 = 𝜔 𝑏𝑖 + σ𝑗 𝑎𝑗−𝑖 ⋅ 𝑠𝑗

𝑗 − 𝑖 is mod 𝑁

𝜔𝑚𝑖
𝑖 = 𝜔𝑏𝑖

𝑖
 ⊙

If 𝑠 has a small Hamming weight, this is a binary product tree with log ℎ levels

⇒ To minimize depth, we use ℎ = 31 ≪ 𝑁.

Input: 𝑎, 𝑏 ∈ 𝑅𝑞0
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞0]

𝜔 = exp
2𝑖𝜋

𝑞0
∈ ℂ

𝑗: 𝑠𝑗 ≠ 0

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖

entry-wise product

entry-wise product

If 𝑠 has a small Hamming weight, this is a binary product tree with log ℎ levels

⇒ To minimize depth, we use ℎ = 31 ≪ 𝑁.

REDUCING TO A BINARY PRODUCT TREE

8J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

𝜔𝑚𝑖 = 𝜔 𝑎⋅𝑠+𝑏 𝑖 = 𝜔 𝑏𝑖 + σ𝑗 𝑎𝑗−𝑖 ⋅ 𝑠𝑗

𝜔𝑚𝑖
𝑖 = 𝜔𝑏𝑖

𝑖
 ⊙

Input: 𝑎, 𝑏 ∈ 𝑅𝑞0
2 : 𝑎 ⋅ 𝑠 + 𝑏 ≈ 𝑚 [𝑞0]

𝜔 = exp
2𝑖𝜋

𝑞0
∈ ℂ

𝑗: 𝑠𝑗 ≠ 0

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖

Reduction mod 𝑋𝑁 + 1
creates signs

Let’s ignore that for the talk

Similar bootstrapping

strategy considered

in concurrent work

by Coron & Köstler

(eprint 2025/651)

𝑗 − 𝑖 is mod 𝑁

COLUMN METHOD

9

𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖 = σ 𝜔𝑎𝑗−𝑖

𝑖 ⋅ 𝑠𝑗

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

𝑗 in block

⊙
𝑗 in block

New goal: compute the ℎ terms 𝜔𝑎𝑗−𝑖
𝑖 for all 𝑗 with 𝑠𝑗 ≠ 0

Assumption: there is one non-zero 𝑠𝑗 in every block of ≈ 𝑁/ℎ coordinates

COLUMN METHOD

9

New goal: compute the ℎ terms 𝜔𝑎𝑗−𝑖
𝑖 for all 𝑗 with 𝑠𝑗 ≠ 0

Assumption: there is one non-zero 𝑠𝑗 in every block of ≈ 𝑁/ℎ coordinates

𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖 = σ 𝜔𝑎𝑗−𝑖

𝑖 ⋅ 𝑠𝑗
𝜔𝑎0

𝜔𝑎1

𝜔𝑎2

𝜔𝑎3

⋮

𝜔𝑎𝑁−1

𝜔𝑎0

𝜔𝑎1

𝜔𝑎2

⋮

IN CLEAR
column by column

⋅

𝑠0

𝑠1

𝑠2

𝑠3

ENCRYPTED
entry by entry

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

no level consumption

simple operations

Ω 𝑁2 key size

Ω 𝑁2 cost

𝑗 in block

⊙
𝑗 in block

𝑁

𝑁/ℎ

BLIND ROTATION METHOD

10J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

𝜔𝑎0

𝜔𝑎1

𝜔𝑎2

𝜔𝑎3

⋮

Rotate or not

by 20 index

Rotate or not

by 21 indices

Rotate or not

by 22 indices
…

Determined by

the encrypted

0th bit of 𝒋

Determined by

the encrypted

1st bit of 𝒋

Determined by

the encrypted

2nd bit of 𝒋

New goal: compute the ℎ terms 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖 = 𝜔𝑎𝑗−𝑖

𝑖 for all 𝑗 with 𝑠𝑗 ≠ 0

Approach: for each such 𝑗 : blindly rotate 𝜔𝑎𝑖
𝑖 by 𝑗 indices

For this talk,

let’s assume
that 𝑠𝑗 ∈ 0,1

BLIND ROTATION METHOD

10J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

𝜔𝑎0

𝜔𝑎1

𝜔𝑎2

𝜔𝑎3

⋮

Rotate or not

by 20 index

Rotate or not

by 21 indices

Rotate or not

by 22 indices
…

Determined by

the encrypted

0th bit of 𝒋

Determined by

the encrypted

1st bit of 𝒋

Determined by

the encrypted

2nd bit of 𝒋

no level consumption
෨𝑂 𝑁 key size
෨𝑂 𝑁 cost

The bits of 𝑗 can be incorporated in rotation keys ⇒ no level consumption

more complex operations

New goal: compute the ℎ terms 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖 = 𝜔𝑎𝑗−𝑖

𝑖 for all 𝑗 with 𝑠𝑗 ≠ 0

Approach: for each such 𝑗 : blindly rotate 𝜔𝑎𝑖
𝑖 by 𝑗 indices

For this talk,

let’s assume
that 𝑠𝑗 ∈ 0,1

SHIP

11

1- For every non-zero entry 𝑗 of 𝑠:

 blind-rotate by 𝑗 positions

𝜔𝑚𝑖
𝑖 = 𝜔𝑏𝑖

𝑖
⊙

2- Binary product tree to compute

3- Perform S2C (DFT) to get back to coeffs

More fun in the paper ☺

• too few slots for 𝑁 coefficients

• reduction mod 𝑋𝑁 + 1 creates signs
• how to handle ternary 𝑠𝑗’s

• S2C permutes the slots/coeffs

• column and blind-rotate can be combined

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

𝑗: 𝑠𝑗 ≠ 0

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖

ANALYSIS: LEVELS

12

0 level

𝐥𝐨𝐠(𝒉 + 𝟏) = 𝟓 levels

1 or 2 levels

Bonus: the top levels are smaller than in conventional CKKS BTS,

 as there is no need to represent 𝑞0 ⋅ 𝐼 as part of the plaintext

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

1- For every non-zero entry 𝑗 of 𝑠:

 blind-rotate by 𝑗 positions

𝜔𝑚𝑖
𝑖 = 𝜔𝑏𝑖

𝑖
⊙

2- Binary product tree to compute

3- Perform S2C (DFT) to get back to coeffs

𝑗: 𝑠𝑗 ≠ 0

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖

ANALYSIS: PARALLELIZABILITY

13

𝒉 = 𝟑𝟏 independent tracks

Binary product tree

Matrix-vector product

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

1- For every non-zero entry 𝑗 of 𝑠:

 blind-rotate by 𝑗 positions

𝜔𝑚𝑖
𝑖 = 𝜔𝑏𝑖

𝑖
⊙

2- Binary product tree to compute

3- Perform S2C (DFT) to get back to coeffs

𝑗: 𝑠𝑗 ≠ 0

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖

PERFORMANCE

14J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

Parameters for conventional BTS

• ring degree 𝑁 = 216 𝑁 = 215

• Precision 22.0 bits 16.7 bits

• non-BTS levels 9 1

1 core 8 cores 16 cores 32 cores

Param16 8.7 s 1.9 s 1.4 s 1.1 s

Param15 3.4 s 0.90 s 0.64 s 0.62 s

SHIP13 3.0 s 0.45 s 0.29 s 0.22 s

SHIP14 4.9 s 0.70 s 0.42 s 0.33 s

CPU: two 24-core AMD EPYC 7473X @2.8GHz with AVX2 & OpenMP

Parameters for SHIP

• ring degree 𝑁 = 213 𝑁 = 214

• precision 4.45 bits 16.9 bits

• non-BTS levels 1 1

128-bit security & BTS failure probability ≤ 2−128

PERFORMANCE

14J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

Parameters for conventional BTS

• ring degree 𝑁 = 216 𝑁 = 215

• Precision 22.0 bits 16.7 bits

• non-BTS levels 9 1

1 core 8 cores 16 cores 32 cores

Param16 8.7 s 1.9 s 1.4 s 1.1 s

Param15 3.4 s 0.90 s 0.64 s 0.62 s

SHIP13 3.0 s 0.45 s 0.29 s 0.22 s

SHIP14 4.9 s 0.70 s 0.42 s 0.33 s

CPU: two 24-core AMD EPYC 7473X @2.8GHz with AVX2 & OpenMP

Parameters for SHIP

• ring degree 𝑁 = 213 𝑁 = 214

• precision 4.45 bits 16.9 bits

• non-BTS levels 1 1

128-bit security & BTS failure probability ≤ 2−128

For bootstrapping bits,

we get down to 0.17s

WRAP-UP

15

Main contribution

A new bootstrapping algorithm for CKKS.

• Small multiplicative depth: 𝟏 + 𝐥𝐨𝐠 (𝒉 + 𝟏) = 𝟔

 full-slot BTS in ring degree 𝑁 = 213

• High-grain parallelizability:

• ℎ = 31 fully independent dominating tasks

• Other components can also be parallelized

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

QUESTIONS?

Eprint 2025/784

 damien.stehle @ cryptolab.co.kr

	Introduction
	Slide 1: SHIP a shallow and highly parallelizable CKKS bootstrapping algorithm
	Slide 2: Main result
	Slide 3: FHE & BTS
	Slide 4: FHE & BTS
	Slide 5: CKKS
	Slide 6: CKKS
	Slide 7: LATENCY of the CKKS BTS
	Slide 8: Conventional CKKS BTS
	Slide 9: Conventional CKKS BTS
	Slide 10: Conventional CKKS BTS
	Slide 11: BOOTSTRAPPING VIA ROOTS OF UNITY
	Slide 12: BOOTSTRAPPING VIA ROOTS OF UNITY
	Slide 13: REDUCING TO A binary PRODUCT TREE
	Slide 14: REDUCING TO A binary PRODUCT TREE
	Slide 15: COLUMN METHOD
	Slide 16: COLUMN METHOD
	Slide 17: Blind ROTATION METHOD
	Slide 18: Blind ROTATION METHOD
	Slide 19: SHIP
	Slide 20: ANALYSIS: Levels
	Slide 21: ANALYSIS: PARALLELIZABILITY
	Slide 22: PERFORMANCE
	Slide 23: PERFORMANCE
	Slide 24: Wrap-UP

	Conclusion
	Slide 25

