SHIP A SHALLOW AND HIGHLY PARALLELIZABLE CKKS BOOTSTRAPPING ALGORITHM

JUNG HEE CHEON, GUILLAUME HANROT, JONGMIN KIM & <u>Damien Stehlé</u>

MADRID --- MAY 6, 2025

Eprint 2025/784

MAIN RESULT

A new bootstrapping (BTS) algorithm for CKKS

- Small multiplicative depth is smaller Ring-LWE ring degree
- High-grain parallelizability is works well in multi-threaded environment

FHE & BTS

FHE & BTS

Gentry's blueprint for building an FHE:

- Start with an encryption scheme that is homomorphic for some circuits
- Find a **bootstrapping** algorithm, i.e., a plaintext-preserving procedure that allows to extend homomorphism to all circuits

For all known FHE schemes, BTS drives the cost

CKKS

Cleartexts: vectors of $\mathbb{C}^{N/2}$

- up to some precision
- for some power-of-two N

Plaintexts: elements of $R_q = \mathbb{Z}[X] / (X^N + 1)$ • ptxt = DFT⁻¹(ctxt)

Ciphertexts: pairs over $R_q = \mathbb{Z}_q[X] / (X^N + 1)$

$$ct = (a, b) \in R_q^2$$
: $a \cdot s + b \approx m [q]$

secret key ternary

plaintext $\ll q$

CKKS

Cleartexts: vectors of $\mathbb{C}^{N/2}$

- up to some precision
- for some power-of-two N

Plaintexts: elements of $R_q = \mathbb{Z}[X] / (X^N + 1)$ • ptxt = DFT⁻¹(ctxt)

Ciphertexts: pairs over $R_q = \mathbb{Z}_q[X] / (X^N + 1)$

$$ct = (a, b) \in R_q^2$$
: $a \cdot s + b \approx m [q]$

secret key ternary

plaintext $\ll q$

Operations

- mult in //
- add in //, conj in //
- rotate coords
- BTS

consumes 1 level consume 0 level consumes 0 level regains levels decreases q keep q keeps q increases q

LATENCY OF THE CKKS BTS

Parameters

- ring degree 2^{16} 2^{15}
- largest modulus 1555 bits
- precision 22.0 bits
- non-BTS levels 9
- oits 771bits its 16.7 bits

Can we decrease the latency?

	1 core	8 cores	16 cores	32 cores
Param16	8.7 s	1.9 s	1. 4 s	1.1 s
Param15	3.4 s	0.90 s	0.64 s	0.62 s

CPU: two 24-core AMD EPYC 7473X @2.8GHz with AVX2 & OpenMP

128-bit security & BTS failure probability $\leq 2^{-128}$

CONVENTIONAL CKKS BTS

 $(a,b) \in R_{q_0}^2: \quad a \cdot s + b \approx m \ [q_0]$

 $(a',b') \in R_Q^2$: $a' \cdot s + b' \approx m [Q]$ for some $Q \gg q_0$

CONVENTIONAL CKKS BTS

 $(a,b) \in R_{q_0}^2$: $a \cdot s + b \approx m [q_0]$

 $(a',b') \in R_Q^2$: $a' \cdot s + b' \approx m [Q]$ for some $Q \gg q_0$

1.	S2C :	Inverse DFT	consumes 2-3 levels
2.	ModRaise:	Viewing $(a,b) \in R_{q_0}^2$ as $(a,b) \in R_Q^2$ for $m' = m + q_0 \cdot I$	
3.	C2S:	DFT	consumes 2-3 levels
4.	EvalMod:	Remove $q_0 \cdot I$ in $m' = m + q_0 \cdot I$	consumes 8-12 levels

CONVENTIONAL CKKS BTS

 $(a,b) \in R_{q_0}^2: \quad a \cdot s + b \approx m \ [q_0]$

S2C:
ModRaise
C2S:

4. EvalMod.

High modulus consumption

Many levels

Needs a large degree N for security

Higher latency

[Q] for some $Q \gg q_0$

consumes 2-3 levels

consumes 2-3 levels

consumes 8-12 levels

BOOTSTRAPPING VIA ROOTS OF UNITY

Input: $(a,b) \in R_{q_0}^2$: $a \cdot s + b \approx m [q_0]$ Goal: $(a',b') \in R_Q^2$: $a' \cdot s + b' \approx \text{DFT}^{-1}((\omega^{m_0}, \omega^{m_1}, \dots, \omega^{m_{N-1}})) [Q]$

Why is it sufficient?

1. Slots are correct: $\operatorname{Im}(\omega^{m_i}) = \sin\left(\frac{2\pi}{q_0}m_i\right) \approx \frac{2\pi}{q_0}m_i$

2. To put the m_i 's in coeffs, use S2C.

J. H. Cheon, G. Hanrot, J. Kim & <u>D. Stehlé</u> -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

 $\overline{m_i} \ll \overline{q_0}$

BOOTST Cleartexts have $only \frac{N}{2} < N$ slots... **Input:** (*a*, *L*) Let's ignore that for the talk

Goal: $(a',b') \in [s+b'] \approx \text{DFT}^{-1}((\omega^{m_0}, \omega^{m_1}, ..., \omega^{m_{N-1}}))$ [Q]

Why is it sufficient?

1. Slots are correct: $\operatorname{Im}(\omega^{m_i}) = \sin\left(\frac{2\pi}{q_0}m_i\right) \stackrel{\bullet}{\approx} \frac{2\pi}{q_0}m_i$

2. To put the m_i 's in coeffs, use S2C.

J. H. Cheon, G. Hanrot, J. Kim & <u>D. Stehlé</u> -- SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

 $m_i \ll q_0$

REDUCING TO A BINARY PRODUCT TREE

Input: $(a,b) \in R_{q_0}^2$: $a \cdot s + b \approx m [q_0]$

$$\omega = \exp\left(\frac{2i\pi}{q_0}\right) \in \mathbb{C}$$

j – i is mod N

$$\omega^{m_i} = \omega^{(a \cdot s + b)_i} = \omega^{b_i + \sum_j (a_{j-i} \cdot s_j)}$$

entry-wise product

$$(\omega^{m_i})_i = (\omega^{b_i})_i \stackrel{\bullet}{\odot} \underbrace{\bigcirc}_{j:s_j \neq 0} ((\omega^{a_{j-i}\cdot s_j})_i)$$

If s has a small Hamming weight, this is a **binary product tree** with $\log h$ levels

 \Rightarrow To minimize depth, we use $h = 31 \ll N$.

RED

Inp

A BINARY PRODUCT TREE

Reduction mod $X^N + 1$ creates signs

 $+ b \approx m [q_0]$

Let's ignore that for the talk

j - i is mod N

$$\omega^{(a\cdot s+b)_i} = \omega^{b_i + \sum_j (a_{j-i} \cdot s_j)}$$

$$\omega = \exp\left(\frac{2i\pi}{q_0}\right) \in \mathbb{C}$$

entry-wise prod Simi

$$(\omega^{m_i})_i = (\omega^{b_i})_i \stackrel{\bullet}{\odot} \bigodot_{j:s_i \neq 0} ((\omega^{a_{j-i} \cdot s_j})_i)$$

Similar bootstrapping strategy considered in concurrent work by Coron & Köstler (eprint 2025/651)

If s has a small Hamming weight, this is a binary product tree with lo_{ε}

 \Rightarrow To minimize depth, we use $h = 31 \ll N$.

COLUMN METHOD

New goal: compute the *h* terms $(\omega^{a_{j-i}})_i$ for all *j* with $s_j \neq 0$ **Assumption:** there is one non-zero s_i in every block of $\approx N/h$ coordinates

$$\bigodot_{j \text{ in block}} (\omega^{a_{j-i} \cdot s_j})_i = \sum_{j \text{ in block}} (\omega^{a_{j-i}})_i \cdot s_j$$

COLUMN METHOD

New goal: compute the *h* terms $(\omega^{a_{j-i}})_i$ for all *j* with $s_j \neq 0$ **Assumption:** there is one non-zero s_i in every block of $\approx N/h$ coordinates

BLIND ROTATION METHOD

For this talk, let's assume that $s_j \in \{0,1\}$

New goal: compute the *h* terms $(\omega^{a_{j-i}\cdot s_j})_i = (\omega^{a_{j-i}})_i$ for all *j* with $s_j \neq 0$ **Approach:** for each such *j*: blindly rotate $(\omega^{a_i})_i$ by *j* indices

BLIND ROTATION METHOD

For this talk, let's assume that $s_j \in \{0,1\}$

New goal: compute the *h* terms $(\omega^{a_{j-i}\cdot s_j})_i = (\omega^{a_{j-i}})_i$ for all *j* with $s_j \neq 0$ **Approach:** for each such *j*: blindly rotate $(\omega^{a_i})_i$ by *j* indices

The bits of j can be incorporated in rotation keys \Rightarrow no level consumption

SHIP

1- For every non-zero entry *j* of *s*: blind-rotate by *j* positions

2- Binary product tree to compute $(\omega^{m_i})_i = (\omega^{b_i})_i \odot \bigodot_{j:s_j \neq 0} ((\omega^{a_{j-i}\cdot s_j})_i)$

3-Perform S2C (DFT) to get back to coeffs

More fun in the paper 😊

- too few slots for *N* coefficients
- reduction mod X^N + 1 creates signs
- how to handle ternary s_j 's
- S2C permutes the slots/coeffs
- column and blind-rotate can be combined

ANALYSIS: LEVELS

1- For every non-zero entry *j* of *s*: blind-rotate by *j* positions

2- Binary product tree to compute $(\omega^{m_i})_i = (\omega^{b_i})_i \odot \bigodot_{j:s_j \neq 0} ((\omega^{a_{j-i} \cdot s_j})_i)$ 0 level

log(h+1) = 5 levels

3-Perform S2C (DFT) to get back to coeffs

1 or 2 levels

Bonus: the top levels are smaller than in conventional CKKS BTS, as there is no need to represent $q_0 \cdot I$ as part of the plaintext

ANALYSIS: PARALLELIZABILITY

1- For every non-zero entry *j* of *s*: blind-rotate by *j* positions

2-Binary product tree to compute $(\omega^{m_i})_i = (\omega^{b_i})_i \odot \bigodot_{j:s_j \neq 0} ((\omega^{a_{j-i}\cdot s_j})_i)$

h = 31 independent tracks

Binary product tree

3-Perform S2C (DFT) to get back to coeffs

Matrix-vector product

PERFORMANCE

Parameters for conventional BTS

- ring degree $N = 2^{16}$ $N = 2^{15}$
- Precision 22.0 bits 16.7 bits
- non-BTS levels 9

Parameters for SHIP

•	ring degree	$N = 2^{13}$	$N = 2^{14}$
•	precision	4.45 bits	16.9 bits
•	non-BTS levels		1ª Calu

	1 core	8 cores	16 cores	32 cores
Param16	8.7 s	1.9 s	1.4 s	1.1 s
Param15	3.4 s	0.90 s	0.64 s	0.62 s
SHIP13	3.0 s	0.45 s	0.29 s	0.22 s
SHIP14	4.9 s	0.70 s	0.42 s	0.33 s

CPU: two 24-core AMD EPYC 7473X @2.8GHz with AVX2 & OpenMP 128-bit security & BTS failure probability $\leq 2^{-128}$

PERFORMANCE

Parameters for conventional BTS

- ring degree $N = 2^{16}$ $N = 2^{15}$
- Precision 22.0 bits 16.7 bits
- non-BTS levels 9

Parameters for SHIP

•	ring degree	$N = 2^{13}$	$N = 2^{14}$
•	precision	4.45 bits	16.9 bits
•	non-BTS levels	1	1

	1 core	8 cores	16 cores	32 cores
Param16	8.7 s	1.9 s	1.4 s	1.1 s
Param15	3.4 s	0.90 s	0.64 s	0.62 s
SHIP13	3.0 s	0.45 s	0.29 s	0.22 s
SHIP14	4.9 s	0.70 s	0.42 s	0.33 s

For bootstrapping bits, we get down to 0.17s

CPU: two 24-core AMD EPYC 7473X @2.8GHz with AVX2 & OpenMP 128-bit security & BTS failure probability $\leq 2^{-128}$

WRAP-UP

Main contribution

A new **bootstrapping** algorithm for **CKKS**.

- Small multiplicative depth: $1 + \log (h + 1) = 6$ full-slot BTS in ring degree $N = 2^{13}$
- High-grain parallelizability:
 - h = 31 fully independent dominating tasks
 - Other components can also be parallelized

QUESTIONS?

Eprint 2025/784

damien.stehle @ cryptolab.co.kr