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MAIN RESULT

2J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé  --  SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

A new bootstrapping (BTS) algorithm for CKKS 

• Small multiplicative depth        smaller Ring-LWE ring degree

 

• High-grain parallelizability        works well in multi-threaded environment



FHE & BTS
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client

𝑐 = Enc(𝑚1, … , 𝑚𝑘); 𝑓

𝑚1, … , 𝑚𝑘; 𝑓 𝑐′ ≔ Eval(𝑓; 𝑐)

𝑐′

server
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client

𝑐 = Enc(𝑚1, … , 𝑚𝑘); 𝑓

𝑚1, … , 𝑚𝑘; 𝑓 𝑐′ ≔ Eval(𝑓; 𝑐)

𝑐′

server Gentry’s blueprint for building an FHE:

• Start with an encryption scheme that is 

homomorphic for some circuits

• Find a bootstrapping algorithm, i.e., 

a plaintext-preserving procedure that allows 

to extend homomorphism to all circuits
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For all known FHE schemes, BTS drives the cost



CKKS
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Cleartexts: vectors of ℂ𝑁/2 
• up to some precision

• for some power-of-two  𝑁
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Ciphertexts: pairs over 𝑅𝑞 =  ℤ𝑞 𝑋  / (𝑋𝑁 + 1)

𝑐𝑡 = 𝑎, 𝑏 ∈ 𝑅𝑞
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞]

secret key
ternary plaintext ≪ 𝑞 

Plaintexts: elements of 𝑅𝑞 =  ℤ[𝑋] / (𝑋𝑁 + 1) 

• ptxt = DFT−1(ctxt)



CKKS
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Cleartexts: vectors of ℂ𝑁/2 
• up to some precision

• for some power-of-two  𝑁

Operations

• mult in //                           consumes 1 level decreases  𝒒
• add in //, conj in //           consume  0 level           keep 𝑞
• rotate coords                   consumes 0 level          keeps  𝑞
• BTS                                     regains levels                increases 𝒒
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Ciphertexts: pairs over 𝑅𝑞 =  ℤ𝑞 𝑋  / (𝑋𝑁 + 1)

𝑐𝑡 = 𝑎, 𝑏 ∈ 𝑅𝑞
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞]

secret key
ternary plaintext ≪ 𝑞 

Plaintexts: elements of 𝑅𝑞 =  ℤ[𝑋] / (𝑋𝑁 + 1) 

• ptxt = DFT−1(ctxt)



LATENCY OF THE CKKS BTS
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Parameters
• ring degree          216              215 

• largest modulus   1555 bits         771bits

• precision               22.0 bits          16.7 bits

• non-BTS levels       9                     1

1 core 8 cores 16 cores 32 cores

Param16 8.7 s 1.9 s 1.4 s 1.1 s

Param15 3.4 s 0.90 s 0.64 s 0.62 s

CPU: two 24-core AMD EPYC 7473X  @2.8GHz with AVX2 & OpenMP

128-bit security  & BTS failure probability ≤ 2−128

Can we decrease 

the latency?



CONVENTIONAL CKKS BTS
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𝑎, 𝑏 ∈ 𝑅𝑞0
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞0]

𝑎′, 𝑏′ ∈ 𝑅𝑄
2 :  𝑎′ ⋅ 𝑠 + 𝑏′ ≈  𝑚 𝑄    for some 𝑄 ≫ 𝑞0

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé  --  SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm



CONVENTIONAL CKKS BTS
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1. S2C:                   Inverse DFT                                                                               consumes  2-3 levels

2. ModRaise:    Viewing  𝑎, 𝑏 ∈ 𝑅𝑞0
2  as  𝑎, 𝑏 ∈ 𝑅𝑄

2  for 𝑚′ = 𝑚 + 𝑞0 ⋅ 𝐼 

3. C2S:      DFT                                             consumes  2-3 levels

4. EvalMod:     Remove 𝑞0 ⋅ 𝐼 in  𝑚′ = 𝑚 + 𝑞0 ⋅ 𝐼                         consumes  8-12 levels

   

𝑎, 𝑏 ∈ 𝑅𝑞0
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞0]

𝑎′, 𝑏′ ∈ 𝑅𝑄
2 :  𝑎′ ⋅ 𝑠 + 𝑏′ ≈  𝑚 𝑄    for some 𝑄 ≫ 𝑞0
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1. S2C:                   Inverse DFT                                                                               consumes  2-3 levels

2. ModRaise:    Viewing  𝑎, 𝑏 ∈ 𝑅𝑞0
2  as  𝑎, 𝑏 ∈ 𝑅𝑄

2  for 𝑚′ = 𝑚 + 𝑞0 ⋅ 𝐼 

3. C2S:      DFT                                             consumes  2-3 levels

4. EvalMod:     Remove 𝑞0 ⋅ 𝐼 in  𝑚′ = 𝑚 + 𝑞0 ⋅ 𝐼                         consumes  8-12 levels

   

𝑎, 𝑏 ∈ 𝑅𝑞0
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞0]

𝑎′, 𝑏′ ∈ 𝑅𝑄
2 :  𝑎′ ⋅ 𝑠 + 𝑏′ ≈  𝑚 𝑄    for some 𝑄 ≫ 𝑞0
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Many levels
 

High modulus consumption

Needs a large degree 𝑁 for security

Higher latency



BOOTSTRAPPING VIA ROOTS OF UNITY
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Input:     𝑎, 𝑏 ∈ 𝑅𝑞0
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞0]

Goal:     𝑎′, 𝑏′ ∈ 𝑅𝑄
2 :  𝑎′ ⋅ 𝑠 + 𝑏′  ≈  DFT−1 (𝜔𝑚0 ,  𝜔𝑚1 , … , 𝜔𝑚𝑁−1 )  [𝑄] 

Why is it sufficient?

1.  Slots are correct:     Im(𝜔𝑚𝑖)  =  sin
2𝜋

𝑞0
𝑚𝑖  ≈

2𝜋

𝑞0
𝑚𝑖 

2.  To put the 𝑚𝑖’s in coeffs, use S2C.

𝑚𝑖 ≪ 𝑞0

𝜔 = exp
2𝑖𝜋

𝑞0
∈ ℂ 
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Input:     𝑎, 𝑏 ∈ 𝑅𝑞0
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞0]

𝜔 = exp
2𝑖𝜋

𝑞0
∈ ℂ 

Goal:     𝑎′, 𝑏′ ∈ 𝑅𝑄
2 :  𝑎′ ⋅ 𝑠 + 𝑏′  ≈  DFT−1 (𝜔𝑚0 ,  𝜔𝑚1 , … , 𝜔𝑚𝑁−1 )  [𝑄] 

Why is it sufficient?

1.  Slots are correct:     Im(𝜔𝑚𝑖)  =  sin
2𝜋

𝑞0
𝑚𝑖  ≈

2𝜋

𝑞0
𝑚𝑖 

2.  To put the 𝑚𝑖’s in coeffs, use S2C.

𝑚𝑖 ≪ 𝑞0

Cleartexts have 

only  
𝑁

2
< 𝑁  slots…

Let’s ignore that for the talk



REDUCING TO A BINARY PRODUCT TREE
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𝜔𝑚𝑖  = 𝜔 𝑎⋅𝑠+𝑏 𝑖 = 𝜔 𝑏𝑖 + σ𝑗 𝑎𝑗−𝑖 ⋅ 𝑠𝑗   

𝑗 − 𝑖 is mod 𝑁

𝜔𝑚𝑖
𝑖  = 𝜔𝑏𝑖

𝑖
 ⊙

If 𝑠 has a small Hamming weight, this is a binary product tree with  log ℎ levels

⇒ To minimize depth, we use  ℎ = 31 ≪ 𝑁.            

Input:     𝑎, 𝑏 ∈ 𝑅𝑞0
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞0]

𝜔 = exp
2𝑖𝜋

𝑞0
∈ ℂ 

𝑗: 𝑠𝑗 ≠ 0 

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖

entry-wise product



entry-wise product

If 𝑠 has a small Hamming weight, this is a binary product tree with  log ℎ levels

⇒ To minimize depth, we use  ℎ = 31 ≪ 𝑁.            

REDUCING TO A BINARY PRODUCT TREE
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𝜔𝑚𝑖  = 𝜔 𝑎⋅𝑠+𝑏 𝑖 = 𝜔 𝑏𝑖 + σ𝑗 𝑎𝑗−𝑖 ⋅ 𝑠𝑗   

𝜔𝑚𝑖
𝑖  = 𝜔𝑏𝑖

𝑖
 ⊙

Input:     𝑎, 𝑏 ∈ 𝑅𝑞0
2 :  𝑎 ⋅ 𝑠 + 𝑏 ≈  𝑚 [𝑞0]

𝜔 = exp
2𝑖𝜋

𝑞0
∈ ℂ 

𝑗: 𝑠𝑗 ≠ 0 

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖

Reduction mod 𝑋𝑁 + 1
creates signs

Let’s ignore that for the talk

Similar bootstrapping 

strategy considered 

in concurrent work 

by Coron & Köstler

(eprint 2025/651)

𝑗 − 𝑖 is mod 𝑁



COLUMN METHOD

9

𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖  =  σ 𝜔𝑎𝑗−𝑖

𝑖 ⋅ 𝑠𝑗 
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𝑗 in block

⊙
𝑗 in block

New goal:    compute the ℎ terms    𝜔𝑎𝑗−𝑖
𝑖  for all  𝑗  with  𝑠𝑗 ≠ 0 

Assumption: there is one non-zero   𝑠𝑗   in every block of   ≈ 𝑁/ℎ   coordinates    



COLUMN METHOD
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New goal:    compute the ℎ terms    𝜔𝑎𝑗−𝑖
𝑖  for all  𝑗  with  𝑠𝑗 ≠ 0 

Assumption: there is one non-zero   𝑠𝑗   in every block of   ≈ 𝑁/ℎ   coordinates    

𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖  =  σ 𝜔𝑎𝑗−𝑖

𝑖 ⋅ 𝑠𝑗 
𝜔𝑎0

𝜔𝑎1

𝜔𝑎2

𝜔𝑎3

⋮

𝜔𝑎𝑁−1

𝜔𝑎0

𝜔𝑎1

𝜔𝑎2

⋮

IN CLEAR
column by column

⋅

𝑠0

𝑠1

𝑠2

𝑠3

ENCRYPTED
entry by entry
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no level consumption

simple operations

Ω 𝑁2  key size 

Ω 𝑁2  cost  

𝑗 in block

⊙
𝑗 in block

𝑁

𝑁/ℎ



BLIND ROTATION METHOD
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𝜔𝑎0

𝜔𝑎1

𝜔𝑎2

𝜔𝑎3

⋮

Rotate or not 

by 20 index

Rotate or not 

by 21 indices

Rotate or not 

by 22 indices
…

Determined by 

the encrypted 

0th bit of 𝒋

Determined by 

the encrypted 

1st bit of 𝒋

Determined by 

the encrypted 

2nd bit of 𝒋

New goal:   compute the ℎ terms    𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖 = 𝜔𝑎𝑗−𝑖

𝑖  for all  𝑗  with  𝑠𝑗 ≠ 0 

Approach:  for each such  𝑗 :  blindly rotate 𝜔𝑎𝑖
𝑖 by 𝑗 indices 

For this talk, 

let’s assume 
that 𝑠𝑗 ∈ 0,1  
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𝜔𝑎0

𝜔𝑎1

𝜔𝑎2

𝜔𝑎3

⋮

Rotate or not 

by 20 index

Rotate or not 

by 21 indices

Rotate or not 

by 22 indices
…

Determined by 

the encrypted 

0th bit of 𝒋

Determined by 

the encrypted 

1st bit of 𝒋

Determined by 

the encrypted 

2nd bit of 𝒋

no level consumption 
෨𝑂 𝑁  key size
෨𝑂 𝑁  cost

The bits of 𝑗 can be incorporated in rotation keys ⇒  no level consumption

more complex operations

New goal:   compute the ℎ terms    𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖 = 𝜔𝑎𝑗−𝑖

𝑖  for all  𝑗  with  𝑠𝑗 ≠ 0 

Approach:  for each such  𝑗 :  blindly rotate 𝜔𝑎𝑖
𝑖 by 𝑗 indices 

For this talk, 

let’s assume 
that 𝑠𝑗 ∈ 0,1  



SHIP
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1- For every non-zero entry 𝑗 of 𝑠: 

        blind-rotate by 𝑗 positions

𝜔𝑚𝑖
𝑖  = 𝜔𝑏𝑖

𝑖
⊙ 

2- Binary product tree to compute

  

3- Perform S2C (DFT) to get back to coeffs

More fun in the paper ☺

• too few slots for 𝑁 coefficients

• reduction mod 𝑋𝑁 + 1 creates signs
• how to handle ternary 𝑠𝑗’s

• S2C permutes the slots/coeffs

• column and blind-rotate can be combined

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé  --  SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm

𝑗: 𝑠𝑗 ≠ 0 

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖



ANALYSIS: LEVELS
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0 level

𝐥𝐨𝐠(𝒉 + 𝟏) = 𝟓 levels 

1 or 2 levels

Bonus: the top levels are smaller than in conventional CKKS BTS, 

             as there is no need to represent 𝑞0 ⋅ 𝐼 as part of the plaintext
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1- For every non-zero entry 𝑗 of 𝑠: 

        blind-rotate by 𝑗 positions

𝜔𝑚𝑖
𝑖  = 𝜔𝑏𝑖

𝑖
⊙ 

2- Binary product tree to compute

  

3- Perform S2C (DFT) to get back to coeffs

𝑗: 𝑠𝑗 ≠ 0 

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖



ANALYSIS: PARALLELIZABILITY
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𝒉 = 𝟑𝟏 independent tracks

Binary product tree

Matrix-vector product
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1- For every non-zero entry 𝑗 of 𝑠: 

        blind-rotate by 𝑗 positions

𝜔𝑚𝑖
𝑖  = 𝜔𝑏𝑖

𝑖
⊙ 

2- Binary product tree to compute

  

3- Perform S2C (DFT) to get back to coeffs

𝑗: 𝑠𝑗 ≠ 0 

⊙ 𝜔𝑎𝑗−𝑖⋅𝑠𝑗
𝑖



PERFORMANCE
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Parameters for conventional BTS  

• ring degree        𝑁 = 216        𝑁 = 215 

• Precision             22.0 bits       16.7 bits

• non-BTS levels    9                   1

1 core 8 cores 16 cores 32 cores

Param16 8.7 s 1.9 s 1.4 s 1.1 s

Param15 3.4 s 0.90 s 0.64 s 0.62 s

SHIP13 3.0 s 0.45 s 0.29 s 0.22 s

SHIP14 4.9 s 0.70 s 0.42 s 0.33 s

CPU: two 24-core AMD EPYC 7473X  @2.8GHz with AVX2 & OpenMP

Parameters for SHIP

• ring degree        𝑁 = 213        𝑁 = 214 

• precision             4.45 bits       16.9 bits

• non-BTS levels    1                   1

128-bit security  & BTS failure probability ≤ 2−128
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Parameters for conventional BTS  

• ring degree        𝑁 = 216        𝑁 = 215 

• Precision             22.0 bits       16.7 bits

• non-BTS levels    9                   1

1 core 8 cores 16 cores 32 cores

Param16 8.7 s 1.9 s 1.4 s 1.1 s

Param15 3.4 s 0.90 s 0.64 s 0.62 s

SHIP13 3.0 s 0.45 s 0.29 s 0.22 s

SHIP14 4.9 s 0.70 s 0.42 s 0.33 s

CPU: two 24-core AMD EPYC 7473X  @2.8GHz with AVX2 & OpenMP

Parameters for SHIP

• ring degree        𝑁 = 213        𝑁 = 214 

• precision             4.45 bits       16.9 bits

• non-BTS levels    1                   1

128-bit security  & BTS failure probability ≤ 2−128

For bootstrapping bits, 

we get down to 0.17s



WRAP-UP
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Main contribution

A new bootstrapping algorithm for CKKS. 

• Small multiplicative depth:   𝟏 + 𝐥𝐨𝐠 (𝒉 + 𝟏) = 𝟔   

                                            full-slot BTS in ring degree 𝑁 = 213

• High-grain parallelizability:  

• ℎ = 31 fully independent dominating tasks

• Other components can also be parallelized

J. H. Cheon, G. Hanrot, J. Kim & D. Stehlé  --  SHIP: a shallow and highly parallelizable CKKS bootstrapping algorithm



QUESTIONS? 

Eprint 2025/784

 damien.stehle @ cryptolab.co.kr  
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