
Polocolo: A ZK-Friendly Hash Function Based on

S-boxes Using Power Residues

Eurocrypt 2025

Jincheol Ha, Seongha Hwang, Jooyoung Lee,

Seungmin Park, and Mincheol Son

KAIST

Background

3

• A two-party cryptographic protocol between a prover and a verifier that

allows the prover to convince the verifier of their knowledge without

revealing itself

• "I know the input 𝑥, which satisfies 𝑆𝐻𝐴256 𝑥 = 000…0"

Zero-knowledge Proof

Prover Verifier

4

ZK-Unfriendly Operations

• Some operations are highly inefficient in ZKP (e.g., Compare, AND, XOR)

• Common ZKP supports only addition/multiplication in 𝔽𝑝 (256-bit prime field in ours)

• Constraints of XORing two 8-bit integers (𝑐 = 𝑎 ⊕ 𝑏) in ZKP:

𝑎 = 0 1 0 0 1 0 0 1

XOR

𝑎7 𝑎6 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0

𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0
𝑏 = 1 1 0 1 0 0 1 0

𝑐7 𝑐6 𝑐5 𝑐4 𝑐3 𝑐2 𝑐1 𝑐0
𝑐 = 1 0 0 1 1 0 1 1

29 add gates & 20 mult gates → 49 gates in total

1. Bit decomposition of 𝑎, 𝑏, 𝑐: 21 add gates
2. 𝑎𝑖 , 𝑏𝑖 ∈ {0,1}: 16 mul gates
3. 𝑐𝑖 = 𝑎𝑖 ⊕𝑏𝑖: 8 add gates & 4 mul gates

5

ZK-Friendly Hash Functions

• Standardized hash functions (e.g., SHA2, SHA3) are inefficient in ZKP

• Lead to the invention of ZK-friendly hash functions

• ZK-friendly hash functions consist of add/mul in 𝔽𝑝

• Compared to SHA2 and SHA3, ZK-friendly hash functions use 50-100x

fewer gates in ZKP

MiMC illustration. Images from the original paper.

6

ZK-Friendly Hash Functions

• Due to their simple structures over 𝔽𝑝, they are often vulnerable to

algebraic attacks

MiMC
(2016)

Poseidon
(2016)

Rescue
(2019)

Griffin
(2022)

Anemoi
(2022)

Arion
(2023)

Jarvis
(2018)

: Original specification is broken by algebraic attacks

7

Lookup Arguments

• Using lookup arguments, a prover can demonstrate a witness 𝑒 belongs to

a public table 𝑇

• Lookup operations allow “ZK-unfriendly” operations to be handled more

efficiently

• Constraints of XORing two 8-bit integers (𝑐 = 𝑎 ⊕ 𝑏) in ZKP w/ lookup:

𝑎 = 0100 1001

𝑏 = 1101 0010

𝑐 = 1001 1011

XOR

1. Define a public table 𝑇 = 𝑥, 𝑦, 𝑧 𝑥, 𝑦 ∈ 0,… , 15 , 𝑧 = 𝑥 ⊕ 𝑦}
2. 4-bit decomposition of 𝑎, 𝑏, 𝑐: 3 add gates
3. 𝑎𝑖 , 𝑏𝑖 ∈ 0,… , 15 and 𝑐𝑖 = 𝑎𝑖 ⊕𝑏𝑖: 2 lookup gates

3 add gates & 2 lookup gates → 5 gates in total (w/o lookup : 49 gates)

8

Plonkup

• Polocolo mainly focuses on Plonkup, an extension of Plonk

• Supported gates in Plonkup:

• add/mul in 𝔽𝑝 (natively supported in Plonk)

• table lookup

• In Plonkup, the prover’s complexity is proportional to

max 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑎𝑡𝑒𝑠, 𝑡𝑎𝑏𝑙𝑒 𝑠𝑖𝑧𝑒

• The efficiency metric is the total number of gates in the Plonkup (= Plonk

gates)

Motivation & Our Contribution

10

Motivation

• Algebraically complex operation can be

implemented by table lookups, provide

resistance to algebraic attacks

• Reinforced Concrete (CCS’22) hash function

uses the “base expansion method” to apply

table lookup

• An input 𝑥 ∈ 𝔽𝑝 is decomposed into an 𝑛-tuple

𝑥1, … , 𝑥𝑛 ∈ ℤ1024 ×⋯× ℤ1024

• Each component is fed to the underlying S-box

ℤ1024 → ℤ1024 using lookup table

𝑥 = 1024𝑛−1𝑥1 +⋯+ 𝑥𝑛

𝑥1 𝑥2 𝑥𝑛…

Decompose 𝑥

𝑦1 𝑦2 𝑦𝑛…

𝑥𝑖 , 𝑦𝑖 ∈ 𝑇

Compose 𝑦

𝑦 = 1024𝑛−1𝑦1 +⋯+ 𝑦𝑛

Bar function 𝑏𝑎𝑟 ∶ 𝔽𝑝 → 𝔽𝑝
in Reinforced Concrete

11

Motivation

• Layers in Reinforced Concrete:

• Linear layer (Concrete): 5 gates

• Nonlinear layer (Bricks): 8 gates

• Table lookup layer (Bars): 282 gates

• Only 1 layer out of the 15 layers uses lookup operation,

it accounts 75% of Plonk gates

• Reducing the cost of applying a lookup table and

iterating it over multiple rounds can enhance security

and efficiency
Reinforced Concrete illustration.
Images from the original paper.

12

Our Contribution

• We propose Polocolo (Power residue for lower cost table lookup), a new

lookup-based ZK-friendly hash function

• An S-box is constructed using the “power residue method”, which allows one to

efficiently apply a lookup table to the elements of 𝔽𝑝

• A linear layer uses a new MDS matrix, optimized for Plonk circuits

• Polocolo requires fewer Plonk gates compared to the state-of-the-art ZK-

friendly hash functions:

• 21% fewer Plonk gates compared to Anemoi (when 𝔽𝑝
8 → 𝔽𝑝

8)

• 24% fewer Plonk gates compared to Reinforced Concrete (when 𝔽𝑝
3 → 𝔽𝑝

3)

Polocolo Hash Function

14

• To insert an element 𝑥 ∈ 𝔽𝑝 into the table 𝑇, the function 𝑓: 𝔽𝑝 → 𝑇𝑖𝑛 is

required

• In other words, the size of the range of 𝑓 should be limited

• Typically, 𝑇 ≈ 1024

• In Reinforced Concrete, 𝑓 𝑥 = 𝑥%1024

Power Residue Method

𝔽𝑝 𝔽𝑝

𝑥

𝑇𝑖𝑛

15

• For a multiplicative generator 𝑔 , an element 𝑥 ∈ 𝔽𝑝\{0} can be

represented as 𝑥 = 𝑔𝑒 for some exponent 0 ≤ 𝑒 < 𝑝 − 1

• For an integer 𝑚 such that 𝑚 | 𝑝 − 1, let 𝑒 = 𝑞𝑚 + 𝑟 (0 ≤ 𝑞 <
𝑝−1

𝑚
, 0 ≤ 𝑟 < 𝑚)

Power Residue Method

Examples for 𝑝 = 13, 𝑔 = 7,𝑚 = 4

𝑥 𝑒 𝑞 𝑟

1(= 𝑔0) 0 0 0

7(= 𝑔1) 1 0 1

10(= 𝑔2) 2 0 2

… … … …

4(= 𝑔10) 10 2 2

2(= 𝑔11) 11 2 3

16

• For each 𝑥, the remainder 𝑟 has 𝑚 different values

• 𝑓 𝑥 = 𝑟 works, but infeasible to compute function 𝑓 efficiently

• Solution) 𝑓 𝑥 = 𝑥(𝑝−1)/𝑚 = 𝑔𝑟(𝑝−1)/𝑚, determined by 𝑟

Power Residue Method

Examples for 𝑝 = 13, 𝑔 = 7,𝑚 = 4

𝑥 𝑒 𝑞 𝑟 𝑓 𝑥 = 𝑥(𝑝−1)/𝑚

1(= 𝑔0) 0 0 0 1

7(= 𝑔1) 1 0 1 5

10(= 𝑔2) 2 0 2 12

… … … … …

4(= 𝑔10) 10 2 2 12

2(= 𝑔11) 11 2 3 8

17

• 𝑓 𝑥 = 𝑥(𝑝−1)/𝑚 is a 𝑚-th power residue of 𝑥:

𝑥

𝑝
𝑚

= 𝑥(𝑝−1)/𝑚

• Our new S-box 𝑆 ∶ 𝔽𝑝 → 𝔽𝑝 is defined as

𝑆 𝑥 = 𝑥−1 ⋅ 𝑇
𝑥

𝑝
𝑚

Power Residue Method

18

• Step 0:

A new S-Box from Power Residue

𝑔0 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11

𝑆 𝑔𝑞𝑚+𝑟 = 𝑔𝑞𝑚+𝑟

𝑔0 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11

19

• Step 1:

• 𝜎 is a permutation on {0, … ,𝑚 − 1}.

A new S-Box from Power Residue

𝑔0 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11

𝑔2 𝑔0 𝑔3 𝑔1 𝑔6 𝑔4 𝑔7 𝑔5 𝑔10 𝑔8 𝑔11 𝑔9

𝑆 𝑔𝑞𝑚+𝑟 = 𝑔𝑞𝑚+𝜎 𝑟

20

• Step 2:

• 𝜎 is a permutation on {0, … ,𝑚 − 1}.

A new S-Box from Power Residue

𝑔0 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11

𝑔2 𝑔0 𝑔3 𝑔1 𝑔6 𝑔4 𝑔7 𝑔5𝑔10 𝑔8 𝑔11 𝑔9

𝑆 𝑔𝑞𝑚+𝑟 = 𝑔−𝑞𝑚+𝜎 𝑟

21

• Step 3:

• 𝜎 is a permutation on {0, … ,𝑚 − 1}.

A new S-Box from Power Residue

𝑔0 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11

𝑆 𝑔𝑞𝑚+𝑟 = 𝑔−𝑞𝑚+𝑟𝑚+𝜎 𝑟

𝑔2 𝑔4 𝑔11 𝑔1 𝑔6 𝑔8 𝑔3 𝑔5𝑔10 𝑔0 𝑔7 𝑔9

22

A new S-Box from Power Residue

• The S-box in Polocolo:

𝑆 𝑥 = 𝑔−𝑞𝑚+𝑟𝑚+𝜎(𝑟)

• 𝑚 ∈ {32,64,128,256,512,1024}

• 𝜎 is randomly chosen, with "weak" permutations being discarded

• 𝑔−𝑞𝑚+𝑟𝑚+𝜎(𝑟) = 𝑔−𝑞𝑚−𝑟 ⋅ 𝑔𝑟+𝑟𝑚+𝜎(𝑟)

• 𝑆 𝑥 = 𝑥−1 ⋅ 𝑇
𝑥

𝑝 𝑚
where 𝑇 = 𝑔𝑟(𝑝−1)/𝑚, 𝑔𝑟+𝑟𝑚+𝜎 𝑟 | 0 ≤ 𝑟 < 𝑚 ∪ { 0,0 }

23

Plonk Constraints for a S-Box
𝑥 = (𝑔𝑞)𝑚 ⋅ 𝑔𝑟

𝑦 = 𝑔−𝑞𝑚 ⋅ 𝑔𝑟𝑚+𝜎(𝑟)
𝑤1 𝑤2

𝑤3 𝑤4

• Constraints:

• 𝑥 = 𝑤1
𝑚 × 𝑤2 (log𝑚 + 1 mult gates)

• 𝑤1
𝑚 × 𝑤3 = 1 (1 mult gate)

• 𝑤2, 𝑤4 ∈ 𝑇 (1 lookup gate) where

𝑇 = 𝑔𝑟, 𝑔𝑟𝑚+𝜎 𝑟 0 ≤ 𝑟 < 𝑚} ∪ { 0,0 }

• 𝑤3 × 𝑤4 = 1 (1 mult gate)

log𝑚 + 3 mul gates & 1 table lookup → log𝑚 + 4 gates in total

• Witnesses:

• 𝑤1 = 𝑔𝑞

• 𝑤2 = 𝑔𝑟

• 𝑤3 = 𝑔−𝑞𝑚

• 𝑤4 = 𝑔𝑟𝑚+𝜎(𝑟)

24

Efficient Linear Layers

• In general, linear layers in ZK-friendly hash function are defined as

follows:

𝐿𝑖𝑛𝐿𝑎𝑦𝑒𝑟 Ԧ𝑥 = 𝑀 × Ԧ𝑥 + Ԧ𝑐

• The constant Ԧ𝑐 is randomly chosen

• The matrix 𝑀 is MDS (Maximum Distance Separable) matrix

25

• Multiplying a matrix 𝑀 requires 𝑡(𝑡 − 1) add gates:

•
2 1 1
1 2 1
1 1 2

×

𝑥1
𝑥2
𝑥3

=

2𝑥1 + 𝑥2 + 𝑥3
𝑥1 + 2𝑥2 + 𝑥3
𝑥1 + 𝑥2 + 2𝑥3

, 6 gates

• Depending on the matrix, multiplying a matrix 𝑀 can be done efficiently:

•
2 1 1
1 2 1
1 1 2

×

𝑥1
𝑥2
𝑥3

=

𝑠 + 𝑥1
𝑠 + 𝑥2
𝑠 + 𝑥3

, where 𝑠 = 𝑥1 + 𝑥2 + 𝑥3, 5 gates

Efficient Linear Layers

26

Heuristic Approach

• Find a matrix 𝑀 with fewer add gates in 𝑀 × Ԧ𝑥

Coeffs witnesses
1 0 0 0 0 𝑥1
0 1 0 0 0 𝑥2
0 0 1 0 0 𝑥3
0 0 0 1 0 𝑥4
0 0 0 0 1 𝑥5

27

Heuristic Approach

• New witness is chosen by adding two randomly chosen witnesses

Coeffs witnesses
1 0 0 0 0 𝑥1
0 1 0 0 0 𝑥2
0 0 1 0 0 𝑥3
0 0 0 1 0 𝑥4
0 0 0 0 1 𝑥5
6 1 0 0 0 𝑤1 = 6𝑥1 + 𝑥2

28

Heuristic Approach

• New witness is chosen by adding two randomly chosen witnesses

Coeffs witnesses
1 0 0 0 0 𝑥1
0 1 0 0 0 𝑥2
0 0 1 0 0 𝑥3
0 0 0 1 0 𝑥4
0 0 0 0 1 𝑥5
6 1 0 0 0 𝑤1 = 6𝑥1 + 𝑥2
0 0 2 4 0 𝑤2 = 2𝑥3 + 4𝑥4

29

Heuristic Approach

• New witness is chosen by adding two randomly chosen witnesses

Coeffs witnesses
1 0 0 0 0 𝑥1
0 1 0 0 0 𝑥2
0 0 1 0 0 𝑥3
0 0 0 1 0 𝑥4
0 0 0 0 1 𝑥5
6 1 0 0 0 𝑤1 = 6𝑥1 + 𝑥2
0 0 2 4 0 𝑤2 = 2𝑥3 + 4𝑥4
3 0 0 0 8 𝑤3 = 3𝑥1 + 8𝑥5

30

Heuristic Approach

• New witness is chosen by adding two randomly chosen witnesses

Coeffs witnesses
1 0 0 0 0 𝑥1
0 1 0 0 0 𝑥2
0 0 1 0 0 𝑥3
0 0 0 1 0 𝑥4
0 0 0 0 1 𝑥5
6 1 0 0 0 𝑤1 = 6𝑥1 + 𝑥2
0 0 2 4 0 𝑤2 = 2𝑥3 + 4𝑥4
3 0 0 0 8 𝑤3 = 3𝑥1 + 8𝑥5
48 8 6 12 0 𝑤4 = 8𝑤1 + 3𝑤2

31

Efficient Linear Layers

• Generate enough witnesses

Coeffs witnesses
1 0 0 0 0 𝑥1
0 1 0 0 0 𝑥2
0 0 1 0 0 𝑥3
0 0 0 1 0 𝑥4
0 0 0 0 1 𝑥5
6 1 0 0 0 𝑤1 = 6𝑥1 + 𝑥2
0 0 2 4 0 𝑤2 = 2𝑥3 + 4𝑥4
3 0 0 0 8 𝑤3 = 3𝑥1 + 8𝑥5
48 8 6 12 0 𝑤4 = 8𝑤1 + 3𝑤2

… …
39 6 10 28 8 𝑤9 = 𝑤7 + 𝑤5

174 28 32 80 16 𝑤10 = 2𝑤4 + 2𝑤9

348 58 42 84 2 𝑤11 = 2𝑤8 + 7𝑤4

39 4 54 100 44 𝑤12 = 𝑤6 + 2𝑤8

204 20 300 560 244 𝑤13 = 3𝑤5 + 5𝑤12

32

Efficient Linear Layers

• Check if the matrix created by the last 𝑡 witnesses is an MDS

Coeffs witnesses
1 0 0 0 0 𝑥1
0 1 0 0 0 𝑥2
0 0 1 0 0 𝑥3
0 0 0 1 0 𝑥4
0 0 0 0 1 𝑥5
6 1 0 0 0 𝑤1 = 6𝑥1 + 𝑥2
0 0 2 4 0 𝑤2 = 2𝑥3 + 4𝑥4
3 0 0 0 8 𝑤3 = 3𝑥1 + 8𝑥5
48 8 6 12 0 𝑤4 = 8𝑤1 + 3𝑤2

… …
39 6 10 28 8 𝑤9 = 𝑤7 + 𝑤5

174 28 32 80 16 𝑤10 = 2𝑤4 + 2𝑤9

348 58 42 84 2 𝑤11 = 2𝑤8 + 7𝑤4

39 4 54 100 44 𝑤12 = 𝑤6 + 2𝑤8

204 20 300 560 244 𝑤13 = 3𝑤5 + 5𝑤12

39 6 10 28 8
174 28 32 80 16
348 58 42 84 2
39 4 54 100 44
204 20 300 560 244

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

=

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

13 addition gates (naive : 20 gates)

33

Plonk Gates of Linear Layers
Hash functions 𝑡 = 3 𝑡 = 4 𝑡 = 5 𝑡 = 6 𝑡 = 7 𝑡 = 8

Polocolo 5 8 13 17 24 31

Reinforced
Concrete

5 - - - - -

Rescue 6 12 20 30 42 56

Poseidon 6 12 20 30 42 56

Poseidon2 5 8 - - - 24

Griffin 5 8 - - - 24

Arion 6 12 16 20 24 28

"-“ is used to indicate that the hash function is not defined for the given 𝑡
Red color is used to indicate that the corresponding matrix is not MDS

34

Polocolo Hash Function

• Designing a Polocoloπ permutation using SPN structure:

✓ Lin: A linear layer with a plonk-optimized matrix

✓ S: S-box using the power residue method

• The permutation is converted to hash function using sponge

construction

Lin

S S S

Lin

S S S

Lin

S S S

Lin

S S S

Lin

35

Security Analysis

• Statistical Attacks:

• 4 rounds are sufficient to provide security

• Include an additional 1 round as a security margin

• Algebraic Attacks:

• Guessing power residues for each S-box is the most efficient

• Our parameter selection ensures that the complexity of attack is at least 2160

Performance

37

Plonk cost

Functions 𝑡 = 3 𝑡 = 4 𝑡 = 6 𝑡 = 8
Security
margin

Polocolo 287 328 432 546

O

Reinforced
Concrete

378 - - -

Poseidon2 557 718 - 1416

Rescue-Prime 420 528 768 1280

Anemoi - 340 490 688

Polocolo (tight) 240 264 349 475

XGriffin 243 348 - 960

Arion 262 341 531 622

"-“ is used to indicate that the hash function is not defined for the given 𝑡

Conclusion

39

Conclusion

• We present a new ZK-friendly hash function Polocolo, based on the

power residue method

• Polocolo achieves the smallest Plonk costs to existing schemes in this

category

• We believe that the power residue method and the new linear layer

optimized for Plonk can be applied to other ZK-friendly hash functions

• Third party analysis is always welcome: building an efficient system of

equations against power residue method helps to understand the

security of Polocolo accurately

Thank you!

Appendix

42

ZK-Unfriendly Operations

• Some operations are highly inefficient in ZKP (e.g., Compare, AND, XOR)

• Common ZKP supports only addition/multiplication in 𝔽𝑝 (256-bit prime field in ours)

• Constraints of XORing two 8-bit integers (𝑐 = 𝑎 ⊕ 𝑏) in ZKP:

𝑎 = 20𝑎0 + 21𝑎1 +⋯+ 27𝑎7
𝑏 = 20𝑏0 + 21𝑏1 +⋯+ 27𝑏7
𝑐 = 20𝑐0 + 21𝑐1 +⋯+ 27𝑐7

𝑎 = 0 1 0 0 1 0 0 1

XOR

𝑎7 𝑎6 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0

𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0
𝑏 = 1 1 0 1 0 0 1 0

𝑐7 𝑐6 𝑐5 𝑐4 𝑐3 𝑐2 𝑐1 𝑐0
𝑐 = 1 0 0 1 1 0 1 1

1. Bit decomposition of 𝑎, 𝑏, 𝑐: 21 add gates

43

ZK-Unfriendly Operations

• Some operations are highly inefficient in ZKP (e.g., Compare, AND, XOR)

• Common ZKP supports only addition/multiplication in 𝔽𝑝 (256-bit prime field in ours)

• Constraints of XORing two 8-bit integers (𝑐 = 𝑎 ⊕ 𝑏) in ZKP:

𝑎 = 0 1 0 0 1 0 0 1

XOR

𝑎7 𝑎6 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0

𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0
𝑏 = 1 1 0 1 0 0 1 0

𝑐7 𝑐6 𝑐5 𝑐4 𝑐3 𝑐2 𝑐1 𝑐0
𝑐 = 1 0 0 1 1 0 1 1

𝑎𝑖 × (1 − 𝑎𝑖) = 0 for 0 ≤ 𝑖 ≤ 7

𝑏𝑖 × (1 − 𝑏𝑖) = 0 for 0 ≤ 𝑖 ≤ 7

1. Bit decomposition of 𝑎, 𝑏, 𝑐: 21 add gates
2. 𝑎𝑖 , 𝑏𝑖 ∈ {0,1}: 16 mul gates

44

ZK-Unfriendly Operations

• Some operations are highly inefficient in ZKP (e.g., Compare, AND, XOR)

• Common ZKP supports only addition/multiplication in 𝔽𝑝 (256-bit prime field in ours)

• Constraints of XORing two 8-bit integers (𝑐 = 𝑎 ⊕ 𝑏) in ZKP:

𝑎 = 0 1 0 0 1 0 0 1

XOR

𝑎7 𝑎6 𝑎5 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0

𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0
𝑏 = 1 1 0 1 0 0 1 0

𝑐7 𝑐6 𝑐5 𝑐4 𝑐3 𝑐2 𝑐1 𝑐0
𝑐 = 1 0 0 1 1 0 1 1

𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 − 2𝑎𝑖 × 𝑏𝑖 for 0 ≤ 𝑖 ≤ 3

29 add gates & 20 mult gates → 49 gates in total

1. Bit decomposition of 𝑎, 𝑏, 𝑐: 21 add gates
2. 𝑎𝑖 , 𝑏𝑖 ∈ {0,1}: 16 mul gates
3. 𝑐𝑖 = 𝑎𝑖 ⊕𝑏𝑖: 8 add gates & 4 mul gates

45

Lookup Arguments

• Constraints of XORing two 8-bit integers (𝑐 = 𝑎 ⊕ 𝑏) in ZKP w/ lookup:

𝑎 = 0100 1001

𝑏 = 1101 0010

𝑐 = 1001 1011

XOR

𝑥 0000 0000 0000 0000 ... 1111

𝑦 0000 0001 0010 0011 ... 1111

𝑧 0000 0001 0010 0011 ... 0000

1. Define a public table 𝑇 = 𝑥, 𝑦, 𝑧 𝑥, 𝑦 ∈ 0,… , 15 , 𝑧 = 𝑥 ⊕ 𝑦}

46

Lookup Arguments

• Constraints of XORing two 8-bit integers (𝑐 = 𝑎 ⊕ 𝑏) in ZKP w/ lookup:

𝑎 = 0100 1001

𝑏 = 1101 0010

𝑐 = 1001 1011

XOR

1. Define a public table 𝑇 = 𝑥, 𝑦, 𝑧 𝑥, 𝑦 ∈ 0,… , 15 , 𝑧 = 𝑥 ⊕ 𝑦}
2. 4-bit decomposition of 𝑎, 𝑏, 𝑐: 3 add gates

𝑎 = 160𝑎0 + 161𝑎1
𝑏 = 160𝑏0 + 161𝑏1
𝑐 = 160𝑐0 + 161𝑐1

47

Lookup Arguments

• Constraints of XORing two 8-bit integers (𝑐 = 𝑎 ⊕ 𝑏) in ZKP w/ lookup:

𝑎 = 0100 1001

𝑏 = 1101 0010

𝑐 = 1001 1011

XOR

1. Define a public table 𝑇 = 𝑥, 𝑦, 𝑧 𝑥, 𝑦 ∈ 0,… , 15 , 𝑧 = 𝑥 ⊕ 𝑦}
2. 4-bit decomposition of 𝑎, 𝑏, 𝑐: 3 add gates
3. 𝑎𝑖 , 𝑏𝑖 ∈ 0,… , 15 and 𝑐𝑖 = 𝑎𝑖 ⊕𝑏𝑖: 2 lookup gates

(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) ∈ 𝑇 for 0 ≤ 𝑖 ≤ 1

3 add gates & 2 lookup gates → 5 gates in total (w/o lookup : 49 gates)

48

Security Analysis

• CICO (Constrained-input constrained-output) problem:

• Find 𝑥1, … , 𝑥𝑡−1, 𝑦1, … , 𝑦𝑡−1 such that 𝑃 𝑥1, … , 𝑥𝑡 = (𝑦1, … , 𝑦𝑡) for given

permutation 𝑃

• Once an attacker find those 𝑥1, … , 𝑥𝑡−1, 𝑦1, … , 𝑦𝑡−1 , attacker can

mount preimage/collision attack against the hash function derived

from the permutation

Lin

S S S

Lin

S S S

Lin

S S S

Lin

S S S

Lin

𝑥1 𝑥2 0

𝑦1 𝑦2 0

49

Security Analysis

• Bypassing the First Round

• Generic attack on hash functions constructed with sponge construction and SPN

networks

• By properly setting the output of the first S-box layer, the condition 𝑥𝑡 = 0 is automatically

satisfied

• The number of S-boxes the attacker has to guess is reduced from 𝑡𝑅 to 𝑡 𝑅 − 1

• Algebraic complexity is 𝑚𝑡(𝑅−1) × 𝐶, where 𝐶 is the complexity of solving equation (𝐶 ≈ 220)

50

Conditions of Permutation 𝝈

• 1. Interpolating polynomial of 𝑇 = 𝑔𝑟(𝑝−1)/𝑚, 𝑔𝑟+𝑟𝑚+𝜎 𝑟 | 0 ≤ 𝑟 < 𝑚 ∪ { 0,0 }

is dense and has max degree 𝑚

• 2. Interpolating polynomial of 𝑇 = 𝑔𝑟 , 𝑔𝑟𝑚+𝜎 𝑟 0 ≤ 𝑟 < 𝑚} ∪ { 0,0 } is

dense and has max degree 𝑚

	슬라이드 1: Polocolo: A ZK-Friendly Hash Function Based on S-boxes Using Power Residues Eurocrypt 2025 Jincheol Ha, Seongha Hwang, Jooyoung Lee, Seungmin Park, and Mincheol Son KAIST
	슬라이드 2
	슬라이드 3: Zero-knowledge Proof
	슬라이드 4: ZK-Unfriendly Operations
	슬라이드 5: ZK-Friendly Hash Functions
	슬라이드 6: ZK-Friendly Hash Functions
	슬라이드 7: Lookup Arguments
	슬라이드 8: Plonkup
	슬라이드 9
	슬라이드 10: Motivation
	슬라이드 11: Motivation
	슬라이드 12: Our Contribution
	슬라이드 13
	슬라이드 14: Power Residue Method
	슬라이드 15: Power Residue Method
	슬라이드 16: Power Residue Method
	슬라이드 17: Power Residue Method
	슬라이드 18: A new S-Box from Power Residue
	슬라이드 19: A new S-Box from Power Residue
	슬라이드 20: A new S-Box from Power Residue
	슬라이드 21: A new S-Box from Power Residue
	슬라이드 22: A new S-Box from Power Residue
	슬라이드 23: Plonk Constraints for a S-Box
	슬라이드 24: Efficient Linear Layers
	슬라이드 25: Efficient Linear Layers
	슬라이드 26: Heuristic Approach
	슬라이드 27: Heuristic Approach
	슬라이드 28: Heuristic Approach
	슬라이드 29: Heuristic Approach
	슬라이드 30: Heuristic Approach
	슬라이드 31: Efficient Linear Layers
	슬라이드 32: Efficient Linear Layers
	슬라이드 33: Plonk Gates of Linear Layers
	슬라이드 34: Polocolo Hash Function
	슬라이드 35: Security Analysis
	슬라이드 36
	슬라이드 37: Plonk cost
	슬라이드 38
	슬라이드 39: Conclusion
	슬라이드 40
	슬라이드 41
	슬라이드 42: ZK-Unfriendly Operations
	슬라이드 43: ZK-Unfriendly Operations
	슬라이드 44: ZK-Unfriendly Operations
	슬라이드 45: Lookup Arguments
	슬라이드 46: Lookup Arguments
	슬라이드 47: Lookup Arguments
	슬라이드 48: Security Analysis
	슬라이드 49: Security Analysis
	슬라이드 50: Conditions of Permutation 굵게 기울임꼴 시그마

