Polocolo: A ZK-Friendly Hash Function Based on S-boxes Using Power Residues Eurocrypt 2025 Jincheol Ha, Seongha Hwang, Jooyoung Lee, Seungmin Park, and Mincheol Son **KAIST**

Background

Zero-knowledge Proof

- A two-party cryptographic protocol between a prover and a verifier that allows the prover to convince the verifier of their knowledge without revealing itself
- "I know the input x, which satisfies $SHA256(x) = 000 \dots 0$ "

ZK-Unfriendly Operations

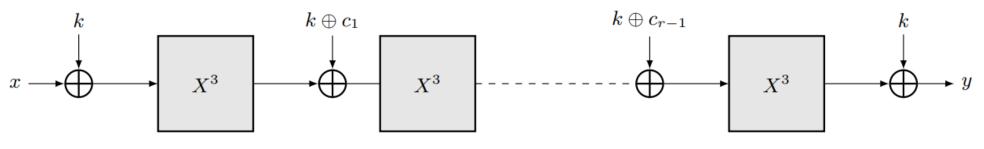
- Some operations are highly inefficient in ZKP (e.g., Compare, AND, XOR)
 - Common ZKP supports only addition/multiplication in \mathbb{F}_p (256-bit prime field in ours)
- Constraints of XORing two 8-bit integers ($c = a \oplus b$) in ZKP:

1. Bit decomposition of a, b, c: 21 add gates 2. $a_i, b_i \in \{0,1\}$: 16 mul gates 3. $c_i = a_i \bigoplus b_i$: 8 add gates & 4 mul gates

29 add gates & 20 mult gates \rightarrow 49 gates in total

ZK-Friendly Hash Functions

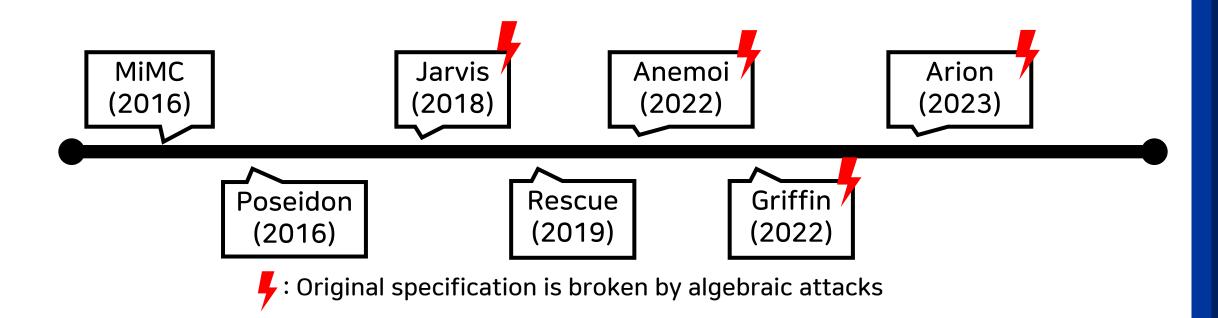
- Standardized hash functions (e.g., SHA2, SHA3) are inefficient in ZKP
- Lead to the invention of ZK-friendly hash functions
- ZK-friendly hash functions consist of add/mul in \mathbb{F}_p
- Compared to SHA2 and SHA3, ZK-friendly hash functions use 50-100x fewer gates in ZKP



MiMC illustration. Images from the original paper.

ZK-Friendly Hash Functions

• Due to their simple structures over \mathbb{F}_p , they are often vulnerable to algebraic attacks



Lookup Arguments

- Using lookup arguments, a prover can demonstrate a witness e belongs to a public table T
- Lookup operations allow "ZK-unfriendly" operations to be handled more efficiently
- Constraints of XORing two 8-bit integers ($c = a \oplus b$) in ZKP w/ lookup:

1. Define a public table $T = \{(x, y, z) \mid x, y \in \{0, ..., 15\}, z = x \oplus y\}$ $a = 0100\ 1001$ 2. 4-bit decomposition of a, b, c: 3 add gates $b = 1101\ 0010$ 3. $a_i, b_i \in \{0, ..., 15\}$ and $c_i = a_i \oplus b_i$: 2 lookup gates $b = 1101\ 0010$ --- XOR - --

 $c = 1001\ 1011$

3 add gates & 2 lookup gates \rightarrow 5 gates in total (w/o lookup : 49 gates)

Plonkup

- Polocolo mainly focuses on Plonkup, an extension of Plonk
- Supported gates in Plonkup:
 - add/mul in \mathbb{F}_p (natively supported in Plonk)
 - table lookup
- In Plonkup, the prover's complexity is proportional to

max{number of gates, table size}

 The efficiency metric is the total number of gates in the Plonkup (= Plonk gates)

Motivation & Our Contribution

Motivation

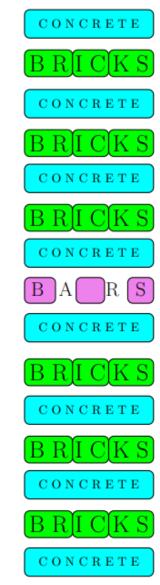
- Algebraically complex operation can be implemented by table lookups, provide resistance to algebraic attacks
- Reinforced Concrete (CCS'22) hash function uses the "base expansion method" to apply table lookup
 - An input $x \in \mathbb{F}_p$ is decomposed into an *n*-tuple $(x_1, \dots, x_n) \in \mathbb{Z}_{1024} \times \dots \times \mathbb{Z}_{1024}$
 - Each component is fed to the underlying S-box $\mathbb{Z}_{1024} \to \mathbb{Z}_{1024}$ using lookup table

 $x = 1024^{n-1}x_1 + \dots + x_n$ Decompose *x* x_1 χ_2 x_n . . . $(x_i, y_i) \in T$ y_2 y_n . . . \bigcup Compose y $y = 1024^{n-1}y_1 + \dots + y_n$

> Bar function $bar : \mathbb{F}_p \to \mathbb{F}_p$ in Reinforced Concrete

Motivation

- Layers in Reinforced Concrete:
 - Linear layer (Concrete): 5 gates
 - Nonlinear layer (Bricks): 8 gates
 - Table lookup layer (Bars): 282 gates
- Only 1 layer out of the 15 layers uses lookup operation, it accounts 75% of Plonk gates
- Reducing the cost of applying a lookup table and iterating it over multiple rounds can enhance security and efficiency



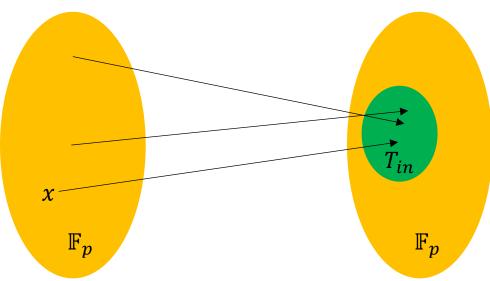
Reinforced Concrete illustration. Images from the original paper.

Our Contribution

- We propose Polocolo (<u>Power residue for lower cost table lookup</u>), a new lookup-based ZK-friendly hash function
 - An S-box is constructed using the "power residue method", which allows one to efficiently apply a lookup table to the elements of \mathbb{F}_p
 - A linear layer uses a new MDS matrix, optimized for Plonk circuits
- Polocolo requires fewer Plonk gates compared to the state-of-the-art ZKfriendly hash functions:
 - 21% fewer Plonk gates compared to Anemoi (when $\mathbb{F}_p^8 \to \mathbb{F}_p^8$)
 - 24% fewer Plonk gates compared to Reinforced Concrete (when $\mathbb{F}_p^3 \to \mathbb{F}_p^3$)

Polocolo Hash Function

- To insert an element $x \in \mathbb{F}_p$ into the table T, the function $f: \mathbb{F}_p \to T_{in}$ is required
 - In other words, the size of the range of *f* should be limited
 - Typically, $|T| \approx 1024$
 - In Reinforced Concrete, f(x) = x%1024



- For a multiplicative generator g, an element $x \in \mathbb{F}_p \setminus \{0\}$ can be represented as $x = g^e$ for some exponent $0 \le e$
- For an integer m such that $m \mid p-1$, let e = qm + r ($0 \le q < \frac{p-1}{m}$, $0 \le r < m$)

x	е	q	r
$1(=g^{0})$	0	0	0
$7(=g^1)$	1	0	1
$10(=g^2)$	2	0	2
$ \begin{array}{c} 4(=g^{10}) \\ 2(=g^{11}) \end{array} $	10	2	2
$2(=g^{11})$	11	2	3

Examples for p = 13, g = 7, m = 4

- For each x, the remainder r has m different values
- f(x) = r works, but infeasible to compute function f efficiently
- Solution) $f(x) = x^{(p-1)/m} = g^{r(p-1)/m}$, determined by r

x	е	q	r	$f(x) = x^{(p-1)/m}$
$1(=g^{0})$	0	0	0	1
$7(=g^1)$	1	0	1	5
$10(=g^2)$	2	0	2	12
$4(=g^{10})$	10	2	2	12
$2(=g^{11})$	11	2	3	8

Examples for p = 13, g = 7, m = 4

• $f(x) = x^{(p-1)/m}$ is a *m*-th power residue of *x*:

$$\left(\frac{x}{p}\right)_m = x^{(p-1)/m}$$

• Our new S-box $S : \mathbb{F}_p \to \mathbb{F}_p$ is defined as

$$S(x) = x^{-1} \cdot T\left[\left(\frac{x}{p}\right)_m\right]$$

• Step 0:

$$g^{0} g^{1} g^{2} g^{3} g^{4} g^{5} g^{6} g^{7} g^{8} g^{9} g^{10} g^{11}$$

 $g^{0} g^{1} g^{2} g^{3} g^{4} g^{5} g^{6} g^{7} g^{8} g^{9} g^{10} g^{11}$

$$S(g^{qm+r}) = g^{qm+r}$$

• Step 1:

• σ is a permutation on $\{0, \dots, m-1\}$.

• Step 2:

• σ is a permutation on $\{0, \dots, m-1\}$.

• Step 3:

$$g^{0} g^{1} g^{2} g^{3} g^{4} g^{5} g^{6} g^{7} g^{8} g^{9} g^{10} g^{11}$$

$$g^{2} g^{4} g^{11} g^{1} g^{10} g^{0} g^{7} g^{9} g^{6} g^{8} g^{3} g^{5}$$

$$S(g^{qm+r}) = g^{-qm+rm+\sigma(r)}$$

• σ is a permutation on $\{0, \dots, m-1\}$.

• The S-box in Polocolo:

 $S(x) = g^{-qm+rm+\sigma(r)}$

- $m \in \{32, 64, 128, 256, 512, 1024\}$
- σ is randomly chosen, with "weak" permutations being discarded

•
$$g^{-qm+rm+\sigma(r)} = g^{-qm-r} \cdot g^{r+rm+\sigma(r)}$$

•
$$S(x) = x^{-1} \cdot T\left[\left(\frac{x}{p}\right)_{m}\right]$$
 where $T = \left\{\left(g^{r(p-1)/m}, g^{r+rm+\sigma(r)}\right) \mid 0 \le r < m\right\} \cup \{(0,0)\}$

Plonk Constraints for a S-Box

• Witnesses:

• $w_1 = g^q$

•
$$w_2 = g^n$$

•
$$w_3 = g^{-qm}$$

• $w_4 = g^{rm + \sigma(r)}$

- Constraints:
 - $x = w_1^m \times w_2$ (log m + 1 mult gates)
 - $w_1^m \times w_3 = 1$ (1 mult gate)
 - $(w_2, w_4) \in T$ (1 lookup gate) where $T = \{ (g^r, g^{rm + \sigma(r)}) | 0 \le r < m \} \cup \{ (0,0) \}$
 - $w_3 \times w_4 = 1$ (1 mult gate)

 $\log m + 3$ mul gates & 1 table lookup $\rightarrow \log m + 4$ gates in total

Efficient Linear Layers

 In general, linear layers in ZK-friendly hash function are defined as follows:

 $LinLayer(\vec{x}) = M \times \vec{x} + \vec{c}$

- The constant \vec{c} is randomly chosen
- The matrix *M* is MDS (Maximum Distance Separable) matrix

Efficient Linear Layers

• Multiplying a matrix *M* requires t(t-1) add gates:

•
$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 + x_3 \\ x_1 + 2x_2 + x_3 \\ x_1 + x_2 + 2x_3 \end{pmatrix}$$
, 6 gates

• Depending on the matrix, multiplying a matrix *M* can be done efficiently:

•
$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} s + x_1 \\ s + x_2 \\ s + x_3 \end{pmatrix}$$
, where $s = x_1 + x_2 + x_3$, 5 gates

• Find a matrix *M* with fewer add gates in $M \times \vec{x}$

Coeffs	witnesses
$(1 \ 0 \ 0 \ 0)$	<i>x</i> ₁
$(0 \ 1 \ 0 \ 0)$	<i>x</i> ₂
$(0 \ 0 \ 1 \ 0 \ 0)$	<i>x</i> ₃
$(0 \ 0 \ 0 \ 1 \ 0)$	x_4
$(0 \ 0 \ 0 \ 0 \ 1)$	<i>x</i> ₅

• New witness is chosen by adding two randomly chosen witnesses

Coeffs	witnesses
$(1 \ 0 \ 0 \ 0)$	<i>x</i> ₁
$(0 \ 1 \ 0 \ 0)$	<i>x</i> ₂
$(0 \ 0 \ 1 \ 0 \ 0)$	x_3
$(0 \ 0 \ 0 \ 1 \ 0)$	x_4
$(0 \ 0 \ 0 \ 0 \ 1)$	<i>x</i> ₅
$(6 \ 1 \ 0 \ 0 \ 0)$	$w_1 = 6x_1 + x_2$

_

• New witness is chosen by adding two randomly chosen witnesses

Coeffs	witnesses
$(1 \ 0 \ 0 \ 0)$	<i>x</i> ₁
$(0 \ 1 \ 0 \ 0 \ 0)$	x_2
$(0 \ 0 \ 1 \ 0 \ 0)$	<i>x</i> ₃
$(0 \ 0 \ 0 \ 1 \ 0)$	x_4
$(0 \ 0 \ 0 \ 0 \ 1)$	x_5
$(6 \ 1 \ 0 \ 0 \ 0)$	$w_1 = 6x_1 + x_2$
$(0 \ 0 \ 2 \ 4 \ 0)$	$w_2 = 2x_3 + 4x_4$

-

• New witness is chosen by adding two randomly chosen witnesses

Coeffs	witnesses
$(1 \ 0 \ 0 \ 0)$	x_1
$(0 \ 1 \ 0 \ 0 \ 0)$	x_2
$(0 \ 0 \ 1 \ 0 \ 0)$	<i>x</i> ₃
$(0 \ 0 \ 0 \ 1 \ 0)$	x_4
$(0 \ 0 \ 0 \ 0 \ 1)$	<i>x</i> ₅
$(6 \ 1 \ 0 \ 0 \ 0)$	$w_1 = 6x_1 + x_2$
$(0 \ 0 \ 2 \ 4 \ 0)$	$w_2 = 2x_3 + 4x_4$
(3 0 0 0 8)	$w_3 = 3x_1 + 8x_5$

-

• New witness is chosen by adding two randomly chosen witnesses

Coeffs	witnesses
$(1 \ 0 \ 0 \ 0)$	x_1
$(0 \ 1 \ 0 \ 0)$	<i>x</i> ₂
$(0 \ 0 \ 1 \ 0 \ 0)$	<i>x</i> ₃
$(0 \ 0 \ 0 \ 1 \ 0)$	x_4
$(0 \ 0 \ 0 \ 0 \ 1)$	x_5
$(6 \ 1 \ 0 \ 0)$	$w_1 = 6x_1 + x_2$
$(0 \ 0 \ 2 \ 4 \ 0)$	$w_2 = 2x_3 + 4x_4$
$(3 \ 0 \ 0 \ 8)$	$w_3 = 3x_1 + 8x_5$
(48 8 6 12 0)	$w_4 = 8w_1 + 3w_2$

Efficient Linear Layers

• Generate enough witnesses

Coeffs	witnesses
$(1 \ 0 \ 0 \ 0)$	<i>x</i> ₁
$(0 \ 1 \ 0 \ 0 \ 0)$	<i>x</i> ₂
$(0 \ 0 \ 1 \ 0 \ 0)$	<i>x</i> ₃
$(0 \ 0 \ 0 \ 1 \ 0)$	x_4
$(0 \ 0 \ 0 \ 0 \ 1)$	<i>x</i> ₅
$(6 \ 1 \ 0 \ 0 \ 0)$	$w_1 = 6x_1 + x_2$
$(0 \ 0 \ 2 \ 4 \ 0)$	$w_2 = 2x_3 + 4x_4$
$(3 \ 0 \ 0 \ 0 \ 8)$	$w_3 = 3x_1 + 8x_5$
(48 8 6 12 0)	$w_4 = 8w_1 + 3w_2$
(39 6 10 28 8)	$w_9 = w_7 + w_5$
$(174 \ 28 \ 32 \ 80 \ 16)$	$w_{10} = 2w_4 + 2w_9$
(348 58 42 84 2)	$w_{11} = 2w_8 + 7w_4$
(39 4 54 100 44)	$w_{12} = w_6 + 2w_8$
(204 20 300 560 244)	$w_{13} = 3w_5 + 5w_{12}$

Efficient Linear Layers

• Check if the matrix created by the last t witnesses is an MDS

Coeffs	witnesses	_					
	<i>x</i> ₁	_					
$(0 \ 1 \ 0 \ 0)$	<i>x</i> ₂						
$(0 \ 0 \ 1 \ 0 \ 0)$	<i>x</i> ₃	/ 39 6	10	28	8 \	$\langle x_1 \rangle$	$\langle W_1 \rangle$
$(0 \ 0 \ 0 \ 1 \ 0)$	x_4	174 28	32	80	16	$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$	$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$
$(0 \ 0 \ 0 \ 0 \ 1)$	x_5	348 58	42	84	2	x_3^2	$= \begin{bmatrix} u_3 \end{bmatrix}$
$(6 \ 1 \ 0 \ 0 \ 0)$	$w_1 = 6x_1 + x_2$	39 4	54	100	44	x_4	w_4
$(0 \ 0 \ 2 \ 4 \ 0)$	$w_2 = 2x_3 + 4x_4$	204 20	300	560	244/	$\left x_{5} \right $	$\left\langle w_{5}\right\rangle$
$(3 \ 0 \ 0 \ 0 \ 8)$	$w_3 = 3x_1 + 8x_5$	<u>,</u>				(-)	(-)
(48 8 6 12 0)	$w_4 = 8w_1 + 3w_2$	13 ado	lition	gates	(naive	: 20 g	gates)
(39 6 10 28 8)	$w_9 = w_7 + w_5$						
$(174 \ 28 \ 32 \ 80 \ 16)$	$w_{10} = 2w_4 + 2w_9$						
(348 58 42 84 2)	$w_{11} = 2w_8 + 7w_4$						
(39 4 54 100 44)	$w_{12} = w_6 + 2w_8$						
(204 20 300 560 244)	$w_{13} = 3w_5 + 5w_{12}$						

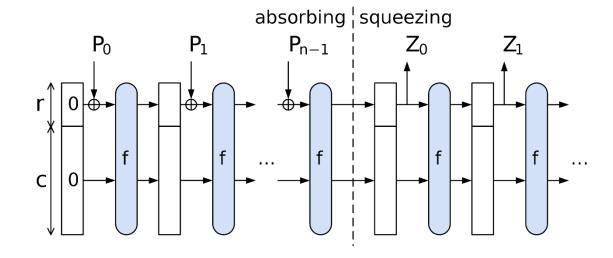
Plonk Gates of Linear Layers

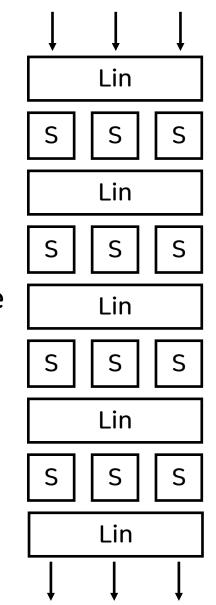
Hash functions	<i>t</i> = 3	t = 4	t = 5	t = 6	t = 7	t = 8
Polocolo	5	8	13	17	24	31
Reinforced Concrete	5	-	-	-	-	_
Rescue	6	12	20	30	42	56
Poseidon	6	12	20	30	42	56
Poseidon2	5	8	-	-	-	24
Griffin	5	8	-	-	-	24
Arion	6	12	16	20	24	28

"-" is used to indicate that the hash function is not defined for the given tRed color is used to indicate that the corresponding matrix is not MDS

Polocolo Hash Function

- Designing a Polocolo^π permutation using SPN structure:
 - ✓ Lin: A linear layer with a plonk-optimized matrix
 - \checkmark S: S-box using the power residue method
- The permutation is converted to hash function using sponge construction





Security Analysis

- Statistical Attacks:
 - 4 rounds are sufficient to provide security
 - Include an additional 1 round as a security margin
- Algebraic Attacks:
 - Guessing power residues for each S-box is the most efficient
 - Our parameter selection ensures that the complexity of attack is at least 2¹⁶⁰

Performance

Plonk cost

Functions	<i>t</i> = 3	t = 4	<i>t</i> = 6	<i>t</i> = 8	Security margin
Polocolo	287	328	432	546	
Reinforced Concrete	378	-	-	-	
Poseidon2	557	718	-	1416	0
Rescue-Prime	420	528	768	1280	
Anemoi	_	340	490	688	
Polocolo (tight)	240	264	349	475	
Griffin	243	348	-	960	×
Arion	262	341	531	622	

"-" is used to indicate that the hash function is not defined for the given t

Conclusion

Conclusion

- We present a new ZK-friendly hash function Polocolo, based on the power residue method
- Polocolo achieves the smallest Plonk costs to existing schemes in this category
- We believe that the power residue method and the new linear layer optimized for Plonk can be applied to other ZK-friendly hash functions
- Third party analysis is always welcome: building an efficient system of equations against power residue method helps to understand the security of Polocolo accurately

Thank you!

Appendix

ZK-Unfriendly Operations

- Some operations are highly inefficient in ZKP (e.g., Compare, AND, XOR)
 - Common ZKP supports only addition/multiplication in \mathbb{F}_p (256-bit prime field in ours)
- Constraints of XORing two 8-bit integers ($c = a \oplus b$) in ZKP:
 - 1. Bit decomposition of *a*, *b*, *c*: 21 add gates

 $a = 2^{0}a_{0} + 2^{1}a_{1} + \dots + 2^{7}a_{7}$ $b = 2^{0}b_{0} + 2^{1}b_{1} + \dots + 2^{7}b_{7}$ $c = 2^{0}c_{0} + 2^{1}c_{1} + \dots + 2^{7}c_{7}$

ZK-Unfriendly Operations

- Some operations are highly inefficient in ZKP (e.g., Compare, AND, XOR)
 - Common ZKP supports only addition/multiplication in \mathbb{F}_p (256-bit prime field in ours)
- Constraints of XORing two 8-bit integers ($c = a \oplus b$) in ZKP:

1. Bit decomposition of a, b, c: 21 add gates 2. $a_i, b_i \in \{0,1\}$: 16 mul gates

 $a_i \times (1 - a_i) = 0$ for $0 \le i \le 7$ $b_i \times (1 - b_i) = 0$ for $0 \le i \le 7$ $a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}$ $a = 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1$ $b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}$ $b = 1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0$ $- \frac{XOR}{c_{7} c_{6} c_{5} c_{4} c_{3} c_{2} c_{1} c_{0}}$ $c = 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1$

ZK-Unfriendly Operations

- Some operations are highly inefficient in ZKP (e.g., Compare, AND, XOR)
 - Common ZKP supports only addition/multiplication in \mathbb{F}_p (256-bit prime field in ours)
- Constraints of XORing two 8-bit integers ($c = a \oplus b$) in ZKP:

1. Bit decomposition of a, b, c: 21 add gates 2. $a_i, b_i \in \{0,1\}$: 16 mul gates 3. $c_i = a_i \bigoplus b_i$: 8 add gates & 4 mul gates

 $c_i = a_i + b_i - 2a_i \times b_i$ for $0 \le i \le 3$

29 add gates & 20 mult gates \rightarrow 49 gates in total

Lookup Arguments

- Constraints of XORing two 8-bit integers ($c = a \oplus b$) in ZKP w/ lookup:
 - **1.** Define a public table $T = \{(x, y, z) | x, y \in \{0, ..., 15\}, z = x \oplus y\}$

x	0000	0000	0000	0000	 1111
У	0000	0001	0010	0011	 1111
Z	0000	0001	0010	0011	 0000

 $a = 0100 \ 1001$ $b = 1101 \ 0010$ - - XOR - - $c = 1001 \ 1011$

Lookup Arguments

• Constraints of XORing two 8-bit integers ($c = a \oplus b$) in ZKP w/ lookup:

1. Define a public table $T = \{(x, y, z) | x, y \in \{0, ..., 15\}, z = x \bigoplus y\}$ 2. 4-bit decomposition of a, b, c: 3 add gates

 $a = 16^{0}a_{0} + 16^{1}a_{1}$ $b = 16^{0}b_{0} + 16^{1}b_{1}$ $c = 16^{0}c_{0} + 16^{1}c_{1}$

Lookup Arguments

• Constraints of XORing two 8-bit integers ($c = a \oplus b$) in ZKP w/ lookup:

1. Define a public table $T = \{(x, y, z) \mid x, y \in \{0, ..., 15\}, z = x \bigoplus y\}$ 2. 4-bit decomposition of a, b, c: 3 add gates 3. $a_i, b_i \in \{0, ..., 15\}$ and $c_i = a_i \bigoplus b_i$: 2 lookup gates

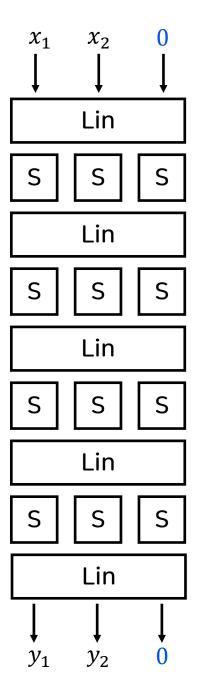
 $(a_i, b_i, c_i) \in T$ for $0 \le i \le 1$

 $a = 0100\ 1001$ $b = 1101\ 0010$ - - XOR - - $c = 1001\ 1011$

3 add gates & 2 lookup gates \rightarrow 5 gates in total (w/o lookup : 49 gates)

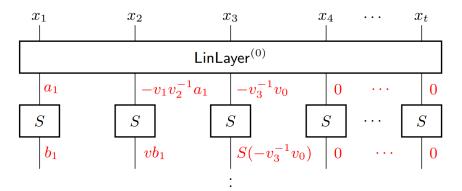
Security Analysis

- CICO (Constrained-input constrained-output) problem:
 - Find $x_1, \dots, x_{t-1}, y_1, \dots, y_{t-1}$ such that $P(x_1, \dots, x_t) = (y_1, \dots, y_t)$ for given permutation P
 - Once an attacker find those $x_1, ..., x_{t-1}, y_1, ..., y_{t-1}$, attacker can mount preimage/collision attack against the hash function derived from the permutation



Security Analysis

- Bypassing the First Round
 - Generic attack on hash functions constructed with sponge construction and SPN networks
 - By properly setting the output of the first S-box layer, the condition $x_t = 0$ is automatically satisfied
 - The number of S-boxes the attacker has to guess is reduced from tR to t(R-1)
 - Algebraic complexity is $m^{t(R-1)} \times C$, where C is the complexity of solving equation ($C \approx 2^{20}$)



Conditions of Permutation σ

- 1. Interpolating polynomial of $T = \{(g^{r(p-1)/m}, g^{r+rm+\sigma(r)}) | 0 \le r < m\} \cup \{(0,0)\}$ is dense and has max degree m
- 2. Interpolating polynomial of $T = \{(g^r, g^{rm+\sigma(r)}) | 0 \le r < m\} \cup \{(0,0)\}$ is dense and has max degree m