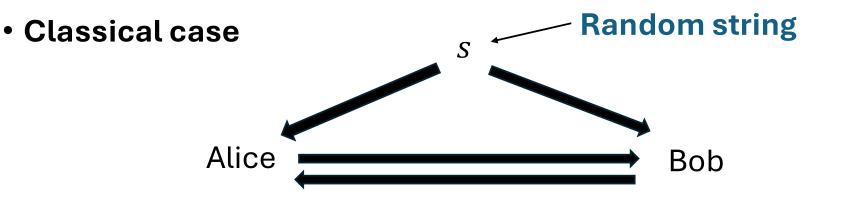
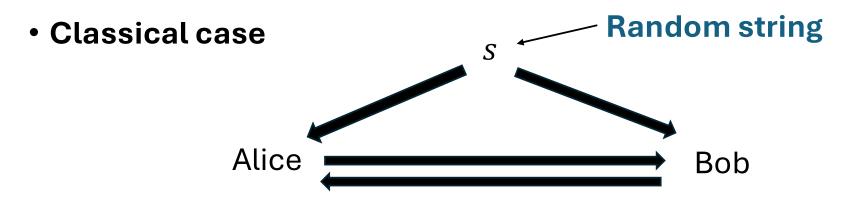
Quantum Pseudorandomness from a Single Haar Random State

Boyang Chen (Tsinghua University)

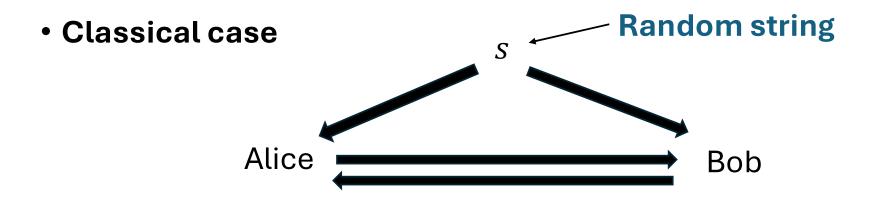
Andrea Coladangelo (University of Washington)

Or Sattath (Ben-Gurion University)



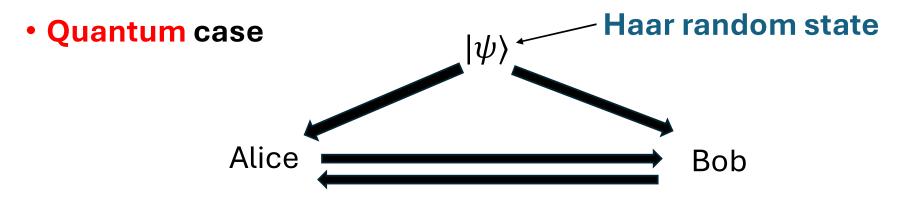


No unconditional cryptography in the common random string model

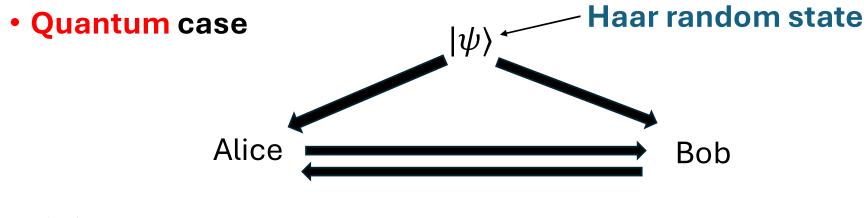


No unconditional cryptography in the common random string model





state model exists!!



state model exists!!

This model is called the common Haar random state model (abbreviated as the CHRS model).

Pseudorandom states

Definition(Adapted from [Ji-Liu-Song 17])

An *m*-qubit state family $|\phi_k\rangle$ is ℓ -pseudorandom state family (PRS) if:

- $|\phi_k\rangle$ can be efficiently prepared given $k \in \{0,1\}^n$
- For any adversary ${\mathcal A}$

$$\Pr_{k \sim \{0,1\}^n} \left[\mathcal{A}\left(|\phi_k\rangle^{\otimes \ell} \right) = 1 \right] - \Pr_{|\phi\rangle \leftarrow Haar} \left[\mathcal{A}\left(|\phi\rangle^{\otimes \ell} \right) = 1 \right] \le negl(n)$$

Pseudorandom states

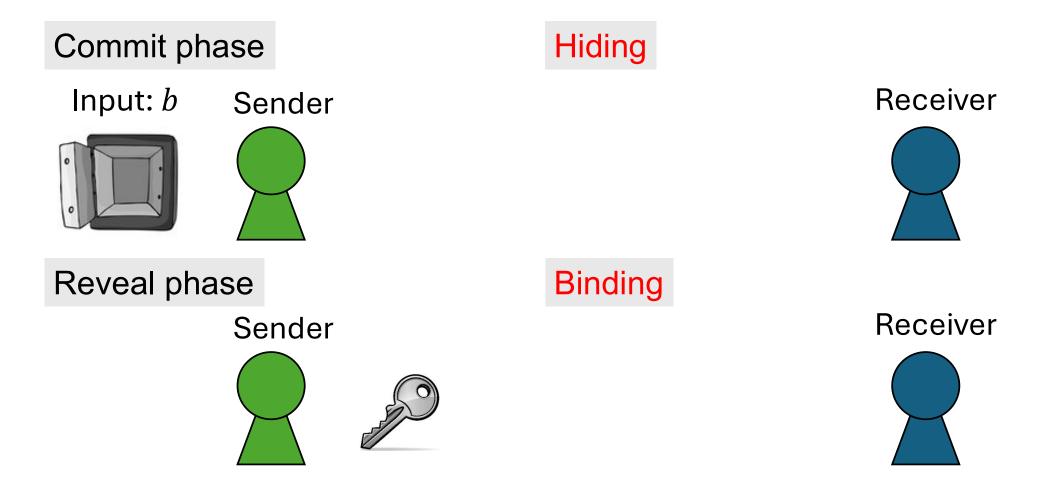
Definition(Adapted from [Ji-Liu-Song 17])

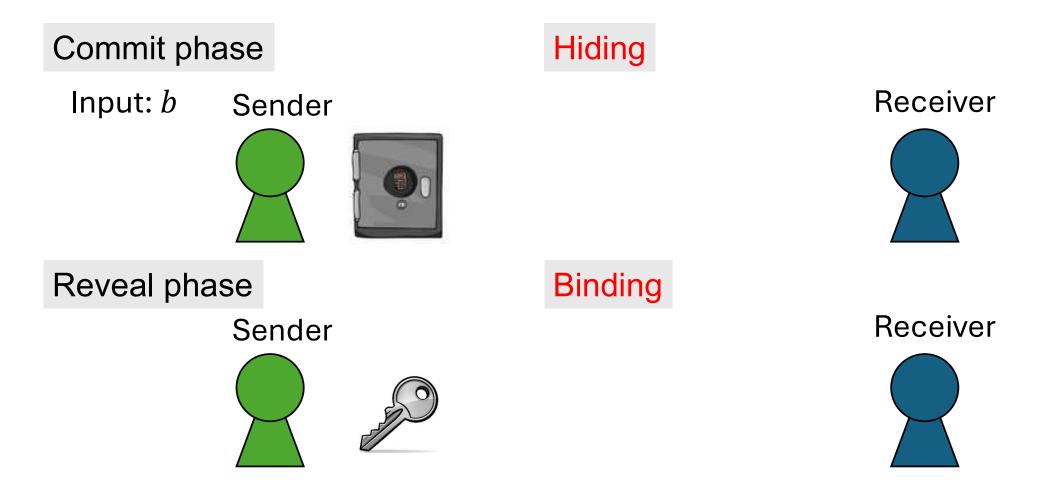
An *m*-qubit state family $|\phi_k\rangle$ is ℓ -pseudorandom state family (PRS) if:

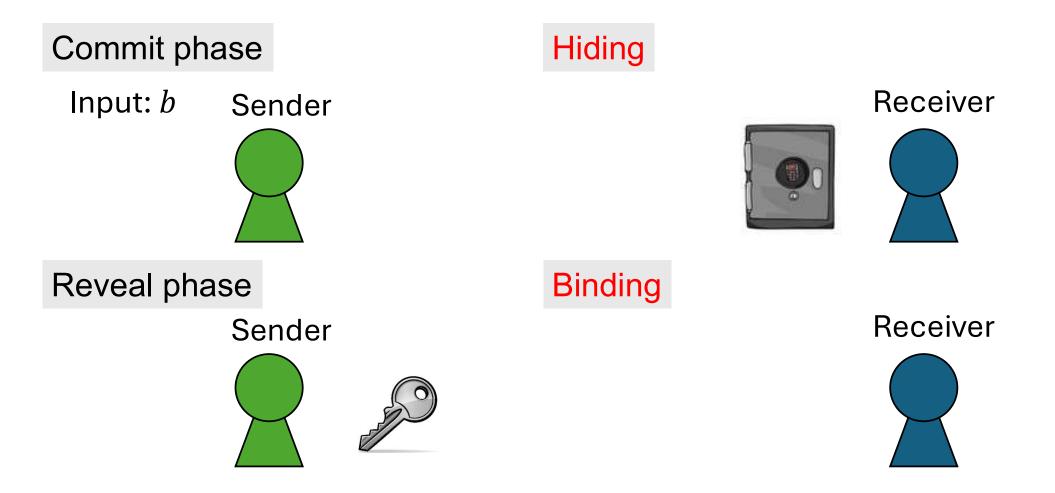
- $|\phi_k\rangle$ can be efficiently prepared given $k \in \{0,1\}^n$
- For any adversary ${\mathcal A}$

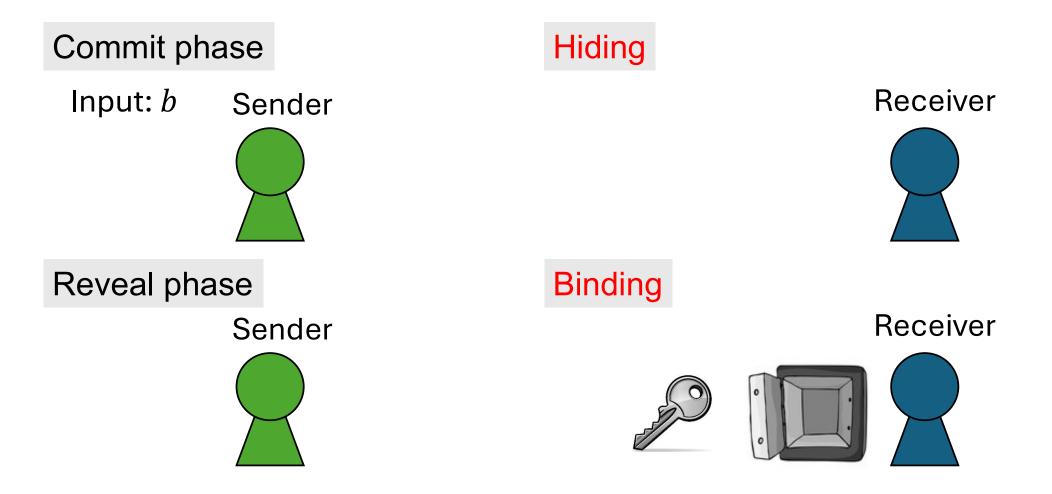
$$\Pr_{k \sim \{0,1\}^n} \left[\mathcal{A}\left(|\phi_k\rangle^{\otimes \ell} \right) = 1 \right] - \Pr_{|\phi\rangle \leftarrow Haar} \left[\mathcal{A}\left(|\phi\rangle^{\otimes \ell} \right) = 1 \right] \le negl(n)$$

- As a special case, a 1PRS family is such that: a single copy of the state is computationally indistinguishable from a totally mixed state.
- Stretch: A 1-copy pseudorandom state family is nontrivial only if m > n.









Commitment from 1PRS

Theorem [Morimae-Yamakawa'22, Morimae-Nehoran-Yamakawa'24]

1PRS implies quantum bit commitment.

Pseudorandom states

Definition

An *m*-qubit state family $|\phi_k\rangle$ is ℓ -pseudorandom state family (PRS) if:

- $|\phi_k\rangle$ can be efficiently prepared given $k \in \{0,1\}^n$
- For any adversary ${\mathcal A}$

$$\Pr_{k \sim \{0,1\}^n} [\mathcal{A}(|\phi_k\rangle^{\otimes \ell})] = 1] - \Pr_{|\phi\rangle \leftarrow Haar} [\mathcal{A}(|\phi\rangle^{\otimes \ell})] = 1] \le \operatorname{negl}(n)$$

- As a special case, a 1PRS family is such that: a single copy of the state is computationally indistinguishable from a totally mixed state.
- Stretch: A 1-copy pseudorandom state family is nontrivial only if m > n.

Pseudorandom states in the CHRS model

Definition

- An *m*-qubit state family $|\phi_k\rangle$ is ℓ -pseudorandom state family (PRS) if:
- $|\phi_k\rangle$ can be efficiently prepared given $k \in \{0,1\}^n$ and $|\psi\rangle^{\otimes poly}$
- For any adversary ${\mathcal A}$

 $\Pr_{k \sim \{0,1\}^n} \left[\mathcal{A}\left(|\phi_k\rangle^{\otimes \ell}, |\psi\rangle^{\otimes poly} \right) = 1 \right] - \Pr_{|\phi\rangle \leftarrow Haar} \left[\mathcal{A}\left(|\phi\rangle^{\otimes \ell}, |\psi\rangle^{\otimes poly} \right) = 1 \right] \le \operatorname{negl}(n)$

- As a special case, a 1PRS family is such that: a single copy of the state is computationally indistinguishable from a totally mixed state.
- Stretch: A 1-copy pseudorandom state family is nontrivial only if m > n.

Cryptography from 1PRS

Main theorem (informal)

1PRS exist unconditionally in the CHRS model

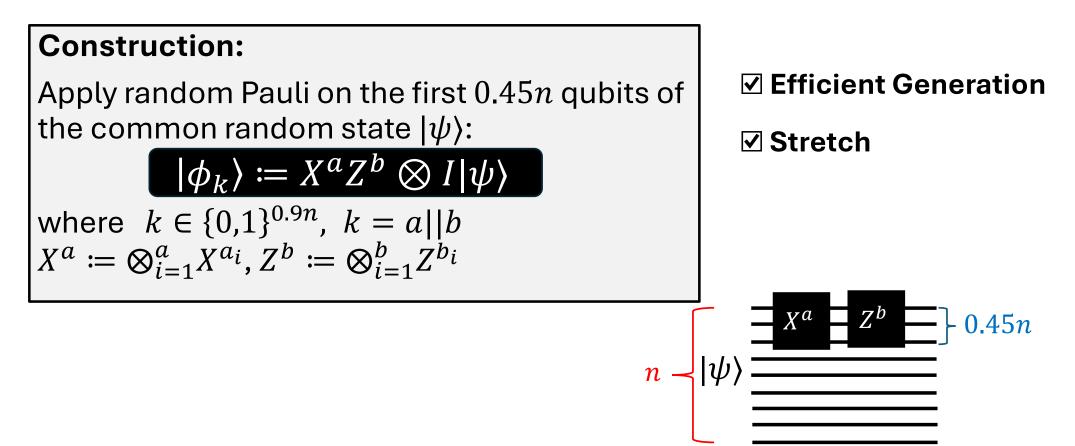
As a corollary, quantum bit commitment exists unconditionally in the CHRS model.

Construction of PRS

Construction of PRS

Construction: Apply random Pauli on the first 0.45*n* qubits of the common random state $|\psi\rangle$: $|\phi_k\rangle \coloneqq X^a Z^b \otimes I|\psi\rangle$ where $k \in \{0,1\}^{0.9n}$, k = a||b $X^a \coloneqq \bigotimes_{i=1}^a X^{a_i}, Z^b \coloneqq \bigotimes_{i=1}^b Z^{b_i}$ $n - |\psi\rangle$

Construction of PRS



Proof sketch

Statistical 1-copy Security

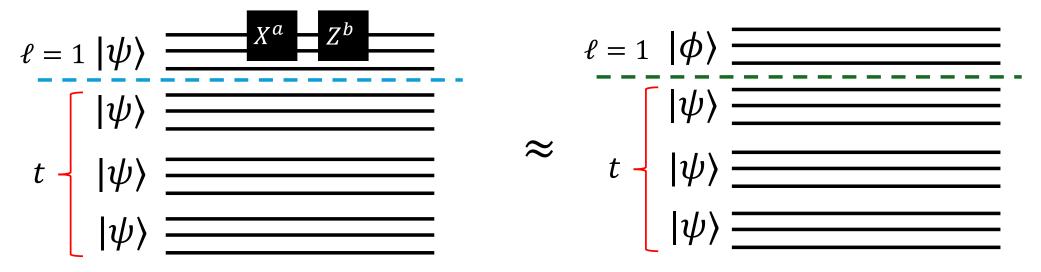
• What does 1-copy security mean?



• $X^a Z^b |\psi\rangle$ is indistinguishable from a fresh Haar random state $|\phi\rangle$

Statistical 1-copy Security

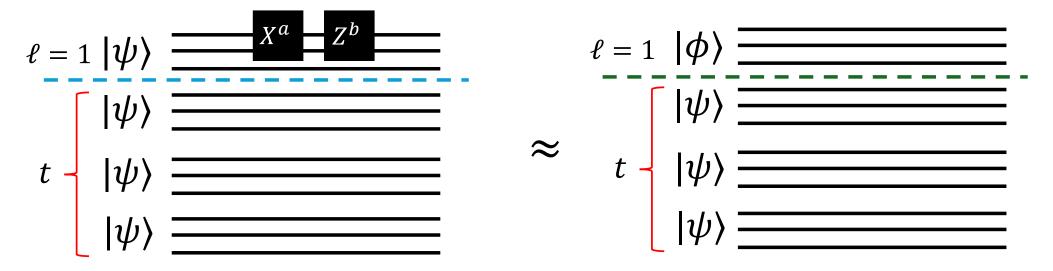
• What does 1-copy security mean *in the CHRS model*?



• $X^a Z^b |\psi\rangle$ is indistinguishable from a fresh Haar random state $|\phi\rangle$ even given polynomially many copies of $|\psi\rangle$

Statistical 1-copy Security

 $\sigma = \mathbf{E}_{k,|\psi\rangle}[(X^a Z^b \otimes I)|\psi\rangle\langle\psi|(X^a Z^b \otimes I) \otimes |\psi\rangle\langle\psi|^{\otimes t}] \quad \boldsymbol{\rho} = \mathbf{E}[|\phi\rangle\langle\phi|] \otimes \mathbf{E}[|\psi\rangle\langle\psi|^{\otimes t}]$



- We show: Trace distance (quantum analog of TVD of distributions) between σ and ρ is $O(t^2/1.01^n)$
- Approach: Approximate σ and ρ with maximally entangled state

Approximating ρ

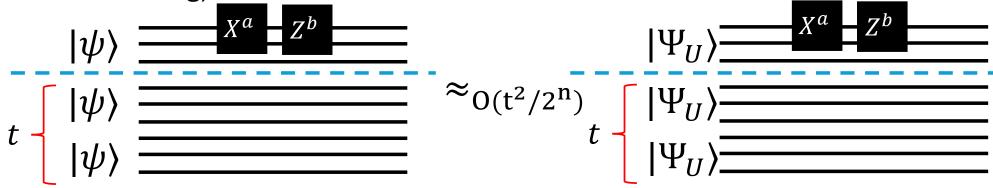
- t copies of an m-qubit Haar random state: $\mathbf{E}_{|\psi\rangle\leftarrow\mathrm{Haar}(2^n)}[|\psi\rangle\langle\psi|^{\otimes t}]$
- t copies of random maximally entangled state : $\mathbf{E}_{U \leftarrow \text{Haar}(2^{n/2})} [|\Phi_U\rangle \langle \Phi_U|^{\otimes t}]$ where $|\Phi_U\rangle = \frac{1}{\sqrt{2^{n/2}}} \sum_{i=0}^{2^{n/2}-1} (U \otimes I) |ii\rangle$

Lemma [Harrow 24]:

$$\mathbf{E}_{|\psi\rangle\leftarrow\mathrm{Haar}(2^m)}[|\psi\rangle\langle\psi|^{\otimes t}]\approx_{O(t^2/2^{n/2})}\mathbf{E}_{U\leftarrow\mathrm{Haar}(2^{n/2})}[|\Phi_U\rangle\langle\Phi_U|^{\otimes t}]$$

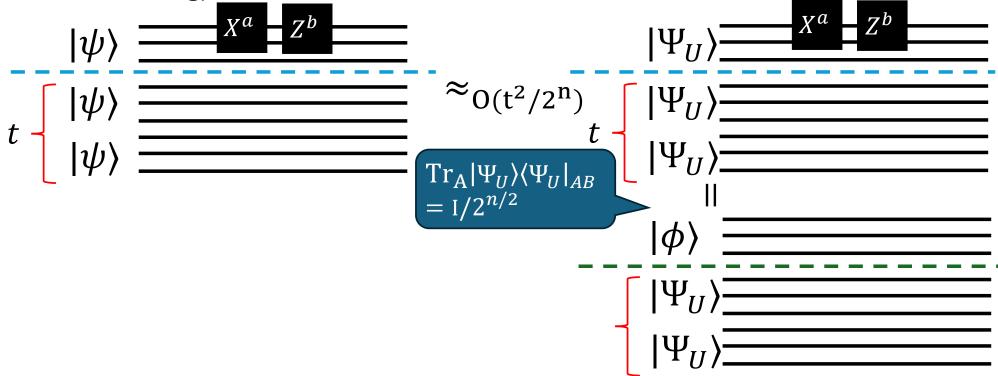
Secure 1PRS without stretching

• Firstly, we show that random Pauli on first 0.5*n* qubits is secure (although not stretching)



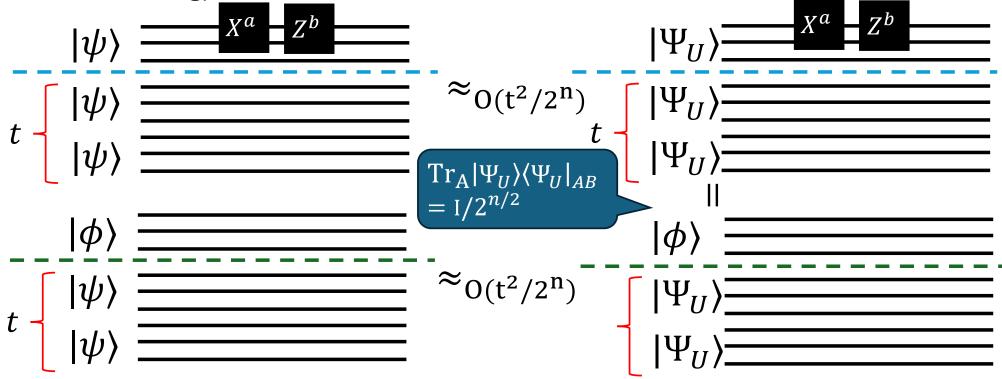
Secure 1PRS without stretching

• Firstly, we show that random Pauli on first 0.5*n* qubits is secure (although not stretching)



Secure 1PRS without stretching

• Firstly, we show that random Pauli on first 0.5*n* qubits is secure (although not stretching)



Reducing the key size

- Decompose common Haar random states according to the first qubit $|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle|\psi_0\rangle + |1\rangle|\psi_1\rangle)$
- Then, typically, $|\psi_0\rangle$ and $|\psi_1\rangle$ are close to two independent (n-1)-qubit Haar random states.

Reducing the key size

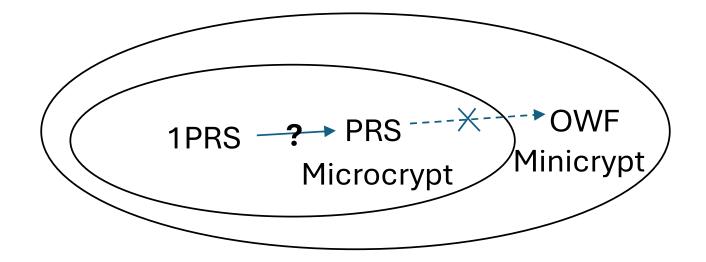
- Decompose common Haar random states according to the first qubit $|\psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle|\psi_0\rangle + |1\rangle|\psi_1\rangle)$
- Then, typically, $|\psi_0\rangle$ and $|\psi_1\rangle$ are close to two independent (n-1)-qubit Haar random states.
- Key observation: If $X^a Z^b$ maps $|\psi_0\rangle$ and $|\psi_1\rangle$, $|\psi_0\rangle \pm |\psi_1\rangle$, $|\psi_0\rangle \pm i|\psi_1\rangle$ to the maximally mixed state (approximately on average), then it must also map $|\psi\rangle$ to the maximally mixed state.

CHRS model and quantum crypto primitives

What we know: PRS do not imply OWF in a black-box way [Kretschmer 21, KQST 23], PRS imply quantum cryptography [AQY21, MY 21]

What we don't know: how 1-copy PRS and multi-copy PRS are related

The CHRS model helps answer this question

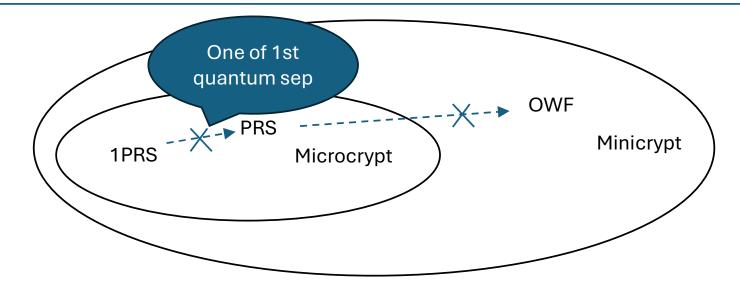


Black-box separation of 1PRS and PRS

Theorem

Relative to the following oracle, 1PRS exists while PRS does not:

- A family of common Haar random state $\{|\psi_n
 angle\}$
- A **QPSPACE-complete** oracle

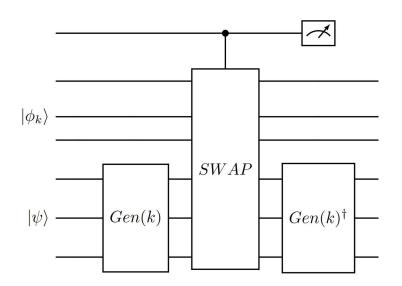


Generic attack on multi-copy PRS in the CHRS model

• Suppose $|\phi_k\rangle = Gen(k)|\psi\rangle$, consider the projector

 $\Lambda_k = \left(I \otimes Gen(k)^{\dagger} \right) SWAP \left(I \otimes Gen(k) \right)$

- $|\phi_k\rangle \otimes |\psi\rangle$ passes the test w.p. 1. A fresh random state $|\phi\rangle \otimes |\psi\rangle$ passes the test w.p. ~1/2. Thus $\Lambda_k^{\otimes 10n}$ provides an exponential gap between PRS and fresh Haar.
- Then use the quantum OR lemma $\Lambda_k^{\bigotimes 10n}$ for all k, we can distinguish PRS and Haar.



Concluding remarks

- Unlike classical settings, unconditional crypto exists in the presence of a common Haar random state.
- Follow-up work ([AGL24, BCN25, BMM+25, GZ25]): OWSG, classical communication commitment do not exist in the CHRS model, while EFID and one-way puzzles exist. The oracle can be lifted to a unitary oracle.
- Many other open questions.

