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° Quantum case |1/J> — Haar random state
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This model is called the common Haar random state model
(abbreviated as the CHRS model).
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Definition(Adapted from [Ji-Liu-Song 17])

An m-qubit state family |¢,,) is /-pseudorandom state family (PRS) if:
* |¢;) can be efficiently prepared given k € {0,1}"
* For any adversary A

bl AU ) = 1] = | Pr  [AI0)27) = 1] < negl(m)

 As aspecial case, a 1PRS family is such that:
a single copy of the state is computationally indistinguishable from a
totally mixed state.

 Stretch: A 1-copy pseudorandom state family is nontrivial only if m > n.
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Commitment from 1PRS

Theorem [Morimae-Yamakawa’ZZ, Morimae-Nehoran-Yamakawa’24]

1PRS implies guantum bit commitment.




Pseudorandom states

Definition

An m-qubit state family |¢;.) is £-pseudorandom state family (PRS) if:
* |k ) can be efficiently prepared given k € {0,1}"
* For any adversary A

k~g),r1}n["q(|¢k>®£ )=1] - |¢>(_Pf}‘aar [A(19)®* ) = 1] < negl(n)

 As aspecial case, a 1PRS family is such that:

a single copy of the state is computationally indistinguishable from a
totally mixed state.

Stretch: A 1-copy pseudorandom state family is nontrivial only if m > n.




Pseudorandom statesin the CHRS model

Definition

An m-qubit state family |¢;,) is f-pseudorandom state family (PRS) if:
* |¢, ) can be efficiently prepared given k € {0,1}" and |)®PoLy
* For any adversary A

bl AUPEperer) =11 = Pr [ A(19)P%1)@re) = 1] < negl(n)

 As aspecial case, a 1PRS family is such that:

a single copy of the state is computationally indistinguishable from a
totally mixed state.

Stretch: A 1-copy pseudorandom state family is nontrivial only if m > n.




Cryptography from 1PRS

Main theorem (informal)

1PRS exist unconditionally in the CHRS model

As a corollary, quantum bit commitment exists unconditionally in
the CHRS model.
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Construction of PRS

Construction:

Apply random Pauli on the first 0.45n qubits of
the common random state |): Stretch

Efficient Generation

[px) = X*Z° ® I]1p)
where k € {0,1}°°", k = a||b
Xa .= lq=1Xai’ 7b .— ®£?=1Zbi
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* What does 1-copy security mean in the CHRS model?
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« X¢ZP|y) is indistinguishable from a fresh Haar random state |¢)
even given polynomially many copies of )



Statistical 1-copy Security

0 = B (X920 @ DY) (X2 @ D) ® [W)WI®]  p = E[|p)N[] @ E[[¥)p]|®t]

=1 |Y) :M: f_=_1_ _¢_> _____________
e i
t 4 |y) ot )

) |Y)

* We show: Trace distance (quantum analog of TVD of distributions) between o and
pis 0(t%/1.01™)

* Approach: Approximate o and p with maximally entangled state



Approximating p

* t copies of an m-qubit Haar random state:

E|pytaarm) [ W)W ©F]
* t copies of random maximally entangled state :

Ey taarzs) [ PuX(@y|®F]
njz_ .
— 2L W @ Dlii)

where |®;) =

Lemma [Harrow 24]:

Ejy)taar@™) V) W1 ] =2 /2m/2) Eycpaarnzy [ Pu)(@y|®']



Secure 1PRS without stretching

* Firstly, we show that random Pauli on first 0.5n qubits is secure (although

not stretching)
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Secure 1PRS without stretching

* Firstly, we show that random Pauli on first 0.5n qubits is secure (although
not stretching)

P) Fowr2M [ |Wy)
t - t -
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Reducing the key size
* Decompose common Haar random states according to the first qubit
W) =

* Then, typically, and are close to two independent (n — 1)-qubit
Haar random states.



Reducing the key size

* Decompose common Haar random states according to the first qubit

[Y) =
* Then, typically, and are close to two independent (n — 1)-qubit
Haar random states.
« Key observation: If X¢Z? maps and ,

to the maximally mixed state (approximately on average), then it must
also map [y) to the maximally mixed state.



CHRS model and quantum crypto
primitives

What we know: PRS do not imply OWF in a black-box way [Kretschmer 21,
KQST 23], PRS imply quantum cryptography [AQY21, MY 21]

What we don’t know: how 1-copy PRS and multi-copy PRS are related
The CHRS model helps answer this question

1PRS —2—> PRS 7%
Microcrypt




Black-box separation of 1PRS and PRS

Theorem

Relative to the following oracle, 1PRS exists while PRS does not:
* Afamily of common Haar random state {|{,,)}
* A QPSPACE-complete oracle

One of 1st
quantum sep

Minicrypt




Generic attack on multi-copy PRS in the

CHRS model

* Suppose |¢p; ) = Gen(k)|y), consider the
projector

Ay, = (I ® Gen(k)T )SWAP(I X Gen(k))
* |pr) & |) passes the test w.p. 1. A fresh
random state |¢) & 1)) passes the test w.p.

~1/2. Thus A‘,?lon provides an exponential gap
between PRS and fresh Haar.

* Then use the quantum OR lemma A(,?lon for all
k, we can distinguish PRS and Haar.

|br.)

[¢) ——

Gen(k)

SWAP

Gen(k)T




Concluding remarks

* Unlike classical settings, unconditional crypto exists in the
presence of a common Haar random state.

* Follow-up work ([AGL24, BCN25, BMM+25, GZ25]). OWSG,
classical communication commitment do not exist in the CHRS
model, while EFID and one-way puzzles exist. The oracle can be
lifted to a unitary oracle.

* Many other open questions.
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