EUROCRYPT 2025

Efficient Multiparty Private Simultaneous Messages for Symmetric Functions

May 6, 2025

<u>Reo Eriguchi</u>¹, Kazumasa Shinagawa^{2,1}

1. AIST, Japan

2. University of Tsukuba, Japan

Private Simultaneous Messages (PSM) [FKN94]

• $f: X^n \to \{0,1\}$

Applications: Two-round MPC, CDS, general secret sharing

General Functions

- $f: X^n \to \{0,1\}, X = \{1,2,\dots,d\}$
- Communication complexity := bit-length of $(m_1, ..., m_n)$

Scheme	Communication (worst-case)	Depresentation size, d^n bits
[FKN94] (truth-table), [IK97] (branching program), [AIK11] (circuit)	$d^n \cdot \operatorname{poly}(n, d)$	Representation size: <i>a</i> ¹⁴ bits
[BKN18]	$d^{n/2} \cdot n^3$	
[AL21]	$d^{(n-1)/2} \cdot 2^{O(n)}$	

General Functions

- $f: X^n \to \{0,1\}, X = \{1,2,\dots,d\}$
- Communication complexity := bit-length of $(m_1, ..., m_n)$

Scheme	Communication (worst-case)	
[FKN94] (truth-table), [IK97] (branching program), [AIK11] (circuit)	<mark>dⁿ</mark> · poly(n, d)	Representation size: <i>a</i> ⁿ bits
[BKN18]	$d^{n/2} \cdot n^3$	
[AL21]	$d^{(n-1)/2} \cdot 2^{O(n)}$	
	Breaking repre	sentation-size barrier

General Functions

- $f: X^n \rightarrow \{0,1\}, X = \{1,2,\ldots,d\}$
- Communication complexity := bit-length of $(m_1, ..., m_n)$

However, communication is still exponential in n.

Can we construct efficient protocols by focusing on special functions of practical use? 5

Symmetric Functions

• $f: X^n \to \{0,1\}$ is symmetric if $f(x_{\sigma(1)}, ..., x_{\sigma(n)}) = f(x_1, ..., x_n)$ for all permutation σ . **Example** statistics, threshold functions

Scheme	Communication (worst-case)	
[BKN18]	$d^{n/2} \cdot n^3$	
[AL21]	$d^{(n-1)/2} \cdot 2^{O(n)}$	More officient than
[BKR17]	$n^{d \log n} \cdot n^{O(1)}$	general PSM if $n \gg d$
[BGI+14]	$O(n^{2d+1})$	4_0010101110111011
[EOYN21]	$O(n^d d^2 \log n)$	

Symmetric Functions

• $f: X^n \to \{0,1\}$ is symmetric if $f(x_{\sigma(1)}, ..., x_{\sigma(n)}) = f(x_1, ..., x_n)$ for all permutation σ . **Example** statistics, threshold functions Representation size $\approx n^d$ bits

Scheme	Communication (worst-case)	
[BKN18]	$d^{n/2} \cdot n^3$	
[AL21]	$d^{(n-1)/2} \cdot 2^{O(n)}$	More efficient than
[BKR17]	$n^{d \log n} \cdot n^{O(1)}$	general PSM if $n \gg d$
[BGI+14]	$O(n^{2d+1})$	
[EOYN21]	$O(n^d d^2 \log n)$	
?	$O(n^{cd})$ for $c < 1$	

Question Can we break the representation-size barrier for symmetric *f*?

Our Results

- New decomposition techniques based on the symmetry of f
- Byproduct: PSM for symmetric *f* with *universal reconstruction*
- Extension to related models: *robust* PSM and *ad-hoc* PSM.

Our Techniques

• Our approach is "orthogonal" to previous ones.

[BKN18, AL21]: PSM for f PSM for smaller g's $g : [d]^m \to \{0,1\}$ for m < n

Our Techniques

<u>New PSM with universal reconstruction</u>

If the domain is $[d_0]^n$, it has communication complexity of $O(n^{d_0})$.

✓ Improving existing PSM with universal reconstruction [BGI+14,EOYN21]. ✓ Almost optimal: We show an almost matching lower bound $\Omega(n^{d_0-1})$.

• The total communication complexity is

Technical Details

Representation

- $f: [d]^n \to \{0,1\}$: symmetric function
- $f(\mathbf{x})$ is determined by a *histogram*

• f can be represented by one-dimensional array of length $\binom{n+d-1}{d-1} \leq n^d$

Decomposition

• *f* can be represented by a three-dimensional *cube*.

Decomposition

• Computing *f* can be reduced to computing a three-dimensional tensor *T*.

Our PSM

1. Parties send three vectors that mask $\boldsymbol{e}_{H_1}, \boldsymbol{e}_{H_2}$, and \boldsymbol{e}_{H_3} .

► Requires $O(n^{d/3})$ executions of PSM w/ universal reconstruction for $g : [d/3]^n \to \{0,1\}$ Communication: $O(n^{d/3}) \cdot O(n^{d/3}) = O(n^{2d/3})$

Our PSM

2. As Referee knows *T*, he can compute

$$T(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}) = \underline{T(\boldsymbol{e}_{H_{1}}, \boldsymbol{e}_{H_{2}}, \boldsymbol{e}_{H_{3}})}_{= f(\boldsymbol{x})} + \sum T(\boldsymbol{e}_{H_{1}}, \boldsymbol{e}_{H_{2}}, \boldsymbol{r}_{3}) + \sum T(\boldsymbol{e}_{H_{1}}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3})$$

 $T(\boldsymbol{e}_{H_1}, \boldsymbol{e}_{H_2}, \boldsymbol{r}_3)$ is determined by H_1, H_2 (and common \boldsymbol{r}_3) \rightarrow a symmetric function with domain $[2d/3]^n$

 $T(\boldsymbol{e}_{H_1}, \boldsymbol{r}_2, \boldsymbol{r}_3)$ is determined by H_1 (and common $\boldsymbol{r}_2, \boldsymbol{r}_3$) \rightarrow a symmetric function with domain $[d/3]^n$

Requires O(1) executions of PSM w/ universal reconstruction for $h: [2d/3]^n \rightarrow \{0,1\}$

Communication: $O(1) \cdot O(n^{2d/3}) = O(n^{2d/3})$

Our PSM w/ Universal Reconstruction

Inspired by the constructions using the sequence of quadratic characters [Ishai13, SESN23]

• Fact

For any $\ell \in \mathbb{N}$, there exists a prime $p = 2^{O(\ell)}$ such that

the sequence of quadratic characters modulo p "contains" any sequence of length ℓ .

Our PSM w/ Universal Reconstruction

• Encode the histogram H of an input x into an integer \widehat{H} .

$$H = (h_1, \dots, h_d) \longrightarrow \widehat{H} = \sum_j h_j \cdot (n+1)^{j-1}$$

$$\widehat{x_i} \longrightarrow \widehat{x_i} = (n+1)^{x_i-1}$$

$$\widehat{H} = \widehat{x_1} + \dots + \widehat{x_i}$$

• Encode f into a sequence of length $\ell \approx n^d$.

Our PSM w/ Universal Reconstruction

- Set $p = 2^{O(n^d)}$.
- Find a subsequence containing the truth-table of f.

Protocol

 $P_{1}: m_{1} = q(a + \hat{x}_{1}) + r_{i}$ P_{2} \vdots P_{n} $m_{i} = q \hat{x}_{i} + r_{i}$ $M_{i} = q \hat$

q: random quadratic residues $(r_1, ..., r_n)$: random shares of zero $\frac{\text{Communication}}{n\log p = O(n^{d+1})}$

Can be reduced to $O(n^d)$ with some optimization

Summary

- Breaking the representation-size barrier in PSM for symmetric *f*.
 - New decomposition techniques based on the symmetry of f
 - Byproduct: Almost-optimal PSM for symmetric *f* with *universal reconstruction*
 - Extension to related models: *robust* PSM and *ad-hoc* PSM.

Scheme	Communication (worst-case)	Future work
[BKN18]	$d^{n/2} \cdot n^3$	 More efficient scheme, e.g., n^{cd} for c < 2/3 Other related primitives e.g. CDS and secret sharin
[AL21]	$d^{(n-1)/2} \cdot 2^{O(n)}$	other related primitives, e.g., ebs and secret sharm
[BKR17]	$n^{d \log n + O(1)}$	
[BGI+14]	$O(n^{2d+1})$	Thank vou!
[EOYN21]	$O(n^d d^2 \log n)$	_ = ===
This work	$n^{2d/3+O(1)}$	