
Do Not Disturb a Sleeping Falcon
Floating-Point Error Sensitivity of the Falcon Sampler and Its

Consequences

Eurocrypt 2025

Xiuhan Lin, Mehdi Tibouchi, Yang Yu, Shiduo Zhang

1 / 29



Overview

In this work, we mainly focus on security implications in Falcon’s use and
deployment caused by floating-point arithmetics (FPA) errors.

Falcon Gaussian sampler is sensitive to FPA errors
FPA carelessness + deterministic Falcon → exact signing key recovery

Practical attack cost in some derandomized settings
different implementations + 10000 signing queries → full key recovery

2 / 29



Overview

In this work, we mainly focus on security implications in Falcon’s use and
deployment caused by floating-point arithmetics (FPA) errors.

Falcon Gaussian sampler is sensitive to FPA errors
FPA carelessness + deterministic Falcon → exact signing key recovery

Practical attack cost in some derandomized settings
different implementations + 10000 signing queries → full key recovery

2 / 29



Overview

In this work, we mainly focus on security implications in Falcon’s use and
deployment caused by floating-point arithmetics (FPA) errors.

Falcon Gaussian sampler is sensitive to FPA errors
FPA carelessness + deterministic Falcon → exact signing key recovery

Practical attack cost in some derandomized settings
different implementations + 10000 signing queries → full key recovery

2 / 29



Outline

Background
Floating-point errors sensitivity analysis
Exploiting FPA discrepancies
Sources of FPA discrepancies
Countermeasures

3 / 29



Background
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Falcon

In 2022, Falcon1 was one of the three signatures selected by NIST for
standardization.

Falcon’s pros
+ most compact signature scheme in the 3rd round
+ fast signing (but slower than Dilithium) and verification

Falcon is a lattice-based hash-and-sign signature scheme.

1https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms
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Hash-and-sign construction

Early constructions (GGH & NTRUSign): pk := G, sk := B

Sign
1 Hash a message to random t
2 Round t to v ∈ L (using B)

Verify
1 Check v ∈ L (using G)
2 Check v− t is short
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Hash-and-sign construction
Early constructions (GGH & NTRUSign): pk := G, sk := B

Sign
1 Hash a message to random t
2 Round t to v ∈ L (using B)

Verify
1 Check v ∈ L (using G)
2 Check v− t is short

Signing: uses deterministic algorithm to solve approx-CVP
the distribution of signatures leaks information of B, Insecure!
broken by Nguyen and Regev [NR06]2

2[NR06]: Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures. Nguyen and Regev.
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GPV framework

[GPV08]3 designed a provably secure hash-and-sign framework.
deterministic Babai’s algorithm ⇒ trapdoor sampler
signing ⇔ lattice Gaussian sampling (prevent secret leakage)

⇒

Falcon is an efficient instantiation of the GPV hash-and-sign framework
over NTRU lattices.

3[GPV08]: Trapdoors for Hard Lattices and New Cryptographic Constructions. Gentry, Peikert and Vaikuntanathan.
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Falcon

Falcon = GPV + NTRU trapdoor + Fast Fourier Gaussian sampler (FFO)
NTRU trapdoor ⇒ compactness
Fast Fourier Gaussian sampler ⇒ fast signing

Falcon’s cons
- overall complexity ⇒ hard to implement it correctly
- key generation and signing heavily rely on floating-point arithmetics
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Floating-point arithmetics in Falcon

For Falcon
signing ⇒ ring-efficient Klein-GPV sampler
Klein-GPV sampler ⇒ floating-point arithmetics (FPA)
for FPA in Falcon, IEEE-754 double precision is sufficient

Status report on the third round of the NIST PQC standardization process4

NIST’s concern
In particular, simplicity was an important factor in NIST’s evaluation of
FALCON, with the concern that the use of floating point arithmetic and
more complex implementation could lead to errors that might affect
security.

4https://doi.org/10.6028/NIST.IR.8413
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Floating-point errors sensitivity analysis
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Gaussian samplers in Falcon’s signing procedure

FFOSampler:
s← DL(B),σ,c

SamplerZ:
y ← DZ,σ,c

BaseSampler:
y+ ← D+

Z+,σmax,0

Klein-GPV sampler
Input: NTRU basis B = (b0, · · · , bn−1), center c and σ ≥ ∥B∥GS · ηϵ(Z)
Output: a lattice point u follows a distribution close to DL(B),σ,c

1: un ← 0, cn ← c
2: for i = n− 1, · · · , 0 do
3: c′

i = ⟨ci, b̃i⟩/⟨b̃i, b̃i⟩
4: zi ← DZ,σi,c′

i
where σi = σ/∥b̃i∥

5: ci−1 ← ci − zibi, ui−1 ← ui + zibi

6: return u0
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Gaussian samplers in Falcon’s signing procedure

FFOSampler:
s← DL(B),σ,c

SamplerZ:
y ← DZ,σ,c

BaseSampler:
y+ ← D+

Z+,σmax,0

SamplerZ (one-dimensional integer Gaussian sampler)
Input: A center c and σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1: r ← c− ⌊c⌋
2: y+ ← BaseSampler()
3: b

$← {0, 1}
4: y ← b + (2b− 1)y+

5: x← (y−r)2

2σ2 −
y2

+
2σ2

max
6: return z ← y + ⌊c⌋ with probability σmin

σ · exp (−x), otherwise restart.
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Floating-point error sensitivity of SamplerZ
Our analysis focus the execution of SamplerZ, rather than the distribution.

SamplerZ (one-dimensional integer Gaussian sampler)
Input: A center c and σ ∈ [σmin, σmax]
Output: An integer z derived from a distribution close to DZ,σ,c

1: r ← c− ⌊c⌋, y+ ← BaseSampler()
2: b

$← {0, 1}, y ← b + (2b− 1)y+

3: x← (y−r)2

2σ2 − y2
+

2σ2
max

4: return z ← y + ⌊c⌋ with probability σmin
σ · exp (−x), otherwise restart.

Sensitivity of the centers
Let c and c′ be two close floating-point numbers. For same σ and randomness,

1 if ⌊c⌋ = ⌊c′⌋, then SamplerZ(σ, c) and SamplerZ(σ, c′) have the same
execution with overwhelming probability;

2 if ⌊c⌋ ̸= ⌊c′⌋, then SamplerZ(σ, c) and SamplerZ(σ, c′) have an inconsistent
execution.
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Nearly-integer center in Gaussian sampling

For a nearly-integer center, SamplerZ is sensitive to floating-point errors!

For FFOSampler, we have: ci = ⟨ci,b̃2n−1−i⟩
∥b̃2n−1−i∥2

where ci ∈ Zn.

Thus,
Pr[c0 ∈ Z] = Pr[c1 ∈ Z] = 1

q (NTRU symplecticity [GHN06]5)
Pr[c2n−2 ∈ Z] = Pr[c2n−1 ∈ Z] = 1

∥(g,−f)∥2 ≈ 1
1.172·q

Pri/∈{0,1,2n−2,2n−1}[ci ∈ Z] ≈ 0

For i ∈ {0, 1, 2n− 2, 2n− 1}, 1/10000 < Pr[ci ∈ Z] < 1/20000.

5[GHN06]: Symplectic Lattice Reduction and NTRU. Gama, Howgrave-Graham and Nguyen.
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Exploiting FPA discrepancies
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Key recovery from signature discrepancies

For a syndrome u = Hash(msg), Falcon’s signing inherently samples an
integer vector z = (z0, z1) ∈ R2 and outputs a short signature:

s = u− z ·Bf,g = u− z ·
(

g −f
G −F

)
.

Due to FPA errors, the difference for same u: ∆s = ∆z ·
(

g −f
G −F

)
, i.e.

∆s0 = s0 − s′
0 = (z0 − z′

0) · g + (z1 − z′
1) ·G,

∆s1 = s1 − s′
1 = (z0 − z′

0) · (−f) + (z1 − z′
1) · (−F ).

Using simple exhaustive search, the key (g,−f) can be exactly recovered
when the FPA instability only occurs in the last two calls of SamplerZ.

16 / 29



Key recovery from signature discrepancies

For a syndrome u = Hash(msg), Falcon’s signing inherently samples an
integer vector z = (z0, z1) ∈ R2 and outputs a short signature:

s = u− z ·Bf,g = u− z ·
(

g −f
G −F

)
.

Due to FPA errors, the difference for same u: ∆s = ∆z ·
(

g −f
G −F

)
, i.e.

∆s0 = s0 − s′
0 = (z0 − z′

0) · g + (z1 − z′
1) ·G,

∆s1 = s1 − s′
1 = (z0 − z′

0) · (−f) + (z1 − z′
1) · (−F ).

Using simple exhaustive search, the key (g,−f) can be exactly recovered
when the FPA instability only occurs in the last two calls of SamplerZ.

16 / 29



Key recovery from signature discrepancies

For a syndrome u = Hash(msg), Falcon’s signing inherently samples an
integer vector z = (z0, z1) ∈ R2 and outputs a short signature:

s = u− z ·Bf,g = u− z ·
(

g −f
G −F

)
.

Due to FPA errors, the difference for same u: ∆s = ∆z ·
(

g −f
G −F

)
, i.e.

∆s0 = s0 − s′
0 = (z0 − z′

0) · g + (z1 − z′
1) ·G,

∆s1 = s1 − s′
1 = (z0 − z′

0) · (−f) + (z1 − z′
1) · (−F ).

Using simple exhaustive search, the key (g,−f) can be exactly recovered
when the FPA instability only occurs in the last two calls of SamplerZ.

16 / 29



Cryptanalytic impacts

Little impact on plain Falcon signature
repeated randomness

Critical impact on deterministic Falcon (specified by Lazar and Peikert6)
SNARK-friendly signature aggregation [AAB+24]7

Critical impact on Falcon-based IBE
Latte (H)IBE [ZMS+24]8 (considered for UK NCSC and ETSI
standardization)

6https://github.com/algorand/falcon
7[AAB+24]: Aggregating Falcon Signatures with LaBRADOR. Aardal, Aranha, Boudgoust, Kolby and Takahashi.
8[ZMS+24]: Quantum-safe HIBE: does it cost a Latte? Zhao, McCarthy, Steinfeld, Sakzad and O’Neill.
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Sources of FPA discrepancies
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Sources of FPA discrepancies

FPA does not obey associativity or distributivity. ⇒ Weak determinism

We experimentally validate two possible sources for such FPA
discrepancies in Falcon.

two almost but not quite equivalent signing modes: dynamic mode
and tree mode
different floating-point instructions: FMA (Fused Multiply-Add)
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Discrepancies between two signing modes
Different computation order in polynomial ”split” operation:

In the dynamic mode (recursive layer n = 4):

t1[0] = 1
2
×̊
( 1√

2
×̊
(
t[0] −̊ t[1]

)
−̊
(
− 1√

2

)
×̊
(
t[2] −̊ t[3]

))
,

t1[1] = 1
2
×̊
((
− 1√

2

)
×̊
(
t[0] −̊ t[1]

)
+̊ 1√

2
×̊
(
t[2] −̊ t[3]

))
.

In the tree mode (recursive layer n = 4):

t1[0] = 1
2
√

2
×̊
((

t[0] −̊ t[1]
)

+̊
(
t[2] −̊ t[3]

))
,

t1[1] = 1
2
√

2
×̊
((

t[2] −̊ t[3]
)
−̊
(
t[0] −̊ t[1]

))
.

FPA is not distributive, the computations of t1 may evaluate different
values in two signing modes, which might affect the centers of SamplerZ.
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Discrepancies between two signing modes

Different computation order in polynomial ”merge” operation:

In the dynamic mode (recursive layer n = 4):

t[0] = t0[0] +̊
(

1
√

2
×̊ t1[0] −̊

1
√

2
×̊ t1[1]

)
, t[2] = t0[1] +̊

(
1

√
2

×̊ t1[0] +̊
1

√
2

×̊ t1[1]
)

,

t[1] = t0[0] −̊
(

1
√

2
×̊ t1[0] −̊

1
√

2
×̊ t1[1]

)
, t[3] = t0[1] −̊

(
1

√
2

×̊ t1[0] +̊
1

√
2

×̊ t1[1]
)

.

In the tree mode (recursive layer n = 4):
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1

√
2
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(

t1[0] −̊ t1[1]
)

, t[2] = t0[1] +̊
1

√
2

×̊
(

t1[0] +̊ t1[1]
)

,

t[1] = t0[0] −̊
1

√
2

×̊
(

t1[0] −̊ t1[1]
)

, t[3] = t0[1] −̊
1

√
2

×̊
(

t1[0] +̊ t1[1]
)

.

FPA is again not distributive, the computations of t may evaluate different
values in two signing modes, which might affect the centers of SamplerZ.
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Experimental results
We in total tested 10 instances with N signature queries:

reference implementation: fpemu
optimization ones: fpnative, avx2, avx2 fma

N × 10−3 10 20 30 40 50 60 70 80 90 100

fpemu det 512 1 4 6 6 6 7 8 8 8 8
fpnative det 512 2 5 7 7 8 8 10 10 10 10

avx2 det 512 1 6 8 8 8 8 8 9 9 9
avx2 fma det 512 2 4 6 7 8 8 8 9 9 9

fpemu det 1024 5 6 6 6 7 7 7 8 8 9
fpnative det 1024 2 2 3 3 4 6 7 8 8 8

avx2 det 1024 3 4 5 5 6 6 7 7 7 7
avx2 fma det 1024 1 3 4 7 8 9 9 9 10 10

Within 10,000 signature pairs, one can mount a full key recovery.
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Discrepancies caused by FMA

FMA (Fused Multiply-Add) floating-point instructions
disabled: round(round(a · b) + c), round(round(a · b)− c)
enabled: round(a · b + c), round(a · b− c)

FMA instructions are more accurate (just one rounding only) ⇒ FPA
discrepancies

In both signing and key generation, FMA instructions are widely used.
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Experimental results

We also tested 10 instances with N signature queries:
dynamic mode: sign dyn
tree mode: sign tree

N × 10−3 10 20 30 40 50 60 70 80 90 100

sign dyn 512 2 4 5 7 7 8 9 9 10 10
sign tree 512 4 6 6 8 8 8 8 9 9 9

sign dyn 1024 2 4 6 8 9 9 9 9 9 9
sign tree 1024 4 8 8 8 9 9 9 9 9 10

Exact secret key can also be recovered within 10,000 signature pairs.
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Countermeasures
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Countermeasures

We propose a NewSamplerZ with the stability of FPA errors.
floor operation ⇒ rounding to nearest integer, i.e. Z⇒ 1/2 + Z
restrict ∥(g,−f)∥2 to be an odd integer in key generation

Other simpler tricks
reordering computation order in tree mode / avoid reordered codes
FMA disabled

To avoid FPA discrepancies, we suggest in the same settings:
the same FPA implementation + the same signing mode
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Conclusion
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Conclusion

FPA carelessness + Deterministic Falcon = Attack9

9Artifacts: https://github.com/lxhcrypto/Det_Falcon_KATs
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Thank you!
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