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Private cloud computing 
[LTV12, ….] Private ML 

[Shield16, Gazelle18, …]

Private genome 
analysis [KL15, …]

Private web 
search [Tiptoe23, …]

Private database reads 
[KO97, SealPIR18, Spiral22, …]
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can’t compute on ciphertexts 5

Lattice crypto 
[G09,…]

Computes small-length 
branching programs [IP07,…]

Pairing crypto: computes 
one mul and many adds [BGN05]

One-way functions

Number-theoretic 

crypto

Indistinguishability 
obfuscation* [JLS21,…]

This work: computes a few muls and 
many adds, using 
- linearly homomorphic enc and 
- private-key crypto
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Background: Sparse Learning Parities with Noise 
[Ale03, AIK06, IKOS08, ABW10, …]

Formally: ,  is a prime, the sparsity  is n, m = poly(λ) q ≤ exp(λ) k ω(1)
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Formally: ,  is a prime, the sparsity  is n, m = poly(λ) q ≤ exp(λ) k ω(1)

In higher-noise settings: LPN  sparse LPN [JLS24, BBTV24] 

In this setting:      sparse LPN  constant-overhead PRGs, homomorphic secret sharing [IKOS08, DIJL23]

⟹
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Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts [G09]
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