Somewhat Homomorphic Encryption from Linear Homomorphism and Sparse LPN

Henry Corrigan-Gibbs

Alexandra Henzinger

Yael Kalai

Vinod Vaikuntanathan

Homomorphic Encryption for a class of computations C: for all $f \in C$, [RAD78]

- 2. Semantically secure. The ciphertexts and ek reveal nothing about x_1, \ldots, x_m .
- **3. Compact.** The bitlength of each ciphertext does not grow with |f|.

1. Correct. With (x_1, \dots, x_m) decrypts to $f(x_1, \dots, x_m)$ with good probability.

Homomorphic Encryption for a class of computations C: for all $f \in C$, [RAD78]

- 2. Semantically secure. The ciphertexts and *ek*
- **3.** Compact. The bitlength of each ciphertext does not grow with |f|.

1. Correct. With $(sk, f(x_1, ..., x_m))$ decrypts to $f(x_1, ..., x_m)$ with good probability. reveal nothing about x_1, \ldots, x_m .

Homomorphic Encryption for a class of computations C: for all $f \in C$, [RAD78]

- 2. Semantically secure. The ciphertexts and *ek*
- **3.** Compact. The bitlength of each ciphertext does not grow with |f|.

1. Correct. With -sk, Enc $(sk, f(x_1, \dots, x_m))$ decrypts to $f(x_1, \dots, x_m)$ with good probability. reveal nothing about x_1, \ldots, x_m .

Somewhat Homomorphic Enc

Linearly Homomorphic Enc computes any number of adds

Private-Key Enc can't compute on ciphertexts

Somewhat Homomorphic Enc

Linearly Homomorphic Enc

computes any number of adds

Private-Key Enc can't compute on ciphertexts

Somewhat Homomorphic Enc

Linearly Homomorphic Enc computes any number of adds

Private-Key Enc can't compute on ciphertexts

Somewhat Homomorphic Enc

Computes small-length branching programs [IP07,...]

Linearly Homomorphic Enc computes any number of adds

Private-Key Enc can't compute on ciphertexts

Somewhat Homomorphic Enc

Private-Key Enc can't compute on ciphertexts

Somewhat Homomorphic Enc

Private-Key Enc can't compute on ciphertexts One-way functions

one mul and many adds [BGN05]

Somewhat Homomorphic Enc

Private-Key Enc can't compute on ciphertexts

Somewhat Homomorphic Enc

Private-Key Enc can't compute on ciphertexts One-way functions

Lattice crypto [G09,...]

one mul and many adds [BGN05]

This talk

Sparse LPN

with modulus $q \ge 3$

Somewhat Homomorphic Encryption that, for any $n = poly(\lambda)$ chosen during encryption, can perform $o(\log n)$ muls followed by n adds over \mathbb{F}_q

This talk

Sparse LPN

with modulus $q \geq 3$

Somewhat Homomorphic Encryption that, for any $n = poly(\lambda)$ chosen during encryption, can perform $o(\log n)$ muls followed by n adds over \mathbb{F}_q

Background: Sparse Learning Parities with Noise [Ale03, AlK06, IKOS08, ABW10, ...]

Formally: $n, m = \text{poly}(\lambda), q \leq \exp(\lambda)$ is a prime, the sparsity k is $\omega(1)$

Background: Sparse Learning Parities with Noise [Ale03, AlK06, IKOS08, ABW10, ...]

In higher-noise settings: LPN \implies sparse LPN [JLS24, BBTV24] In this setting: sparse LPN \implies constant-overhead PRGs, homomorphic secret sharing [KOS08, DIJL23]

Formally: $n, m = \text{poly}(\lambda), q \leq \exp(\lambda)$ is a prime, the sparsity k is $\omega(1)$

This talk

Sparse LPN

with modulus $q \ge 3$

Somewhat Homomorphic Encryption that, for any $n = poly(\lambda)$ chosen during encryption, can perform $o(\log n)$ muls followed by n adds over \mathbb{F}_q

Design Ideas

Step 1: Use Sparse LPN to homomorphically add and multiply [GSW13, DIJL23]

- No compactness: ciphertexts are huge
- + Decryption is simple: it is a linear function in the secret key

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts [Gen09]

Design Ideas

- No compactness: ciphertexts are huge + Decryption is simple: it is a linear function in the secret key

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts [Gen09]

- Step 1: Use Sparse LPN to homomorphically add and multiply [GSW13, DIJL23]

Design Ideas

- No compactness: ciphertexts are huge + Decryption is simple: it is a linear function in the secret key

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts [Gen09]

- Step 1: Use Sparse LPN to homomorphically add and multiply [GSW13, DIJL23]

The goal

- Homomorphic add is matrix addition
- Homomorphic mul is matrix mul
- Decryption is linear

The goal

- Homomorphic add is matrix addition
- Homomorphic mul is matrix mul
- Decryption is linear

The key equation [GSW13] Take \xrightarrow{sk} to be a random vector $\mathbf{s} \in \mathbb{F}_q^n$. Encrypt $x \in \mathbb{F}_q$ into a sparse matrix $\mathbf{C}_x \in \mathbb{F}_q^{(n+1)\times(n+1)}$,

of which x is a "noisy" eigenvalue with sparse errors e:

$$\mathbf{C}_{x} \cdot \begin{bmatrix} -\mathbf{S} \\ 1 \end{bmatrix} = x \cdot \begin{bmatrix} -\mathbf{S} \\ 1 \end{bmatrix} + \mathbf{e}$$

The goal

- Homomorphic add is matrix addition
- Homomorphic mul is matrix mul
- Decryption is linear

The goal

- Homomorphic add is matrix addition
- Homomorphic mul is matrix mul
- Decryption is linear

The key equation [GSW13] Take \xrightarrow{sk} to be a random vector $\mathbf{s} \in \mathbb{F}_q^n$. Encrypt $x \in \mathbb{F}_q$ into a sparse matrix $\mathbf{C}_x \in \mathbb{F}_q^{(n+1)\times(n+1)}$,

of which x is a "noisy" eigenvalue with sparse errors e:

$$\mathbf{C}_{x} \cdot \begin{bmatrix} -\mathbf{S} \\ 1 \end{bmatrix} = x \cdot \begin{bmatrix} -\mathbf{S} \\ 1 \end{bmatrix} + \mathbf{e}$$

The goal

- Homomorphic add is matrix addition
- Homomorphic mul is matrix mul
- Decryption is linear

The key equation [GSW13] Take \xrightarrow{sk} to be a random vector $\mathbf{s} \in \mathbb{F}_{q}^{n}$. Encrypt $x \in \mathbb{F}_q$ into a sparse matrix $\mathbf{C}_x \in \mathbb{F}_q^{(n+1)\times(n+1)}$, of which x is a "noisy" eigenvalue with sparse errors **e**: $\mathbf{C}_x \cdot \begin{bmatrix} -\mathbf{S} \\ 1 \end{bmatrix} = x \cdot \begin{bmatrix} -\mathbf{S} \\ 1 \end{bmatrix} + \mathbf{e}$

Add: $C_x + C_y$ is an encryption of x + yProof. $(\mathbf{C}_x + \mathbf{C}_y) \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} = (x + y) \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} + (\mathbf{e}_x + \mathbf{e}_y)$

The goal

- Homomorphic add is matrix addition
- Homomorphic mul is matrix mul
- Decryption is linear

The key equation [GSW13] Take \xrightarrow{sk} to be a random vector $\mathbf{s} \in \mathbb{F}_q^n$. Encrypt $x \in \mathbb{F}_q$ into a sparse matrix $\mathbf{C}_x \in \mathbb{F}_q^{(n+1)\times(n+1)}$, of which x is a "noisy" eigenvalue with sparse errors e: $\mathbf{C}_{x} \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} = x \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} + \mathbf{e}$

Add: $C_x + C_y$ is an encryption of x + yMul: $\mathbf{C}_x \cdot \mathbf{C}_y$ is an encryption of $x \cdot y$ Proof. $(\mathbf{C}_x \cdot \mathbf{C}_y) \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} = (x \cdot y) \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} + (y \cdot \mathbf{e}_x + \mathbf{C}_x \cdot \mathbf{e}_y)$

The goal

- Homomorphic add is matrix addition
- Homomorphic mul is matrix mul
- Decryption is linear

The key equation [GSW13] Take \xrightarrow{sk} to be a random vector $\mathbf{s} \in \mathbb{F}_q^n$. Encrypt $x \in \mathbb{F}_q$ into a sparse matrix $\mathbf{C}_x \in \mathbb{F}_q^{(n+1)\times(n+1)}$, of which x is a "noisy" eigenvalue with sparse errors e: $\mathbf{C}_{x} \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} = x \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} + \mathbf{e}$

Add: $C_x + C_y$ is an encryption of x + yMul: $\mathbf{C}_x \cdot \mathbf{C}_y$ is an encryption of $x \cdot y$ **Dec:** output the last entry of $C_x \cdot \begin{bmatrix} -s \\ 1 \end{bmatrix}$ Proof. $\mathbf{C}_x \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} = x \cdot \begin{bmatrix} -\mathbf{s} \\ 1 \end{bmatrix} + \mathbf{e}$

The goal

+ Correct, secure, and homomorphic.

On a secret key of dimension n, allows:

- $o(\log n)$ muls, followed by
- $n^{0.1-\epsilon}$ adds.

 \rightarrow set *n* to match the desired number of operations

The goal

+ Correct, secure, and homomorphic.

On a secret key of dimension *n*, allows:

- $o(\log n)$ muls, followed by
- $n^{0.1-\epsilon}$ adds.

 \rightarrow set *n* to match the desired number of operations

Problem: Not compact!

Due to limited homomorphism, $|f| = o(n^{0.1})$ bits

All ciphertexts are larger than f

This talk

Somewhat Homomorphic Encryption that, for any $n = \text{poly}(\lambda)$ chosen during encryption, can perform $o(\log n)$ muls followed by n adds over \mathbb{F}_q

Fix: Use homomorphism to shrink the ciphertexts [G09]

Fix: Use homomorphism to shrink the ciphertexts [G09]

Fix: Use homomorphism to shrink the ciphertexts [G09]

Fix: Use homomorphism to shrink the ciphertexts [G09]

Fix: Use homomorphism to shrink the ciphertexts [G09]

Fix: Use homomorphism to shrink the ciphertexts [G09]

This talk

Somewhat Homomorphic Encryption that, for any $n = poly(\lambda)$ chosen during encryption, can perform $o(\log n)$ muls followed by n adds over \mathbb{F}_q

Somewhat Homomorphic Enc

This work: can compute
a few muls, followed by
many adds
on encrypted data.

Linearly Homomorphic Enc

Private-Key Enc

Number-theoretic crypto

Somewhat Homomorphic Enc

This work: can compute
a few muls, followed by
many adds
on encrypted data.

Linearly Homomorphic Enc

Private-Key Enc

Open: Can we shrink the evaluation key? Can we get concrete efficiency?

Number-theoretic crypto

Somewhat Homomorphic Enc

This work: can compute
a few muls, followed by
many adds
on encrypted data.

Linearly Homomorphic Enc

Private-Key Enc

Open: Can we build homomorphism from even fewer/weaker assumptions?

Open: Can we shrink the evaluation key? Can we get concrete efficiency?

Number-theoretic crypto

Somewhat Homomorphic Enc

This work: can compute
a few muls, followed by
many adds
on encrypted data.

Linearly Homomorphic Enc

Private-Key Enc

Open: Can we bootstrap to full homomorphism?

Open: Can we build homomorphism from even fewer/weaker assumptions?

Open: Can we shrink the evaluation key? Can we get concrete efficiency?

Number-theoretic crypto

Somewhat Homomorphic Enc

This work: can compute - a few muls, followed by - many adds on encrypted data.

Linearly Homomorphic Enc

Private-Key Enc

Open: Can we bootstrap to full homomorphism?

Open: Can we build homomorphism from even fewer/weaker assumptions?

Open: Can we shrink the evaluation key? Can we get concrete efficiency?

Number-theoretic crypto

eprint.iacr.org/2024/1760 ahenz@csail.mit.edu Thank you!

