
Somewhat Homomorphic Encryption
from Linear Homomorphism and Sparse LPN

Henry Corrigan-Gibbs Alexandra Henzinger Yael Kalai Vinod Vaikuntanathan

1. Correct. With , decrypts to with good probability.

2. Semantically secure. The ciphertexts and reveal nothing about .

3. Compact. The bitlength of each ciphertext does not grow with .

Enc (sk, f(x1, …, xm)) f(x1, …, xm)

x1, …, xm

| f |

sk

2

f, … ,

[RAD78]
Homomorphic Encryption for a class of computations : for all ,C f ∈ C

Enc (sk, x1) Enc (sk, xm)
Enc (sk, f(x1, …, xm))

ek

ek

sk

ek

3

f, … ,

[RAD78]
Homomorphic Encryption for a class of computations : for all ,C f ∈ C

ek

Enc (sk, x1) Enc (sk, xm)
Enc (sk, f(x1, …, xm))

1. Correct. With , decrypts to with good probability.

2. Semantically secure. The ciphertexts and reveal nothing about .

3. Compact. The bitlength of each ciphertext does not grow with .

Enc (sk, f(x1, …, xm)) f(x1, …, xm)

x1, …, xm

| f |

sk

sk

ek

ek

4

f, … ,

[RAD78]
Homomorphic Encryption for a class of computations : for all ,C f ∈ C

ek

Enc (sk, x1) Enc (sk, xm)

Private cloud computing
[LTV12, ….] Private ML

[Shield16, Gazelle18, …]

Private genome
analysis [KL15, …]

Private web
search [Tiptoe23, …]

Private database reads
[KO97, SealPIR18, Spiral22, …]

Enc (sk, f(x1, …, xm))
sk

ek

ek

1. Correct. With , decrypts to with good probability.

2. Semantically secure. The ciphertexts and reveal nothing about .

3. Compact. The bitlength of each ciphertext does not grow with .

Enc (sk, f(x1, …, xm)) f(x1, …, xm)

x1, …, xm

| f |

sk

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

computes any number of adds

computes any number of adds and muls

Private-Key Enc
can’t compute on ciphertexts 5

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

computes any number of adds

computes any number of adds and muls

Private-Key Enc
can’t compute on ciphertexts 5

One-way functions

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

computes any number of adds

computes any number of adds and muls

Private-Key Enc
can’t compute on ciphertexts 5

One-way functions

Number-theoretic

crypto

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

computes any number of adds

computes any number of adds and muls

Private-Key Enc
can’t compute on ciphertexts 5

Computes small-length
branching programs [IP07,…]

One-way functions

Number-theoretic

crypto

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

computes any number of adds

computes any number of adds and muls

Private-Key Enc
can’t compute on ciphertexts 5

Computes small-length
branching programs [IP07,…]

Pairing crypto: computes
one mul and many adds [BGN05]

One-way functions

Number-theoretic

crypto

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

computes any number of adds

computes any number of adds and muls

Private-Key Enc
can’t compute on ciphertexts 5

Lattice crypto
[G09,…]

Computes small-length
branching programs [IP07,…]

Pairing crypto: computes
one mul and many adds [BGN05]

One-way functions

Number-theoretic

crypto

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

computes any number of adds

computes any number of adds and muls

Private-Key Enc
can’t compute on ciphertexts 5

Lattice crypto
[G09,…]

Computes small-length
branching programs [IP07,…]

Pairing crypto: computes
one mul and many adds [BGN05]

One-way functions

Number-theoretic

crypto

Indistinguishability
obfuscation* [JLS21,…]

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

computes any number of adds

computes any number of adds and muls

Private-Key Enc
can’t compute on ciphertexts 5

Lattice crypto
[G09,…]

Computes small-length
branching programs [IP07,…]

Pairing crypto: computes
one mul and many adds [BGN05]

One-way functions

Number-theoretic

crypto

Indistinguishability
obfuscation* [JLS21,…]

This work: computes a few muls and
many adds, using
- linearly homomorphic enc and
- private-key crypto

This talk

6

Sparse LPN

with modulus q ≥ 3

Linearly Homomorphic Encryption
over (known from DDH/DCR)𝔽q

+

Somewhat Homomorphic Encryption that, for any chosen
during encryption, can perform muls followed by adds over

n = poly(λ)
o(log n) n 𝔽q

This talk

7

Sparse LPN

with modulus q ≥ 3

Linearly Homomorphic Encryption
over (known from DDH/DCR)𝔽q

+

Somewhat Homomorphic Encryption that, for any chosen
during encryption, can perform muls followed by adds over

n = poly(λ)
o(log n) n 𝔽q

8

Background: Sparse Learning Parities with Noise
[Ale03, AIK06, IKOS08, ABW10, …]

Formally: , is a prime, the sparsity is n, m = poly(λ) q ≤ exp(λ) k ω(1)

,

× s
+

,

s R← 𝔽n
q

e

n

m

,,

b

b R← 𝔽m
q: random in

with each row -sparse
A 𝔽m×n

q
k

: each entrye {random, with prob. n−0.1

0, else

≈A A A

9

Background: Sparse Learning Parities with Noise
[Ale03, AIK06, IKOS08, ABW10, …]

,

× s
+

,

e

n

m

,,

b

b R← 𝔽m
q: random in

with each row -sparse
A 𝔽m×n

q
k

: each entrye {random, with prob. n−0.1

0, else

≈A A A

Formally: , is a prime, the sparsity is n, m = poly(λ) q ≤ exp(λ) k ω(1)

In higher-noise settings: LPN sparse LPN [JLS24, BBTV24]

In this setting: sparse LPN constant-overhead PRGs, homomorphic secret sharing [IKOS08, DIJL23]

⟹
⟹

s R← 𝔽n
q

This talk

10

Sparse LPN

with modulus q ≥ 3

Linearly Homomorphic Encryption
over (known from DDH/DCR)𝔽q

+

Somewhat Homomorphic Encryption that, for any chosen
during encryption, can perform muls followed by adds over

n = poly(λ)
o(log n) n 𝔽q

Design Ideas

Step 1: Use Sparse LPN to homomorphically add and multiply
- No compactness: ciphertexts are huge
+ Decryption is simple: it is a linear function in the secret key

11

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

[GSW13, DIJL23]

[Gen09]

Design Ideas

Step 1: Use Sparse LPN to homomorphically add and multiply
- No compactness: ciphertexts are huge
+ Decryption is simple: it is a linear function in the secret key

12

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

[GSW13, DIJL23]

[Gen09]

Design Ideas

Step 1: Use Sparse LPN to homomorphically add and multiply
- No compactness: ciphertexts are huge
+ Decryption is simple: it is a linear function in the secret key

13

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

[GSW13, DIJL23]

[Gen09]

14

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

, … ,
f

Cf(x)

Cxm
Cx1

 - Homomorphic add is matrix addition
 - Homomorphic mul is matrix mul

n + 1

n + 1

 - Decryption is linear

15

The key equation

Take to be a random vector .s ∈ 𝔽n
q

Step 1: Use Sparse LPN to homomorphically add and multiply

sk

[GSW13]

Encrypt into a sparse matrix ,
of which is a “noisy” eigenvalue with sparse errors :

x ∈ 𝔽q Cx ∈ 𝔽 (n+1)×(n+1)
q

x e

Cx ⋅ [−s
1] = x ⋅ [−s

1] + e

The goal

, … ,
f

Cf(x)

Cxm
Cx1

 - Homomorphic add is matrix addition
 - Homomorphic mul is matrix mul

n + 1

n + 1

 - Decryption is linear

16

Take to be a random vector .s ∈ 𝔽n
q

Step 1: Use Sparse LPN to homomorphically add and multiply

sk

How?

Cx =
× s

+
,

+A A e −s

1
x ⋅

Encrypt into a sparse matrix ,
of which is a “noisy” eigenvalue with sparse errors :

x ∈ 𝔽q Cx ∈ 𝔽 (n+1)×(n+1)
q

x e

Cx ⋅ [−s
1] = x ⋅ [−s

1] + e

The key equation The goal

, … ,
f

Cf(x)

Cxm
Cx1

 - Homomorphic add is matrix addition
 - Homomorphic mul is matrix mul

n + 1

n + 1

 - Decryption is linear

[GSW13]

17

Take to be a random vector .s ∈ 𝔽n
q

Step 1: Use Sparse LPN to homomorphically add and multiply

sk

Encrypt into a sparse matrix ,
of which is a “noisy” eigenvalue with sparse errors :

x ∈ 𝔽q Cx ∈ 𝔽 (n+1)×(n+1)
q

x e

Cx ⋅ [−s
1] = x ⋅ [−s

1] + e

The key equation The goal

, … ,
f

Cf(x)

Cxm
Cx1

 - Homomorphic add is matrix addition
 - Homomorphic mul is matrix mul

n + 1

n + 1

 - Decryption is linear

[GSW13]

18

Take to be a random vector .s ∈ 𝔽n
q

Step 1: Use Sparse LPN to homomorphically add and multiply

sk

Encrypt into a sparse matrix ,
of which is a “noisy” eigenvalue with sparse errors :

x ∈ 𝔽q Cx ∈ 𝔽 (n+1)×(n+1)
q

x e

Cx ⋅ [−s
1] = x ⋅ [−s

1] + e

Proof. (Cx + Cy) ⋅ [−s
1] = (x + y) ⋅ [−s

1] + (ex + ey)

Add: is an encryption of Cx + Cy x + y

The key equation The goal

, … ,
f

Cf(x)

Cxm
Cx1

 - Homomorphic add is matrix addition
 - Homomorphic mul is matrix mul

n + 1

n + 1

 - Decryption is linear

[GSW13]

19

Take to be a random vector .s ∈ 𝔽n
q

Step 1: Use Sparse LPN to homomorphically add and multiply

sk

Encrypt into a sparse matrix ,
of which is a “noisy” eigenvalue with sparse errors :

x ∈ 𝔽q Cx ∈ 𝔽 (n+1)×(n+1)
q

x e

Cx ⋅ [−s
1] = x ⋅ [−s

1] + e

Add: is an encryption of Cx + Cy x + y

Mul: is an encryption of Cx ⋅ Cy x ⋅ y

Proof. (Cx ⋅ Cy) ⋅ [−s
1] = (x ⋅ y) ⋅ [−s

1] + (y ⋅ ex + Cx ⋅ ey)

The key equation The goal

, … ,
f

Cf(x)

Cxm
Cx1

 - Homomorphic add is matrix addition
 - Homomorphic mul is matrix mul

n + 1

n + 1

 - Decryption is linear

[GSW13]

20

Take to be a random vector .s ∈ 𝔽n
q

Step 1: Use Sparse LPN to homomorphically add and multiply

sk

Encrypt into a sparse matrix ,
of which is a “noisy” eigenvalue with sparse errors :

x ∈ 𝔽q Cx ∈ 𝔽 (n+1)×(n+1)
q

x e

Cx ⋅ [−s
1] = x ⋅ [−s

1] + e

Add: is an encryption of Cx + Cy x + y

Mul: is an encryption of Cx ⋅ Cy x ⋅ y

Dec: output the last entry of Cx ⋅ [−s
1]

Proof. Cx ⋅ [−s
1] = x ⋅ [−s

1] + e

The key equation The goal

, … ,
f

Cf(x)

Cxm
Cx1

 - Homomorphic add is matrix addition
 - Homomorphic mul is matrix mul

n + 1

n + 1

 - Decryption is linear

[GSW13]

21

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

, … ,
f

Cf(x)

Cxm
Cx1

n + 1

n + 1
On a secret key of dimension , allows:
- muls, followed by
- adds.

 set to match the desired number of operations

n
o(log n)
n0.1−ϵ

→ n

+ Correct, secure, and homomorphic.

22

Step 1: Use Sparse LPN to homomorphically add and multiply

Due to limited homomorphism, bits
All ciphertexts are larger than

| f | = o(n0.1)
| f |

- Problem: Not compact!

On a secret key of dimension , allows:
- muls, followed by
- adds.

 set to match the desired number of operations

n
o(log n)
n0.1−ϵ

→ n

+ Correct, secure, and homomorphic. The goal

, … ,
f

Cf(x)

Cxm
Cx1

n + 1

n + 1

This talk

23

Sparse LPN

with modulus q ≥ 3

Linearly Homomorphic Encryption
over (known from DDH/DCR)𝔽q

+

Somewhat Homomorphic Encryption that, for any chosen
during encryption, can perform muls followed by adds over

n = poly(λ)
o(log n) n 𝔽q

✓

24

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts [G09]

Cf(x)
ComputeCx

25

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts [G09]

Translate

Linearly homomorphic
encryption

Cf(x)
ComputeCx ctf(x)

26

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts [G09]

ctf(x)
Translate

Decrypting is a linear function in

Plan:

1. Publish a linearly homomorphic enc. of

2. Anyone can homomorphically run to
 get

f Dec

f Dec

Linearly homomorphic
encryption

Cf(x)
ComputeCx

ctf(x)

Cf(x) sk

sk

27

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts [G09]

Translate

Linearly homomorphic
encryption

Cf(x)
ComputeCx ctf(x)

28

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts [G09]

Translatectx
Translate

Linearly homomorphic
encryption

Cf(x)
ComputeCx ctf(x)

Encryption with cheap decrypt

(from sparse LPN)

29

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts [G09]

Translate

Decrypting is a cheap function in

Plan:

1. Publish somewhat-homomorphic enc. of

2. Anyone can homomorphically run to

 get

f Dec

f Dec

Cx

Linearly homomorphic
encryption

ctx
Translate Cf(x)

ComputeCx ctf(x)

ctx sk

Encryption with cheap decrypt

(from sparse LPN)

sk

30

The final construction

sk
sk
sk

ct , : scheme 1 [has cheap decryption]

, : scheme 2 [our sparse-LPN scheme]

ct : scheme 3 [is linearly homomorphic]sk,

sk

C sk

= C sk ,ek ct sk

31

The final construction

sk
sk
sk

ctx1 ctxm
, … ,

= C sk ct sk,ek

ct , : scheme 1 [has cheap decryption]

, : scheme 2 [our sparse-LPN scheme]

ct : scheme 3 [is linearly homomorphic]sk,

sk

C sk

32

The final construction

= C sk ct sk,

sk
sk
sk

ctx1 ctxm
, … ,

Cx1

Cf(x) ctf(x)

Cxm

f

ctx1

⋮

ctxm

ek

f Dec

f Dec

ct , : scheme 1 [has cheap decryption]

, : scheme 2 [our sparse-LPN scheme]

ct : scheme 3 [is linearly homomorphic]sk,

sk

C sk

33

The final construction

= C sk ct sk,

sk
sk
sk

ctx1 ctxm
, … ,

Cx1

Cf(x) ctf(x)

Cxm

f

ctx1

⋮

ctxm

ek

f Dec

f Dec

ct , : scheme 1 [has cheap decryption]

, : scheme 2 [our sparse-LPN scheme]

ct : scheme 3 [is linearly homomorphic]sk,

sk

C sk

ctf(x)

This talk

34

Sparse LPN

with modulus q ≥ 3

Linearly Homomorphic Encryption
over (known from DDH/DCR)𝔽q

+

Somewhat Homomorphic Encryption that, for any chosen
during encryption, can perform muls followed by adds over

n = poly(λ)
o(log n) n 𝔽q

✓ ✓

✓

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

Private-Key Enc
35

Sparse LPN

This work: can compute
- a few muls, followed by
- many adds
on encrypted data.

Number-theoretic
crypto

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

Private-Key Enc
35

Sparse LPN

This work: can compute
- a few muls, followed by
- many adds
on encrypted data.

Number-theoretic
crypto

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

Private-Key Enc
35

Sparse LPN

This work: can compute
- a few muls, followed by
- many adds
on encrypted data.

Number-theoretic
crypto

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Open: Can we build homomorphism from
even fewer/weaker assumptions?

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

Private-Key Enc
35

Sparse LPN

This work: can compute
- a few muls, followed by
- many adds
on encrypted data.

Number-theoretic
crypto

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Open: Can we build homomorphism from
even fewer/weaker assumptions?

???
Open: Can we bootstrap to full homomorphism?

Fully Homomorphic Enc

Linearly Homomorphic Enc

Somewhat Homomorphic Enc

Private-Key Enc
35

Sparse LPN

This work: can compute
- a few muls, followed by
- many adds
on encrypted data.

Number-theoretic
crypto

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Open: Can we build homomorphism from
even fewer/weaker assumptions?

???
Open: Can we bootstrap to full homomorphism?

Alexandra Henzinger

eprint.iacr.org/2024/1760

ahenz@csail.mit.edu
Thank you!

