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/In higher-noise settings: LPN = sparse LPN [J1. 524, BBTV24] B
\In this setting:  sparse LPN = constant-overhead PRGs, homomorphic secret sharing [I[KOS08, DIJLZS]/

Formally: nn, m = poly(4), g < exp(A) is a prime, the sparsity k is w(1)



This talk

&

Sparse LPN

N Sj Linearly Homomorphic Encryption

~

|

Somewhat Homomorphic Encryption that, for any n = poly(4) chosen
during encryption, can perform o(log n) muls followed by n adds over F,



Design [deas

Step 1: Use Sparse LPN to homomorphically add and multiply



Design [deas

Step 1: Use Sparse LPN to homomorphically add and multiply

- No compactness: ciphertexts are huge

+ Decryption is simple: it is a linear function in the secret key



Design [deas

Step 1: Use Sparse LPN to homomorphically add and multiply

- No compactness: ciphertexts are huge

+ Decryption is simple: it is a linear function in the secret key

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts



Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear

14



Step 1: Use Sparse LPN to homomorphically add and multiply

The goal The key equation

Take sk to be a random vector s & [F’;.

[I:(n+1)><(n+1)
q )

—ncrypt x € [, into a sparse matrix C, €
of which x Is a “nhoisy” eigenvalue with sparse errors e:

e [+ [

1

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear



Step 1: Use Sparse LPN to homomorphically add and multiply

The goal The key equation cswis

Take sk to be a random vector s & [F’;.

(n+1)x(n+1)
q )

—nerypt x € [, into a sparse matrix C, €
of which x Is a “nhoisy” eigenvalue with sparse errors e:

7]+ 7]+

Ci

How"?

- Homomorphic add 1s matrix addition / X S —S \
p . \ ' ' +H o |
1

- Homomorphic mul is matrix mul

- Decryption is linear



Step 1: Use Sparse LPN to homomorphically add and multiply

The goal The key equation

Take sk to be a random vector s & [F’;.

[I:(n+1)><(n+1)
q )

—ncrypt x € [, into a sparse matrix C, €
of which x Is a “nhoisy” eigenvalue with sparse errors e:

e [+ [

1

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear



Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear

The key equation
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Step 1: Use Sparse LPN to homomorphically add and multiply

The goal The key equation

Take sk to be a random vector s & [Fg.

Enorypt x € F into a sparse matrix C, € FU DX+,
of which x Is a “nhoisy” eigenvalue with sparse errors e:

e [3] 0[]+

Ci

Add: C, + C, is an encryption of x + y

Mul: C, - Cy is an encryption of x - y

Dec: output the last entry of C. - __ls

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear
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Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

+ Correct, secure, and homomorphic.

On a secret key of dimension n, allows:
- o(log n) muls, followed by
- n¥%17¢ adds.

— set n to match the desired number of operations

- Problem: Not compact!

Due to limited homomorphism, | f| = o(n"!) bits

All ciphertexts are larger than | f|
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Fix: Use homomorphism to shrink the ciphertexts ico:

Translate Compute
B n—_p_‘

Decrypting | ct, Is a cheap function N < sk
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2. Anyone can homomorphically run to

29



ct sk : scheme 1 [has cheap decryption]

b

The final construction # : scheme 2 [our sparse-LPN scheme]

, aslf® : scheme 3 [is linearly homomorphic]

Q’ 111/ ‘3

30



The final construction

.
(/
—

ct sk . scheme 1 [has cheap decryption]

b

sk . scheme 2 |our sparse-LPN scheme]

, el : scheme 3 [is linearly homomorphic]

31



ct sk . scheme 1 [has cheap decryption]

b

The flﬂa\ COHS’(FUCHOH sk . scheme 2 [our sparse-LPN scheme]

, el : scheme 3 [is linearly homomorphic]

32



ct sk . scheme 1 [has cheap decryption]

b

The flﬂa\ COHS’(FUCHOH sk . scheme 2 [our sparse-LPN scheme]

, el : scheme 3 [is linearly homomorphic]

33



This talk

ﬁ

~

Sparse LPN

|

! Linearly Homomorphic Encryption

\_

~

v

Somewhat Homomorphic Encryption that, for any n = poly(4) chosen
during encryption, can perform o(log n) muls followed by n adds over [Fq

v,

34



" This work: can compute
- a few muls, followed by
- many adds
on encrypted data.

ic ENC
‘nearly Homomorphic
Linearly Number-theoretic

Private-Key ENC

35



Fully Homomorphic ENC

Somewhat Homomorphic Enc

This work: can compute
- a few muls, followed by
- many adds

on encrypted data.

Linearly Homomorphic ENC

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Number-theoretic
Crypto

A/ o
Private-Key Enc Sparse LPN “ o

- ,JI,- j*ﬂ" -

39



Fully Homomorphic ENG

Somewhat HomomorphiC

This work: can compute
- a few muls, followed by

- many ac

Enc

Q

[

O

ds B

on encryp

Linearly Homomorphic ENC

Private-Key ENC

'ed data. ‘

Sparse LPN —

Open: Can we builld homomorphism from
even fewer/weaker assumptions”?

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Number-theoretic
Crypto

39



Fully Homomorphic ENG

Somewhat Homomorphic Enc Q

This work: can compute
- a few muls, followed by
- many adds

on encrypted data.

Linearly Homomorphic ENC

Private-Key ENC Sparse LPN @&V

‘-
-
— P 'y “
P
: -
-
e T

Open: Can we bootstrap to full homomorphism??

Open: Can we builld homomorphism from
even fewer/weaker assumptions”?

Open: Can we shrink the evaluation key?

Can we get concrete efficiency?

Number-theoretic
Crypto

39



Fully Homomorphic Enc

Somewhat Homomorphic Enc

Linearly Homomorphic ENC

Private-Key ENC

This work: can compute
- a few muls, followed by

- many ac

e
Q

[

O

ds B

on encryp

'ed data. ‘

Sparse LPN —

, s ‘M‘ >

Open: Can we bootstrap to full homomorphism??

Open: Can we builld homomorphism from
even fewer/weaker assumptions”?

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Numlber-theoretic
crypto Alexandra Henzinger

eprint.iacr.org/2024/1 760

= ahenz@csail.mit.edu
/?r Thank you!

39



