Somewhat Homomorphic Encryption
from Linear Homomorphism and Sparse LPN

Henry Corrigan-Gibbs Alexandra Henzinger Yael Kalai Vinod Vaikuntanathan

Homomorphic Encryption for a class of computations C: for all f € C,

Y AR

2 ® sk . Enc(sk,x,) f
ely W E Enc (Sk, f(xy, ...,xm)) — \//

Homomorphic Encryption for a class of computations C: for all f € C,

¥
2 @ - Enc(sk,x)) ,..., Enc (Sk,xm)_> F
ely W E Enc (Sk, flxy, ..., xm)) — ;//

1. Correct. With ©sk | Enc (Sk, f(xq, ...,xm)) decrypts to f(x, ..., x,,) with good probability.

2. Semantically secure. The ciphertexts and ely reveal nothing about x, ..., X,,.

3. Compact. The bitlength of each ciphertext does not grow with |] .

Homomorphic Encryption for a class of computations C: for all f € C,

ek{

® Enc (sk, x;)

ENc (sk, x,,,)

, e o o ,

sk —
ely W D J— Enc (Sk,f(xla ---axm))

Private cloud computing

e

/

Private database reads

~_

—

f

Private ML

Private genome
analysis

Private web
search

1. Correct. With ©sk | Enc (Sk, f(xq, ...,xm)) decrypts to f(x, ..., x,,) with good probability.

2. Semantically secure. The ciphertexts and e// reveal nothing about x, ..., X,,.

3. Compact. The bitlength of each ciphertext does not grow with |] .

Linearly Homomorphic ENC

computes any ~umber of adds

Private-Key ENC

can't compute on ciphertexts

Linearly Homomorphic ENC

computes any ~umber of adds

Private-Key Enc One-way functions
D

can't compute on ciphertexts S
N
—

Linearly Homomorphic ENC

computes any ~umber of adds
Number-theoretic
crypto

Private-Key Enc One-way functions
D

can't compute on ciphertexts S
N
—

Gomputes small-length
branching programs [iPoz....|

Linearly Homomorphic ENC

f adds
Number-theoretic

crypto

computes any numoer O

One-way functions

Private-Key ENC
n ciphertexts <D g B

can't compute O

Pairing crypto: computes
one mul and many adds [BGNos]

Computes small-length
branching programs [IPo7.,...]

Linearly Homomorphic ENC

f adds
Number-theoretic

crypto

computes any numoer O

, _ One-way functi
Private-Key ENC VIEHONS e
can’t compute on ciphertexts %\(% g - o

-

. - 2
/ ' ."“ - J ;,{ - ___'r' 3 - . 08

Pairing crypto: computes
one mul and many adds [BGNos]

Computes small-length
branching programs [IPo7.,...]

Linearly Homomorphic ENC

f adds
Number-theoretic

crypto

computes any numoer O

Private-Key Enc One-way functions
<D *

can't compute on ciphertexts %\(e

’”',”
e

orphic EnC Isti
Indistinguishabillity
obfuscation™ [JLs21,..]

Lattice crypto
[GO9, ..]

Pairing crypto: computes
one mul and many adds [BGNo5]

e

Number-theoretic
crypto

Computes small-length
branching programs [iPoz....|

\

Linearly Homomorphic ENC

computes any ~umber of adds

Private-Key EncC One-way functions

o't compute on ciphertexts <§® =
/ .)

hic Enc Indistinguishability
Fully HOmOmOLpr of adds and muls obfuscation™ [JLs21,..]
computes any NUMoe

Lattice crypto
[GO9,...]

Somewhat Homomorphic Enc

This work: computes a few muls and
many adds, using

- linearly homomorphic enc and
- private-key crypto

Pairing crypto: computes
one mul and many adds [BGNo5]

e

Number-theoretic

Computes small-length
branching programs [iPoz....|

\

Linearly Homomorphic ENC
computes any ~umber of adds

crypto
Private-Key Enc One-way functions . —
rivate-
| P
can’t compute on ciphertexts %’é\(S P |

T
y \“ -
.. .
P # . N, v '

This talk

&

Sparse LPN

N @ Linearly Homomorphic Encryption

~

|

Somewhat Homomorphic Encryption that, for any n = poly(4) chosen
during encryption, can perform o(log n) muls followed by n adds over F,

~

This talk
N @ Linearly Homomorphic Encryption

<
Sparse LPN

Somewhat Homomorphic Encryption that, for any n = poly(4) chosen
during encryption, can perform o(log n) muls followed by n adds over F,

Background: Sparse Learning Parities with Noise
[Ale03, AIKOB, IKOS08, ABW10, ...]

A random in [F'Z]”an €: each entry) random, with prob. n=U1 b fi [
with each row k-sparse 0, else
/ X S \ ~
m A A + ~N/ A
\ | / \ |
n

Formally: nn, m = poly(4), g < exp(A) is a prime, the sparsity k is w(1)

Background: Sparse Learning Parities with Noise
[Ale03, AIK06, IKOS08, ABW10, ...]

. 0.1 R
A: random in [F’Z]”‘X”

with each row k-sparse 0, else

/ o / \

~ A

/ | S &

€: each entry { random, with prob. n

/In higher-noise settings: LPN = sparse LPN [J1. 524, BBTV24] B
\In this setting: sparse LPN = constant-overhead PRGs, homomorphic secret sharing [I[KOS08, DIJLZS]/

Formally: nn, m = poly(4), g < exp(A) is a prime, the sparsity k is w(1)

This talk

&

Sparse LPN

N Sj Linearly Homomorphic Encryption

~

|

Somewhat Homomorphic Encryption that, for any n = poly(4) chosen
during encryption, can perform o(log n) muls followed by n adds over F,

Design [deas

Step 1: Use Sparse LPN to homomorphically add and multiply

Design [deas

Step 1: Use Sparse LPN to homomorphically add and multiply

- No compactness: ciphertexts are huge

+ Decryption is simple: it is a linear function in the secret key

Design [deas

Step 1: Use Sparse LPN to homomorphically add and multiply

- No compactness: ciphertexts are huge

+ Decryption is simple: it is a linear function in the secret key

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear

14

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal The key equation

Take sk to be a random vector s & [F’;.

[I:(n+1)><(n+1)
q)

—ncrypt x € [, into a sparse matrix C, €
of which x Is a “nhoisy” eigenvalue with sparse errors e:

e [+ [

1

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal The key equation cswis

Take sk to be a random vector s & [F’;.

(n+1)x(n+1)
q)

—nerypt x € [, into a sparse matrix C, €
of which x Is a “nhoisy” eigenvalue with sparse errors e:

7]+ 7]+

Ci

How"?

- Homomorphic add 1s matrix addition / X S —S \
p . \ ' ' +H o |
1

- Homomorphic mul is matrix mul

- Decryption is linear

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal The key equation

Take sk to be a random vector s & [F’;.

[I:(n+1)><(n+1)
q)

—ncrypt x € [, into a sparse matrix C, €
of which x Is a “nhoisy” eigenvalue with sparse errors e:

e [+ [

1

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear

The key equation

Take sk to be a random vector s & [Fg.

ncrypt x € F, into a sparse matrix C, € Fyr#x0+1),

e [3] 0[]+

Add: C, + C, is an encryption of x + y

of which x Is a “nhoisy” eigenvalue with sparse errors e:

18

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

Ci

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear

The key equation

Take sk to be a random vector s & [Fg.

Enorypt x € F into a sparse matrix C, € FU DX+,
of which x Is a “nhoisy” eigenvalue with sparse errors e:

e [3] 0[]+

Add: C, + C, is an encryption of x + y

Mul: C, - Cy is an encryption of x - y

19

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal The key equation

Take sk to be a random vector s & [Fg.

Enorypt x € F into a sparse matrix C, € FU DX+,
of which x Is a “nhoisy” eigenvalue with sparse errors e:

e [3] 0[]+

Ci

Add: C, + C, is an encryption of x + y

Mul: C, - Cy is an encryption of x - y

Dec: output the last entry of C. - __ls

- Homomorphic add is matrix addition

- Homomorphic mul is matrix mul

- Decryption is linear

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

+ Correct, secure, and homomorphic.

On a secret key of dimension n, allows:
- o(log n) muls, followed by
- n¥%17¢ adds.

— set n to match the desired number of operations

21

Step 1: Use Sparse LPN to homomorphically add and multiply

The goal

+ Correct, secure, and homomorphic.

On a secret key of dimension n, allows:
- o(log n) muls, followed by
- n¥%17¢ adds.

— set n to match the desired number of operations

- Problem: Not compact!

Due to limited homomorphism, | f| = o(n"!) bits

All ciphertexts are larger than | f|

22

This talk

Sparse LPN

~

N ! Linearly Homomorphic Encryption

Somewhat Homomorphic Encryption that, for any n = poly(4) chosen
during encryption, can perform o(log n) muls followed by n adds over [Fq

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts ico:

C Compute

X Cro

24

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts ico:

Linearly homomorphic
encryption

C Compute Translate

25

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts ico:

Compute
n__

Linearly homomorphic
encryption

Translate

Decrypting s a linear function f pge in sk

Plan:

1. Publish a linearly homomorphic enc. of ““ sk

2. Anyone can homomorphically run f pec to

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts ico:

Linearly homomorphic
encryption

C Compute Translate

27

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts ico:

ct, Translate Cx Compute

Linearly homomorphic
encryption

Translate

28

Step 2: Use Linearly Homomorphic Encryption to shrink the ciphertexts

Fix: Use homomorphism to shrink the ciphertexts ico:

Translate Compute
B n—_p_‘

Decrypting | ct, Is a cheap function N < sk

Linearly homomorphic
encryption

Translate

Plan:

1. Publish somewhat-homomorphic enc. of « sk

2. Anyone can homomorphically run to

29

ct sk : scheme 1 [has cheap decryption]

b

The final construction # : scheme 2 [our sparse-LPN scheme]

, aslf® : scheme 3 [is linearly homomorphic]

Q’ 111/ ‘3

30

The final construction

.
(/
—

ct sk . scheme 1 [has cheap decryption]

b

sk . scheme 2 |our sparse-LPN scheme]

, el : scheme 3 [is linearly homomorphic]

31

ct sk . scheme 1 [has cheap decryption]

b

The flﬂa\ COHS’(FUCHOH sk . scheme 2 [our sparse-LPN scheme]

, el : scheme 3 [is linearly homomorphic]

32

ct sk . scheme 1 [has cheap decryption]

b

The flﬂa\ COHS’(FUCHOH sk . scheme 2 [our sparse-LPN scheme]

, el : scheme 3 [is linearly homomorphic]

33

This talk

ﬁ

~

Sparse LPN

|

! Linearly Homomorphic Encryption

_

~

v

Somewhat Homomorphic Encryption that, for any n = poly(4) chosen
during encryption, can perform o(log n) muls followed by n adds over [Fq

v,

34

" This work: can compute
- a few muls, followed by
- many adds
on encrypted data.

ic ENC
‘nearly Homomorphic
Linearly Number-theoretic

Private-Key ENC

35

Fully Homomorphic ENC

Somewhat Homomorphic Enc

This work: can compute
- a few muls, followed by
- many adds

on encrypted data.

Linearly Homomorphic ENC

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Number-theoretic
Crypto

A/ o
Private-Key Enc Sparse LPN “ o

- ,JI,- j*ﬂ" -

39

Fully Homomorphic ENG

Somewhat HomomorphiC

This work: can compute
- a few muls, followed by

- many ac

Enc

Q

[

O

ds B

on encryp

Linearly Homomorphic ENC

Private-Key ENC

'ed data. ‘

Sparse LPN —

Open: Can we builld homomorphism from
even fewer/weaker assumptions”?

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Number-theoretic
Crypto

39

Fully Homomorphic ENG

Somewhat Homomorphic Enc Q

This work: can compute
- a few muls, followed by
- many adds

on encrypted data.

Linearly Homomorphic ENC

Private-Key ENC Sparse LPN @&V

‘-
-
— P 'y “
P
: -
-
e T

Open: Can we bootstrap to full homomorphism??

Open: Can we builld homomorphism from
even fewer/weaker assumptions”?

Open: Can we shrink the evaluation key?

Can we get concrete efficiency?

Number-theoretic
Crypto

39

Fully Homomorphic Enc

Somewhat Homomorphic Enc

Linearly Homomorphic ENC

Private-Key ENC

This work: can compute
- a few muls, followed by

- many ac

e
Q

[

O

ds B

on encryp

'ed data. ‘

Sparse LPN —

, s ‘M‘ >

Open: Can we bootstrap to full homomorphism??

Open: Can we builld homomorphism from
even fewer/weaker assumptions”?

Open: Can we shrink the evaluation key?
Can we get concrete efficiency?

Numlber-theoretic
crypto Alexandra Henzinger

eprint.iacr.org/2024/1 760

= ahenz@csail.mit.edu
/?r Thank you!

39

