

Blaze: Fast SNARKs from Interleaved RAA Codes

Hadas Zeilberger & Martijn Brehm

Yale University University of Amsterdam

Joint work with Binyi Chen, Ben Fisch, Nicolas Resch, and Ron Rothblum

Blaze

Blaze is a new multilinear polynomial commitment scheme over binary fields with a linear time prover and polylogarithmic verifier costs

Blaze Asymptotics

Cost of committing to $P: \mathbb{F}^m \to \mathbb{F}$ (described by $N = 2^m$ field elements)

<u>Commitment:</u> 8*N* additions (=XORs) + 1 Merkle Hash

Evaluation proof: dominated by 6*N* additions and 5*N* multiplications

Proof length and Verification: $O_{\lambda}((\log N)^2)$

Some Benchmarks

Run on AWS EC2 Instance c6a.48xlarge, with 192 vCPUs and 384GiBs of RAM

Verifier Time (ms)

Comparison to Prior Works: Concrete

Baze shines when committing to relatively large multilinears.

For example:

10x faster then Multilinear FRI for m = 28 [BBHR18a, BGKS20]

5x faster than Basefold for m = 29

1.16x <u>slower</u> than Brakedown but 10x <u>smaller</u> proof for m = 30

These numbers are for commiting to 64-bit field elements.

Leveraging binary fields lets us commit to bits, which has a <u>major</u> saving that is not accounted for here. [DP23,DP24]

[**Z**CF24]

Roadmap

- Motivation and Background
- Polynomial Commitment Scheme Construction
- RAA Codes

Why Binary Fields

Addition of two field elements is just XOR

Avoid embedding overhead [DP23]

Multiplication is trickier but we don't do a lot of it

Why Multilinear Polynomials

- Multilinear PIOPs interpolate and evaluate polynomials over the *boolean hypercube*, rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)
- Multilinear PIOPs replace computing a quotient polynomial which requires an FFT with the more efficient sum-check protocol for multilinear evaluation
- **In Summary:** Multilinear PIOPs have lower prover overhead than univariate PIOPs, particularly for *high-degree gates*

Application	$\mathcal{R}_{\mathrm{R1}CS}$	Ark-Spartan	$\mathcal{R}_{ extsf{PLONK}}^{ extsf{PLONK}}+$	Jellyfish*	Hyper <mark>Plonk</mark>	
3-to-1 Rescue Hash	288 [1]	$422 \mathrm{ms}$	144 [71]	$40 \mathrm{ms}$	88 ms	
PoK of Exponent	$3315 \ [63]$	902 ms	$783 \ [63]$	$64 \mathrm{ms}$	$105 \mathrm{\ ms}$	
ZCash circuit	2^{17} [55]	$8.3 \mathrm{s}$	2^{15} [42]	0.8 s	0.6 s	
Zexe's recursive circuit	2^{22} [81]	$6 \min$	2^{17} [81]	13.1 s	$5.1~{ m s}$	
Rollup of 50 private tx	2^{25}	$39 \mathrm{min}^b$	2^{20} [71]	110 s	$38.2 \mathrm{s}$	
zkEVM circuit ^a	N/A	N/A	2^{27}	$1 \text{ hour}^{b,c}$	$25 \min^{b,c}$	

*Jellyfish is an implementation of Plonk

Common SNARK Construction Paradigm

Prover

Prover strategy accepted with non-negligible probability....

It is possible to efficiently extract a *unique* polynomial from the commitment (Knowledge Soundness)

PCS from Error-Correcting Code

A linear error-correcting code is a k-dimensional subspace of \mathbb{F}^n k << n Minimum Hamming distance Δ_C 14

PCS from Error-Correcting Code

Proximity Proof: Prove relation (d, C; w) : Oracle access to w. Prove that is w d-close to a codeword in C

Interactive Oracle Proofs

A hybrid between (public-coin) interactive-proof and PCP.

[BCS16,RRR16]

IOPP via Code-Switching

IOPP via Code-Switching

Prove knowledge of **m** such that

IOPP via Code-Switching

Repeat ---> Permute ---> Accumulate ---> Permute ---> Accumulate

IOPP via RS -> RAA Code-Switching

IOPP via RS -> RAA Code-Switching

m G1 = u1 u1 G2 = u2 u2 G3 = u3 u3 G1 = u4

IOPP via RS -> RAA Code-Switching

Permutation Argument [CBBZ24, SL20, THA13] Accumulation Argument Permutation Argument Accumulation Argument

RAA code analysis

Goal: binary error correcting code with good distance (i.e. no low weight vectors) and very efficient encoding map $C : \mathbb{F}_2^{n/r} \to \mathbb{F}_2^n$

RAA encoding

RAA encoding basically as efficient as possible: 2(n-1) XOR gates

	010100	Repeat r times	010100	010100	010100
Accumulation: Ls act as state		Permutation	100000	101100	100100
		Accumulation	111111	001000	111000
cn	ange	Permutation	101100	110101	110001
		Accumulation	110111	011001	011110

RAA encoding

RAA encoding basically as efficient as possible: 2(n-1) XOR gates

	010100	Repeat r times	01	0	100	0 0)1(01	. 0	0	0	10	10	0
Accumulation: 1s act as state change		Permutation	10	0	000) 1	. 0 :	11	0	0	1	00	10	0
		Accumulation	11	1	111) ()	10	0	0	1	11	00	0
		Permutation	10	1	100) 1	. 1 (01	0	1	1	10	00	1
		Accumulation	11	0	111)1:	10	0	1	0	11	11	0

Permute+accumulate increase weight

Why would these operations increase weight?

Accumulate(100001) = 111110Accumulate(110000) = 100000

Permutation spreads 1s, so it's likely a 1 has some 0s afterwards to flip

Permute+accumulate increase weight

RAA codes: an analogy

Stage

RAA distance error probability

Whether RAA code has good distance depends on if you sampled good permutations

Good distance is achieved with probability. Previous work showed that the error probability is o(1) [BMS08,KZCJ07,KZKJ08]

RAA distance error probability

Whether RAA code has good distance depends on if you sampled good permutations

Good distance is achieved with probability. Previous work showed that the error probability is o(1) [BMS08,KZCJ07,KZKJ08]

Question: do we have good distance for, say, n=2^10 or 2^20?

Our techniques build on these works to give inverse polynomial error bounds with concrete constants.

RAA distance error probability (8) \leq (10) + $\frac{n}{r} \cdot \left(\frac{r}{2}\right) \sum_{w=1}^{m} \frac{(a-w_2)}{(a)} \cdot \frac{(w_2-r)}{(w_2-r)} \cdot \frac{(w_2)}{(w_2-r)} \cdot \frac{$

$$\begin{split} &\prod_{j=0}^{\frac{r}{2}-1} \frac{(rw_1+2j+1)(rw_1+2j+2)}{(\frac{rw_1}{2}+j+1)^2} \cdot \frac{(w_2-\frac{rw_1}{2}-j)(n-\frac{rw_1}{2}-j)}{(n-w_2-rw_1-2j)(n-rw_1-2j-1)} \\ &\leq \prod_{j=0}^{\frac{r}{2}-1} \frac{(rw_1+2j+2)(rw_1+2j+2)}{(\frac{rw_1}{2}+j+1)^2} \cdot \frac{(w_2-\frac{rw_1}{2}-j)(n-\frac{rw_1}{2}-j)}{(n-w_2-rw_1-2j)(n-rw_1-2j)} \\ &= \prod_{j=0}^{\frac{r}{2}-1} 2^2 \cdot \frac{(w_2-\frac{rw_1}{2}-j)(n-w_2-\frac{rw_1}{2}-j)}{(n-rw_1-2j)^2} \,. \end{split}$$

Now, for fixed j call $x = w_2 - \frac{rw_1}{2} - j$ and $y = (n - w_2 - \frac{rw_1}{2} - j)$. Observe

$$\frac{(w_2 - \frac{rw_1}{2} - j)(n - w_2 - \frac{rw_1}{2} - j)}{(n - rw_1 - 2j)(n - rw_1 - 2j)} = \frac{xy}{(x + y)^2} = \frac{xy}{(y - x)^2 + 4xy}$$

Instead of upper bounding this ratio, we find it easier to lower bound its reciprocal:

$$\frac{(y-x)^2 + 4xy}{xy} = \frac{(y-x)^2}{xy} + 4$$

Now, we have $xy \leq (w_2 - \frac{rw_1}{2})(n - w_2 - \frac{rw_1}{2}) \leq m(n - m) \leq mn = n^{1+\gamma}$, as $w_2 \leq m \leq n/2$. On the other hand, $(y - x) = (n - 2w_2) \geq (n - 2m) \geq \xi n$, where this last inequality uses the assumption $n \geq \frac{2}{1-\varepsilon}m$. Hence,

$$\frac{(y-x)^2}{xy} \ge \frac{\xi^2 n^2}{n^{1-\gamma}} = \xi^2 n^{1-\gamma} \ .$$

Thus, we have the bound

$$(12) \leq \prod_{j=0}^{\frac{r}{2}-1} 4 \cdot \frac{1}{\xi^2 n^{1-\gamma} + 4} = \prod_{j=0}^{\frac{r}{2}-1} \frac{1}{(\xi/2)^2 n^{1-\gamma} + 1}$$
$$\leq \prod_{j=0}^{\frac{r}{2}-1} (2/\xi)^2 n^{\gamma-1} = (2/\xi)^r n^{\frac{r}{2}(\gamma-1)} = (2/\xi)^r n^{-(1+\varepsilon)}$$

error bounds with

(12)

$$\begin{array}{l} & \text{binomials we keep the } \sqrt{\frac{n}{k(n-k)}} \text{factor from Lemma 9.4 to help us out, while for other we don't bother, as it won't help us much): \\ & \text{if}(r_{w_1/2}) \left(\underbrace{w_2 - \lceil rw_1/2 \rceil}_{(w_2)} \right) \cdot \underbrace{\binom{w_2}{(w_2/2)} \left(\underbrace{w_2 - \lceil w_2/2 \rceil}_{(w_3)} \right) \cdots \underbrace{\binom{w_2}{(w_2/2)} \left(\underbrace{w_2 - \lceil w_2/2 \rceil}_{(w_3)} \right) \cdots \underbrace{\binom{w_2}{w_2 w_3}}_{w_2 w_3} \\ & 2^{f(\alpha,\beta,\rho)n} \cdot \frac{102}{100} \cdot \underbrace{\frac{0.61664^3 \cdot 0.43603^2}{0.33675 \cdot 0.67352} \cdot \underbrace{\sqrt{\frac{rw_1}{(rw_1/2)} \left(\frac{rw_1}{(rw_1 - \lceil rw_1/2 \rceil)} \cdot \sqrt{\frac{w_2}{(w_2 - \lceil w_2/2 \rceil)}}_{n} \right)}_{\sqrt{\frac{w_2}{w_2(n-w_2)}} \cdot \frac{1}{\sqrt{n}}} \\ & \frac{102}{100} \cdot \underbrace{\frac{0.61664^3 \cdot 0.43603^2}{0.33675 \cdot 0.67352} \cdot 2^{f(\alpha,\beta,\rho)n} \cdot \sqrt{\frac{4}{rw_1} \cdot \frac{4}{w_2}} \cdot \underbrace{\frac{w_2(n-w_2)}{n} \cdot n}_{1} \\ & \frac{102}{100} \cdot \underbrace{\frac{4 \cdot 0.61664^3 \cdot 0.43603^2}{0.33675 \cdot 0.67352} \cdot \frac{1}{\sqrt{r}} \cdot 2^{f(\alpha,\beta,\rho)n} \cdot \sqrt{n-w_2} \\ & \frac{0.80192}{\sqrt{r}} \cdot \sqrt{n} \cdot 2^{f(\alpha,\beta,p)n} \end{array}$$

ese two bounds together gives us the proposed bound (18) on the expectation:

$$\begin{split} &\sum_{w_1=1}^n \sum_{w_2=m+1}^d \binom{n/r}{w_1} \cdot \frac{\binom{rw_1}{(rw_1/2)}\binom{w_2-rw_1}{(w_2-rw_1/2)}}{\binom{w_2}{w_2}} \cdot \frac{\binom{w_2}{(w_2/2)}\binom{n-w_2}{(w_3-w_2/2)}}{\binom{w_3}{w_3}} \cdot \frac{\Gamma w_1/2 \cdot \Gamma w_2/2}{w_2w_3} \\ &\leq \sum_{w_1=1}^{n/r} \sum_{w_2=m+1}^n \sum_{w_3=1}^d \frac{0.80192}{\sqrt{r}} \cdot \sqrt{n} \cdot 2^{f(\frac{rw_1}{m},\frac{w_2}{n},\frac{w_3}{n})n} \\ &\leq \frac{0.80192 \cdot \delta}{r^{3/2}} \cdot n^{3/2} \sum_{w_1=1}^{n/r} \sum_{w_2=m+1}^n 2^{f(\frac{rw_1}{n},\frac{w_2}{n},\delta)n} \\ &\leq \frac{0.80192 \cdot \delta}{r^{3/2}} \cdot n^{7/2} \cdot (\max_{(\alpha\beta) \in \mathbf{Z}'} 2^{f(\alpha,\beta)n} . \end{split}$$

Note that the second inequality uses the fact that f grows monotonically with ρ for $\rho < 1/2$, which we prove below.

To bound this expression, we will write out the binomials and then apply the following bound from $[\rm KZKJ08]$

 $\varphi_N(\ell) := \exp\left(\frac{\ell(\ell-1)}{2N}\right)$,

 $\leq (10) + \frac{n}{r} \cdot {r \choose \frac{r}{2}} \sum_{r=1}^{r} \frac{{n-2v_2}}{{n \choose d}} \frac{{n-r}}{{2v_2-r/2}} \cdot {2v_2 \choose v_2} \cdot v_2 .$

$$\frac{N^{\ell}}{\varphi_N(\ell)} \le \prod_{\lambda=0}^{\ell-1} (N-\lambda) \le N^{\ell}$$
(16)

where

which gives us the following:

$$\begin{split} &\cdot \left(\frac{r}{\underline{r}} \right) \sum_{v_2=1}^{\left[\frac{m}{2}\right]} \frac{(n-2v_2)! \cdot d! \cdot (n-d)!}{n! \cdot (d-v_2)! (n-d-v_2)!} \cdot \frac{(n-r)! (2v_2)! (n-2v_2)!}{n! \cdot (2v_2 - \frac{r}{2})! (n-2v_2 - \frac{r}{2})!} \cdot \binom{2v_2}{v_2} \cdot v_2 \\ &\cdot \left(\frac{r}{\underline{r}} \right) \sum_{v_2=1}^{\left[\frac{m}{2}\right]} \frac{\prod_{j=0}^{v_2-1} (d-j) \prod_{j=0}^{(v_2-1)} (n-d-j)}{\prod_{j=0}^{v_2-1} (n-j)} \\ &\cdot \frac{\prod_{j=0}^{r-1} (2v_2 - j) \prod_{j=0}^{\frac{r}{2}-1} (n-2v_2 - j)}{\prod_{j=0}^{r-1} (n-j)} \cdot \binom{2v_2}{v_2} \cdot v_2 \\ &\cdot \left(\frac{r}{\underline{r}} \right) \sum_{v_2=1}^{\left[\frac{m}{2}\right]} \frac{d^{v_2} \cdot (n-d)^{v_2}}{n^{2v_2}} \cdot \varphi_n(2v_2) \cdot \frac{(2v_2)^{\frac{r}{2}} (n-2v_2)^{\frac{r}{2}}}{n^r} \cdot \varphi_n(r) \cdot \binom{2v_2}{v_2} \cdot v_2 \ . \end{split}$$

verse polynomial

(15)

RAA distance error probability

We show error probability is roughly $O\left(\frac{1}{n^{1/2}}\right)$

However: most error comes from encoding low weight messages.

Idea: after sampling permutation, check if encoding of low weight messages is high weight (or better: encoding after one "round").

RAA distance error probability

We show error probability is roughly $O\left(\frac{1}{n^{1/2}}\right)$

However: most error comes from encoding low weight messages.

Idea: after sampling permutation, check if encoding of low weight messages is high weight (or better: encoding after one "round").

Time $O(n^w \log n)$ test decreases error to $O\left(\frac{1}{n^{(1/2)(w+1)}}\right)$

Example: r=4, n=2^20, distance 0.19 (GV bound 0.215):no test: 2^{-10} test weight 1: 2^{-20} test weight 2: 2^{-30} instantfew secs on laptopfew days on laptop

Some open questions

We can improve error probability to arbitrarily small inverse polynomial, using time scaling as the same polynomial:

 \rightarrow Improve error probability: ideally negligible error in poly-time

There is no analysis of RAA codes over larger alphabets than \mathbb{F}_2 We use RAA over \mathbb{F}_{128} in Blaze by simply packing together 128 codewords. This preserves distance, but is inefficient: we could get triple the distance over \mathbb{F}_{128}

 \rightarrow Analyze RAA codes over arbitrarily alphabet

Thank you!

Paper: <u>https://eprint.iacr.org/2024/1609.pdf</u> Code: <u>https://github.com/hadasz/plonkish_basefold</u>

<u>Contact:</u> Hadas Zeilberger email: <u>hadas.zeilberger@yale.edu</u>

<u>Contact:</u> Martijn Brehm email: m.a.brehm@uva.nl