Blaze: Fast SNARKSs from Interleaved
RAA Codes

Hadas Zeilberger & Martijn Brehm

Yale University University of Amsterdam

Joint work with Binyi Chen, Ben Fisch, Nicolas Resch, and Ron
Rothblum

Blaze

Blaze is a new multilinear polynomial commitment
scheme over binary fields with a linear time prover and
polylogarithmic verifier costs

g

Blaze Asymptotics

Cost of committing to P: '™ — [F (described by N = 2™ field elements)

Commitment: 8N additions (=XORs) + 1 Merkle Hash

Evaluation proof: dominated by 6N additions and 5N multiplications

Proof length and Verification: OA((log N)2)

Some Benchmarks

Run on AWS EC2 Instance c6a.48xlarge, with 192 vCPUs and 384GiBs
of RAM

Proving Time Verifier Time (ms)
- Blaze - Basefold - ZeromorphFri - Blaze - Basefold = ZeromorphFri
- Brakedown 4 Interleaved Blaze - Brakedown 4 Interleaved Blaze
210
28

v

26
/

24
25 26 27 28 29 30 31

Miliseconds
Miliseconds

25 26 27 28 29 30 31

Number of Variables Number of Variables 4

Comparison to Prior Works: Concrete

Blaze shines when committing to relatively large multilinears.

For example:
10x faster then Multilinear FRI for m = 28 [BBHR18a,BGKS20]
5x faster than Basefold for m = 29 [ZCF24]

1.16x slower than Brakedown but 10x smaller proof for m = 30

These numbers are for commiting to 64-bit field elements.

Leveraging binary fields lets us commit to bits, which has a major saving that is
not accounted for here. [pp23,pp24]

- Motivation and Background
- Polynomial Commitment Scheme Construction
- RAA Codes

Why Binary Fields

N /)
Y

A single field element is a bit

/ vector \

Addition of two field elements is just XOR Avoid embedding overhead [DP23]

Multiplication is trickier but we don’t do a lot of it

Why Multilinear Polynomials

[CBBZ23,GWC19]

- Multilinear PIOPs interpolate and evaluate polynomials over the boolean hypercube,
rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)
- Multilinear PIOPs replace computing a quotient polynomial - which requires an FFT
with the more efficient sum-check protocol for multilinear evaluation
- In Summary: Multilinear PIOPs have lower prover overhead than univariate PIOPs,
particularly for high-degree gates

Application Rrics | Ark-Spartan | Rpronk+ | Jellyfish* | HyperPlonk
3-to-1 Rescue Hash 288 [1] 422 ms 144 [71] 40 ms 88 ms
PoK of Exponent 3315 [63] 902 ms 783 [63] 64 ms 105 ms
ZCash circuit 217 [55] 8.3 s 21° [42] 0.8 s 0.6 s
Zexe’s recursive circuit 2% [81] 6 min 217 [81] 13.1s 5.1s
Rollup of 50 private tx 24 39 min® 220 [71] 110 s 38.2 8
zkEVM circuit® N/A N/A P4 1 hour”® | 25 min"°

*Jellyfish is an implementation of Plonk

Common SNARK Construction Paradigm

[Kil92,Micali94,BCS16,BFS20,CHMMVW20]

Polynomial IOP

[Kil92,BFS20,CHMMVW20]

Interactive Succinct

Argument

[FS86,Micali94,BCS16]

Polynomial Commitment Scheme

Prover Verifier

O Com(P(X1, .., Xn))
v -—
- P(V),T('

ACCEPT / REJECT <—

10

Polynomial Commitment Scheme

Prover strategy accepted with non-negligible probability...

Verifier

O i @
N

It is possible to efficiently extract a unigue polynomial from the

commitment (Knowledge Soundness)
11

Polynomial Commitment Scheme

Polynomial Commitment Scheme

|

Interactive Oracle Proof of Proximity (IOPP)

|

Error-Correcting Codes

12

Polynomial Commitment Scheme

Polynomial Commitment Scheme

|

Interactive Oracle Proof of Proximity (IOPP)

|

Error-Correcting Codes

13

PCS from Error-Correcting Code

A linear error-correcting code is a k-dimensional subspace

of F" k << n

Minimum Hammjng
distance Ac /.

14

PCS from Error-Correcting Code

Proximity Proof: Prove relation (d, C; w) : Oracle access to w. Prove that is w
d-close to a codeword in C
n

~

15

Interactive Oracle Proofs

A hybrid between (public-coin)

interactive-proof and PCP. [BCS16,RRR16]
?
O x €L

)

|IOPP via Code-Switching

Field Agnostic linear-time IOPP for Interleaved codes [GLSTW23,X7522,AHIV17]
e)

< —_ « [BBHR18a,BGKS20,ZCF24]

Quasilinear IOPP for RS codes

.
Code Switch [RR20]~ A N

]
O(sqrt(n)) communication]
]

/

Better distance -> smaller constant 17
Polylog communication -

|IOPP via Code-Switching

Prove knowledge of m such that

———1
—

l

RAA Codes Reed-Solomon Codes

Code Switch [

18

|IOPP via Code-Switching

—
—

SRl) S —

RAA Generator Matrix

Repeat—— Permute——= Accumulate—— Permute—— Accumulate

19

IOPP via RS -> RAA Code-Switching

Permute Accumulate

20

IOPP via RS -> RAA Code-Switching

MmGl=ul ulG2=u2 u2G3=u3 u3Gl=u4d

IOPP via RS -> RAA Code-Switching

m G1 =jul

Permutation Argument
[CBBZ24, SL20, THA13]

ul G2 =

u2

Accumulation
Argument

u2 G3 =

u3

Permutation
Argument

uld Gl =

ud

Accumulation
Argument

22

RAA code analysis

Goal: binary error correcting code with good distance (i.e. no low
weight vectors) and very efficient encoding map (¢ -]F’)'/' — FY

N\

weight(|]010100/) =2

RAA encoding

RAA encoding basically as efficient as possible: 2(n-1) XOR gates

010100 | Repeatrtimes

Permutation

Accumulation:
1s act as state Accumulation

change _
Permutation

Accumulation

010100(010100(0101060

100000 101100 100100

111111 001000 111000

101100 110101 110001

110111 011001 011110

24

RAA encoding

RAA encoding basically as efficient as possible: 2(n-1) XOR gates

010100 Repeatrtimes 310100/010100/010100

Permutation (1 0po000Y1 ()Tﬂl 00100
I

Accumulation:

lsactasstate ~ Accumulation 1911111/00/1/000)111/000

change : — - N
Permutation 101100]110101 11000/1
Accumulation |{1 1 11)011j0011)0/1111)0

25

Permute+accumulate increase weight

Why would these operations
increase weight?

Accumulate(/100001)=/111110
Accumulate((110000()=100000

Permutation spreads 1s, so it’s likely
a 1 has some Os afterwards to flip

26

Permute+accumulate increase weight

Why would these operations
increase weight?

Accumulate(
Accumulate(

Permutation spreads 1s, so it’s likely
a 1 has some Os afterwards to flip

After permute+accumulate:
expected weight is always n/2

100001
110000

111110
100000

Output weight

@gPathytornapanyinputwe@httoanyoutputwemhtunderA

600

E=
(=]
[=]

300

200

100

105

10-13

10-21

10-29

F10-37

L 10—45

[10—53

F 10-61

RAA codes: an analogy

Min. weight

GV
bound | T e ;
O(M) |-----mmmmmmmm y.
J
R I
1 - 1
J
J
' Stage

Repeat Permute + Permute + Permute +
Accumulate Accumulate Accumulate

RAA distance error probability

Whether RAA code has good distance depends on if you sampled
good permutations

Good distance is achieved with probability. Previous work
showed that the error probability is o(1) [BMS08,KZCJ07,KZKJO8]

29

RAA distance error probability

Whether RAA code has good distance depends on if you sampled
good permutations

Good distance is achieved with probability. Previous work
showed that the error probability is o(1) [BMS08,KZCJ07,KZKJO8]

Question: do we have good distance for, say, n=2"10 or 27207

Our techniques build on these works to give inverse polynomial
error bounds with concrete constants.

30

T (rwy +2j + Dirun+2j+2)
(g 4+ 1)?

(2= =)= 28—)
(n—wy —rwy —2j)(n —rwy —2j — 1)

=0
1
e +2+ (e +2j+2) (w =" —j)(n =" —j)
7JTU (B +5+1)? (VL*U.-Z*‘HL' 72_})(n77u172_’/)
3-1) - A
g (2= B) e —)
5 (n—ruy —2j)?
=
Now, for fixed j call 2 = wy — 5% — j and y = (n — wy — 55+ — j). Observe
(- —i)_ w __ ay
(n—rwy—2j)(n—rw; —2j) ~ (x+y)? (y—a)?+day’

Tustead of upper bounding this ratio, we find it easier to lower bound its reciprocal:

To bound this
from [KZKJ08]

good distance dej

where

binomials we keep the \/ Rﬁ;—[‘dclur from Lemma 9.4 to help us out, while for other

we don't bother, as it won’t help us much):

—)2 + 4y a2 o\ i) G o) (o) G Toer)) [rwn /2] - [wa/2]
y vy (y 4 . . .
2y Ty . 0 (i',) (1:3) watly
Now, we have zy < (w: '“2‘")(9 "‘%‘) <m(n—m) <mn=n'"*7, aswy <m < n/2. On the of@Bin . @) 0.61664° - 0.43603%) \/f*wl/ﬂ(;"-l‘ll:]’f"wl/ﬂ) ’ \/fu‘z,’ﬂ[l:iszwz/ﬂ)
other hand, (y — 2) = (n — 2wy) > (n — 2m) > &n, where this last inequality uses the assumption 100 0.33675 - 0.67352

2
n2 =gm. Hence,

-2’ 25 7521717)
Yy H
Thus, we have the bound
24 1
12 4-
(12)= H {211“”+4 71:[0 (€/2) 2n““Jrl
T]

Il (2/gymit) = (o049

error bounds W|th

n 1
102 0.61664 - 0.43603%
100 033675 - 0.67352
102 4-0.616643-0.436032 1
100 0.33675-0.67352 fr

0.80192
\f 2f a.B.p)n
\/“

Lof(aBon .

Lof(apn

ese two hounds together gives us the proposed bound (18) on the expectation:

z”: (n/)) (1) (s) ([utz/ﬂ)(w;a?/ﬂ) [rwn /2] - [we/2)
o=l wg=mil wgml VL (uh'z) (”)

s wows

nfr n

0. 80192
4

wi=1wp=m+1 w3=1

0801925

-
0801926 -y

20y
=R

225

Nl

nfr n

>

wi=1 wg=m-+1

max 2f(@Bd)n
(a,B)€R!

Note that the second inequality uses the fact that f grows monotonically with p for p < 1/2, which
we prove below.

expression, we will write out the binomials and then apply the following bound

~ < [V -2 <N (16)

which gives us the following:

. () o (n—2w)!-d-(n—d) (n —7)!(2v2)!(n — 2vp)!
Gl n!<(d7'uz)l(n7d7'uz)l (21*2——) (n—?vz—

-

r el H;zold]Hul”_ -)
(5) = 5% (n
Een L0 -2 —) (22
125 —3) w)
(2] g (n—d) (209)% (n — 209)2

29
oty G2). ()
va=1

verse polynomial

31

RAA distance error probability

We show error probability is roughly O (11/9>
nl/2
However: most error comes from encoding low weight messages.

|dea: after sampling permutation, check if encoding of low weight
messages is high weight (or better: encoding after one “round”).

32

RAA distance error probability

We show error probability is roughly O (11/9>
nl/2
However: most error comes from encoding low weight messages.

|dea: after sampling permutation, check if encoding of low weight
messages is high weight (or better: encoding after one “round”).

Time O(n"logn) test decreases errorto O (n(l/g)(u}m)

Example: r=4, n=2"20, distance 0.19 (GV bound 0.215):
no test: 2_10 test weight 1: 2_20 test weight 2: 2_30

instant few secs on laptop few days on laptop
33

Some open questions

We can improve error probability to arbitrarily small inverse
polynomial, using time scaling as the same polynomial:

— Improve error probability: ideally negligible error in poly-time

There is no analysis of RAA codes over larger alphabets than [

We use RAA over [F195 in Blaze by simply packing together 128
codewords. This preserves distance, but is inefficient: we could
get triple the distance over [Fyog

— Analyze RAA codes over arbitrarily alphabet

34

Thank you!

Paper: https://eprint.iacr.org/2024/1609.pdf
Code: https://qgithub.com/hadasz/plonkish basefold

Contact: Contact:

Hadas Zeilberger Martijn Brehm
email: hadas.zeilberger@yale.edu email: m.a.brehm@uva.nl

https://eprint.iacr.org/2024/1609.pdf
https://github.com/hadasz/plonkish_basefold
mailto:hadas.zeilberger@yale.edu

