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Blaze: Fast SNARKs from Interleaved 
RAA Codes



Blaze

Blaze is a new multilinear polynomial commitment 
scheme over binary fields with a linear time prover and 
polylogarithmic verifier costs
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Blaze Asymptotics
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•  
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Some Benchmarks
Run on AWS EC2 Instance c6a.48xlarge, with 192 vCPUs and 384GiBs 
of RAM



Comparison to Prior Works: Concrete

•  

[BBHR18a,BGKS20]

[ZCF24]

-

[DP23,DP24]



Roadmap

- Motivation and Background  
- Polynomial Commitment Scheme Construction
- RAA Codes 
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Why Binary Fields

1 0 1 0 0 0 1 1

A single field element is a bit 
vector

Addition of two field elements is just XOR Avoid embedding overhead [DP23]

Multiplication is trickier  but we don’t do a lot of it



Why Multilinear Polynomials
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[CBBZ23,GWC19]

*

*Jellyfish is an implementation of Plonk

- Multilinear PIOPs interpolate and evaluate polynomials over the boolean hypercube, 
rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)

- Multilinear PIOPs replace computing a quotient polynomial - which requires an FFT 
with the more efficient sum-check protocol for multilinear evaluation

- In Summary: Multilinear PIOPs have lower prover overhead than univariate PIOPs, 
particularly for high-degree gates



[Kil92,Micali94,BCS16,BFS20,CHMMVW20]

Polynomial IOP
Polynomial 

Commitment

Interactive Succinct 
Argument

SNARK

[FS86,Micali94,BCS16]

[Kil92,BFS20,CHMMVW20]

Common SNARK Construction Paradigm 



Polynomial Commitment Schemes

Prover

Polynomial Commitment Scheme
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Verifier

ACCEPT / REJECT



Polynomial Commitment SchemesPolynomial Commitment Scheme
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It is possible to efficiently extract a unique polynomial from the 
commitment (Knowledge Soundness)

Verifier

ACCEPT

Prover strategy accepted with non-negligible probability….
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Polynomial Commitment Scheme

Polynomial Commitment Scheme

Error-Correcting Codes

Interactive Oracle Proof of Proximity (IOPP)
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Polynomial Commitment Scheme

Polynomial Commitment Scheme

Error-Correcting Codes

Interactive Oracle Proof of Proximity (IOPP)



PCS from Error-Correcting Code

14

Minimum Hamming 
distance

A linear error-correcting code is a k-dimensional subspace 
of k << n



PCS from Error-Correcting Code
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Minimum distance

Proximity Proof: Prove relation  (d, C; w) : Oracle access to w. Prove that is w 
d-close to a codeword in C

w
?



Interactive Oracle Proofs 
A hybrid between (public-coin) 
interactive-proof and PCP.

 
?

.

.

.

[BCS16,RRR16]
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IOPP via Code-Switching
Field Agnostic linear-time IOPP for Interleaved codes

Code Switch [RR20]

Quasilinear IOPP for RS codes

[GLSTW23,XZS22,AHIV17] 

• [BBHR18a,BGKS20,ZCF24]

O(sqrt(n)) communication

Polylog communication
Better distance -> smaller constant
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Code Switch [RR20]

RAA Codes Reed-Solomon Codes

Prove knowledge of m such that

m G m G* 

IOPP via Code-Switching



Repeat
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Code Switch [RR20]

m G m G* 

RAA Generator Matrix 

Permute Accumulate Permute Accumulate

IOPP via Code-Switching



Code Switch [RR20]

m G m G* 

Permute Accumulate Permute Accumulate
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IOPP via RS -> RAA Code-Switching



G1 G2 G3 G1

m G1 = u1 u1 G2 = u2 u2 G3 = u3 u3 G1 = u4
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IOPP via RS -> RAA Code-Switching



G1 G2 G3 G1

m G1 = u1 u1 G2 = u2 u2 G3 = u3 u3 G1 = u4

Permutation Argument 
[CBBZ24, SL20, THA13]

Accumulation 
Argument

Permutation 
Argument

Accumulation 
Argument

22

IOPP via RS -> RAA Code-Switching



RAA code analysis
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Goal: binary error correcting code with good distance (i.e. no low 
weight vectors) and very efficient encoding map

weight(                         )  = 2 0 1 0 1 0 0



RAA encoding

RAA encoding basically as efficient as possible: 2(n-1) XOR gates
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0 1 0 1 0 0 Repeat r times

1 0 0 0 0 0   1 0 1 1 0 0   1 0 0 1 0 0 Permutation

0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0

1 1 1 1 1 1   0 0 1 0 0 0   1 1 1 0 0 0 Accumulation

1 0 1 1 0 0   1 1 0 1 0 1   1 1 0 0 0 1Permutation

1 1 0 1 1 1   0 1 1 0 0 1   0 1 1 1 1 0  Accumulation

Accumulation:
1s act as state 
change



RAA encoding

RAA encoding basically as efficient as possible: 2(n-1) XOR gates
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0 1 0 1 0 0 Repeat r times

1 0 0 0 0 0   1 0 1 1 0 0   1 0 0 1 0 0 Permutation

0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0

1 1 1 1 1 1   0 0 1 0 0 0   1 1 1 0 0 0 Accumulation

1 0 1 1 0 0   1 1 0 1 0 1   1 1 0 0 0 1Permutation

1 1 0 1 1 1   0 1 1 0 0 1   0 1 1 1 1 0  Accumulation

Accumulation:
1s act as state 
change



Permute+accumulate increase weight

    Why would these operations

    increase weight?

Accumulate(                       ) =

Accumulate(                       ) = 

     Permutation spreads 1s, so it’s likely 

     a 1 has some 0s afterwards to flip   
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1 0 0 0 0 1 1 1 1 1 1 0 

1 1 0 0 0 0 1 0 0 0 0 0 



Permute+accumulate increase weight

    Why would these operations

    increase weight?

Accumulate(                       ) =

Accumulate(                       ) = 

     Permutation spreads 1s, so it’s likely 

     a 1 has some 0s afterwards to flip   

     After permute+accumulate: 

     expected weight is always n/2          
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1 0 0 0 0 1 1 1 1 1 1 0 

1 1 0 0 0 0 1 0 0 0 0 0 



RAA codes: an analogy
Min. weight

Stage
Repeat Permute +

Accumulate
Permute +
Accumulate

1
r

 

 

GV
bound

… Permute +
Accumulate



RAA distance error probability

Whether RAA code has good distance depends on if you sampled 
good permutations

Good distance is achieved with probability. Previous work 
showed that the error probability is o(1) [BMS08,KZCJ07,KZKJ08]
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RAA distance error probability

Whether RAA code has good distance depends on if you sampled 
good permutations

Good distance is achieved with probability. Previous work 
showed that the error probability is o(1) [BMS08,KZCJ07,KZKJ08]

Question: do we have good distance for, say, n=2^10 or 2^20?

Our techniques build on these works to give inverse polynomial 
error bounds with concrete constants.
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RAA distance error probability

Whether RAA code has good distance depends on if you sampled 
good permutations

Good distance is achieved with probability. Previous work 
showed that the error probability is o(1) [BMS08,KZCJ07,KZKJ08]

Question: do we have good distance for, say, n=2^10 or 2^20?

Our techniques build on these works to give inverse polynomial 
error bounds with concrete constants.
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RAA distance error probability

We show error probability is roughly 

However: most error comes from encoding low weight messages.  

Idea: after sampling permutation, check if encoding of low weight 
messages is high weight (or better: encoding after one “round”).
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RAA distance error probability

We show error probability is roughly 

However: most error comes from encoding low weight messages.  

Idea: after sampling permutation, check if encoding of low weight 
messages is high weight (or better: encoding after one “round”).

Time                           test decreases error to
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Example: r=4, n=2^20, distance 0.19 (GV bound 0.215):
 no test:                   test weight 1:                   test weight 2:

 instant                     few secs on laptop       few days on laptop



Some open questions

We can improve error probability to arbitrarily small inverse 
polynomial, using time scaling as the same polynomial:

→ Improve error probability: ideally negligible error in poly-time

There is no analysis of RAA codes over larger alphabets than 

We use RAA over           in Blaze by simply packing together 128 
codewords. This preserves distance, but is inefficient: we could 
get triple the distance over  

→ Analyze RAA codes over arbitrarily alphabet
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Thank you!

Paper: https://eprint.iacr.org/2024/1609.pdf
Code: https://github.com/hadasz/plonkish_basefold
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