
Hadas Zeilberger & Martijn Brehm

 Yale University University of Amsterdam

Joint work with Binyi Chen, Ben Fisch, Nicolas Resch, and Ron
Rothblum

1

Blaze: Fast SNARKs from Interleaved
RAA Codes

Blaze

Blaze is a new multilinear polynomial commitment
scheme over binary fields with a linear time prover and
polylogarithmic verifier costs

2

Blaze Asymptotics

3

•

4

Some Benchmarks
Run on AWS EC2 Instance c6a.48xlarge, with 192 vCPUs and 384GiBs
of RAM

Comparison to Prior Works: Concrete

•

[BBHR18a,BGKS20]

[ZCF24]

-

[DP23,DP24]

Roadmap

- Motivation and Background
- Polynomial Commitment Scheme Construction
- RAA Codes

6

Why Binary Fields

1 0 1 0 0 0 1 1

A single field element is a bit
vector

Addition of two field elements is just XOR Avoid embedding overhead [DP23]

Multiplication is trickier but we don’t do a lot of it

Why Multilinear Polynomials

8

[CBBZ23,GWC19]

*

*Jellyfish is an implementation of Plonk

- Multilinear PIOPs interpolate and evaluate polynomials over the boolean hypercube,
rather than a subgroup, as in univariate PIOPs, (e.g. Plonk)

- Multilinear PIOPs replace computing a quotient polynomial - which requires an FFT
with the more efficient sum-check protocol for multilinear evaluation

- In Summary: Multilinear PIOPs have lower prover overhead than univariate PIOPs,
particularly for high-degree gates

[Kil92,Micali94,BCS16,BFS20,CHMMVW20]

Polynomial IOP
Polynomial

Commitment

Interactive Succinct
Argument

SNARK

[FS86,Micali94,BCS16]

[Kil92,BFS20,CHMMVW20]

Common SNARK Construction Paradigm

Polynomial Commitment Schemes

Prover

Polynomial Commitment Scheme

10

Verifier

ACCEPT / REJECT

Polynomial Commitment SchemesPolynomial Commitment Scheme

11

It is possible to efficiently extract a unique polynomial from the
commitment (Knowledge Soundness)

Verifier

ACCEPT

Prover strategy accepted with non-negligible probability….

12

Polynomial Commitment Scheme

Polynomial Commitment Scheme

Error-Correcting Codes

Interactive Oracle Proof of Proximity (IOPP)

13

Polynomial Commitment Scheme

Polynomial Commitment Scheme

Error-Correcting Codes

Interactive Oracle Proof of Proximity (IOPP)

PCS from Error-Correcting Code

14

Minimum Hamming
distance

A linear error-correcting code is a k-dimensional subspace
of k << n

PCS from Error-Correcting Code

15

Minimum distance

Proximity Proof: Prove relation (d, C; w) : Oracle access to w. Prove that is w
d-close to a codeword in C

w
?

Interactive Oracle Proofs
A hybrid between (public-coin)
interactive-proof and PCP.

?

.

.

.

[BCS16,RRR16]

17

IOPP via Code-Switching
Field Agnostic linear-time IOPP for Interleaved codes

Code Switch [RR20]

Quasilinear IOPP for RS codes

[GLSTW23,XZS22,AHIV17]

• [BBHR18a,BGKS20,ZCF24]

O(sqrt(n)) communication

Polylog communication
Better distance -> smaller constant

18

Code Switch [RR20]

RAA Codes Reed-Solomon Codes

Prove knowledge of m such that

m G m G*

IOPP via Code-Switching

Repeat

19

Code Switch [RR20]

m G m G*

RAA Generator Matrix

Permute Accumulate Permute Accumulate

IOPP via Code-Switching

Code Switch [RR20]

m G m G*

Permute Accumulate Permute Accumulate

20

IOPP via RS -> RAA Code-Switching

G1 G2 G3 G1

m G1 = u1 u1 G2 = u2 u2 G3 = u3 u3 G1 = u4

21

IOPP via RS -> RAA Code-Switching

G1 G2 G3 G1

m G1 = u1 u1 G2 = u2 u2 G3 = u3 u3 G1 = u4

Permutation Argument
[CBBZ24, SL20, THA13]

Accumulation
Argument

Permutation
Argument

Accumulation
Argument

22

IOPP via RS -> RAA Code-Switching

RAA code analysis

23

Goal: binary error correcting code with good distance (i.e. no low
weight vectors) and very efficient encoding map

weight() = 2 0 1 0 1 0 0

RAA encoding

RAA encoding basically as efficient as possible: 2(n-1) XOR gates

24

0 1 0 1 0 0 Repeat r times

1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 Permutation

0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0

1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 Accumulation

1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1Permutation

1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 Accumulation

Accumulation:
1s act as state
change

RAA encoding

RAA encoding basically as efficient as possible: 2(n-1) XOR gates

25

0 1 0 1 0 0 Repeat r times

1 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 0 Permutation

0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0

1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0 Accumulation

1 0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 0 1Permutation

1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 Accumulation

Accumulation:
1s act as state
change

Permute+accumulate increase weight

 Why would these operations

 increase weight?

Accumulate() =

Accumulate() =

 Permutation spreads 1s, so it’s likely

 a 1 has some 0s afterwards to flip

26

1 0 0 0 0 1 1 1 1 1 1 0

1 1 0 0 0 0 1 0 0 0 0 0

Permute+accumulate increase weight

 Why would these operations

 increase weight?

Accumulate() =

Accumulate() =

 Permutation spreads 1s, so it’s likely

 a 1 has some 0s afterwards to flip

 After permute+accumulate:

 expected weight is always n/2
27

1 0 0 0 0 1 1 1 1 1 1 0

1 1 0 0 0 0 1 0 0 0 0 0

RAA codes: an analogy
Min. weight

Stage
Repeat Permute +

Accumulate
Permute +
Accumulate

1
r

GV
bound

… Permute +
Accumulate

RAA distance error probability

Whether RAA code has good distance depends on if you sampled
good permutations

Good distance is achieved with probability. Previous work
showed that the error probability is o(1) [BMS08,KZCJ07,KZKJ08]

29

RAA distance error probability

Whether RAA code has good distance depends on if you sampled
good permutations

Good distance is achieved with probability. Previous work
showed that the error probability is o(1) [BMS08,KZCJ07,KZKJ08]

Question: do we have good distance for, say, n=2^10 or 2^20?

Our techniques build on these works to give inverse polynomial
error bounds with concrete constants.

30

RAA distance error probability

Whether RAA code has good distance depends on if you sampled
good permutations

Good distance is achieved with probability. Previous work
showed that the error probability is o(1) [BMS08,KZCJ07,KZKJ08]

Question: do we have good distance for, say, n=2^10 or 2^20?

Our techniques build on these works to give inverse polynomial
error bounds with concrete constants.

31

RAA distance error probability

We show error probability is roughly

However: most error comes from encoding low weight messages.

Idea: after sampling permutation, check if encoding of low weight
messages is high weight (or better: encoding after one “round”).

32

RAA distance error probability

We show error probability is roughly

However: most error comes from encoding low weight messages.

Idea: after sampling permutation, check if encoding of low weight
messages is high weight (or better: encoding after one “round”).

Time test decreases error to

33

Example: r=4, n=2^20, distance 0.19 (GV bound 0.215):
 no test: test weight 1: test weight 2:

 instant few secs on laptop few days on laptop

Some open questions

We can improve error probability to arbitrarily small inverse
polynomial, using time scaling as the same polynomial:

→ Improve error probability: ideally negligible error in poly-time

There is no analysis of RAA codes over larger alphabets than

We use RAA over in Blaze by simply packing together 128
codewords. This preserves distance, but is inefficient: we could
get triple the distance over

→ Analyze RAA codes over arbitrarily alphabet
34

Thank you!

Paper: https://eprint.iacr.org/2024/1609.pdf
Code: https://github.com/hadasz/plonkish_basefold

35

Contact:
Hadas Zeilberger

email: hadas.zeilberger@yale.edu

Contact:
Martijn Brehm

email: m.a.brehm@uva.nl

https://eprint.iacr.org/2024/1609.pdf
https://github.com/hadasz/plonkish_basefold
mailto:hadas.zeilberger@yale.edu

