Pseudorandomness in the (Inverseless) Haar Random Oracle Model

Prabhanjan Ananth (UCSB), John Bostanci (Columbia), Aditya Gulati (UCSB), Yao-Ting Lin (UCSB)

Eurocrypt, 2025

May 5, 2025

ABGL (EC)

QHROM

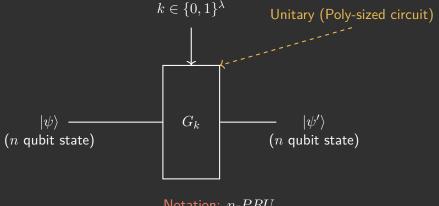
May 5, 2025

Efficiently implementable circuits that "behave like" Haar random unitary.

ABGL (EC)

Pseudorandom Unitary (PRU)

1. Efficient implementation:



ABGL ((EC)

QHROM

Pseudorandom Unitary (PRU)

2. Psuedorandomness

 $\mathcal{A}^{G_k} \approx \mathcal{A}^U$

ABGL (EC)

May 5, 2025

■ (JLS18) defined PRU.

(AGKL22,LQS+23,BM24) gave constructions on restricted inputs.

■ (MPSY24,CBB+24) gave constructions for non-adaptive queries.

(MH24) finally gave a construction for adaptive queries.

- (JLS18) defined PRU.
- (AGKL22,LQS+23,BM24) gave constructions on restricted inputs.
- (MPSY24,CBB+24) gave constructions for non-adaptive queries.
- (MH24) finally gave a construction for adaptive queries.

- (JLS18) defined PRU.
- (AGKL22,LQS+23,BM24) gave constructions on restricted inputs.
- (MPSY24,CBB+24) gave constructions for non-adaptive queries.
- (MH24) finally gave a construction for adaptive queries.

- (JLS18) defined PRU.
- (AGKL22,LQS+23,BM24) gave constructions on restricted inputs.
- (MPSY24,CBB+24) gave constructions for non-adaptive queries.
- (MH24) finally gave a construction for adaptive queries.

- (JLS18) defined PRU.
- (AGKL22,LQS+23,BM24) gave constructions on restricted inputs.
- (MPSY24,CBB+24) gave constructions for non-adaptive queries.
- (MH24) finally gave a construction for adaptive queries.

Why Should We Care About PRUs?

• (AQY22,MY22,AGQY22,...) builds cryptography from PRU and PRS.

Kretschmer (Kre21) showed evidence that: Quantum pseudorandomness may exist even if one-way functions do not exist.

Why Should We Care About PRUs?

• (AQY22,MY22,AGQY22,...) builds cryptography from PRU and PRS.

Kretschmer (Kre21) showed evidence that: Quantum pseudorandomness may exist even if one-way functions do not exist.

Many constructions of quantum pseudorandomness:

■ JLS18, BS19, BS20, AQY22, AGQY22, BBSS23, LQS+23, ABF+24, AGKL24, MPSY24, BM24

Constructions without One-Way Functions?

None

Many constructions of quantum pseudorandomness:

■ JLS18, BS19, BS20, AQY22, AGQY22, BBSS23, LQS+23, ABF+24, AGKL24, MPSY24, BM24

Constructions without One-Way Functions?

- None... until now?
- Potentially build from random circuits

Many constructions of quantum pseudorandomness:

■ JLS18, BS19, BS20, AQY22, AGQY22, BBSS23, LQS+23, ABF+24, AGKL24, MPSY24, BM24

Constructions without One-Way Functions?

- None... until now?
- Potentially build from random circuits

Many constructions of quantum pseudorandomness:

■ JLS18, BS19, BS20, AQY22, AGQY22, BBSS23, LQS+23, ABF+24, AGKL24, MPSY24, BM24

Constructions without One-Way Functions?

- None... until now?
- Potentially build from random circuits

• [AQY21] hypothesised random circuits to be PRUs.

- [BHH16] polydepth circuits are t-design.
- [SHH24] low depth circuits are *poly*-design as long as local gates act on log number of qubits.
 - н.

- [AQY21] hypothesised random circuits to be PRUs.
- **[BHH16]** polydepth circuits are *t*-design.
- [SHH24] low depth circuits are *poly*-design as long as local gates act on log number of qubits.
 - bampling this is inigilitation

- [AQY21] hypothesised random circuits to be PRUs.
- [BHH16] polydepth circuits are t-design.
- [SHH24] low depth circuits are *poly*-design as long as local gates act on log number of qubits.
 - Sampling this is inefficient
 - We can sample once and make it publically accesible

- [AQY21] hypothesised random circuits to be PRUs.
- [BHH16] polydepth circuits are t-design.
- [SHH24] low depth circuits are *poly*-design as long as local gates act on log number of qubits.
 - Sampling this is inefficient
 - We can sample once and make it publically accesible

- [AQY21] hypothesised random circuits to be PRUs.
- [BHH16] polydepth circuits are t-design.
- [SHH24] low depth circuits are *poly*-design as long as local gates act on log number of qubits.
 - Sampling this is inefficient
 - We can sample once and make it publically accesible

Quantum Haar Random Oracle Model [BFV20, CM21, ABGL24]

ABGL (EC)

May 5, 2025

Quantum Haar Random Oracle Model (QHROM)

Introduced by (BFV20, CM21), but were unable to get provable results. All parties P as well as the adversary A get oracle access to a Haar Unitary and its inverse.

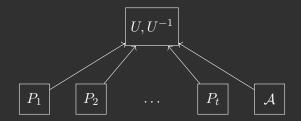
Quantum Haar Random Oracle Model (QHROM)

Introduced by (BFV20, CM21), but were unable to get provable results. All parties P_i as well as the adversary \mathcal{A} get oracle access to a Haar Unitary and its inverse.

Quantum Haar Random Oracle Model (QHROM)

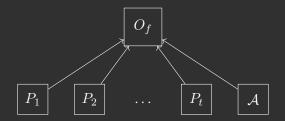
Introduced by (BFV20, CM21), but were unable to get provable results. All parties P_i as well as the adversary \mathcal{A} get oracle access to a Haar Unitary and its inverse.

Introduced by (BFV20, CM21), but were unable to get provable results. All parties P_i as well as the adversary \mathcal{A} get oracle access to a Haar Unitary and its inverse.



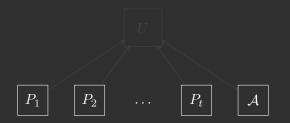
This model is similar to the Quantum Random Oracle Model (QROM) where all parties and the adversary get access to a random function oracle.

 $f \leftarrow \mathcal{F}_n$



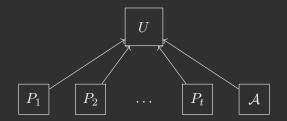
All parties P_i as well as the adversary \mathcal{A} get oracle access to a Haar Unitary and but not its inverse.

All parties P_i as well as the adversary \mathcal{A} get oracle access to a Haar Unitary and but not its inverse.



All parties P_i as well as the adversary \mathcal{A} get oracle access to a Haar Unitary and but not its inverse.

 $\overline{U} \leftarrow \mu_n$



Consequences of iQHROM

Make progress towards results in QHROM and from random circuits. Results give a pathway to get PRU results in the plain model.

Potentially help show separations.

Consequences of iQHROM

- Make progress towards results in QHROM and from random circuits.
- Results give a pathway to get PRU results in the plain model.
- Potentially help show separations.

Consequences of iQHROM

- Make progress towards results in QHROM and from random circuits.
- Results give a pathway to get PRU results in the plain model.
- Potentially help show separations.

Results

ABGL (EC)

May 5, 2025

- Unbounded-query secure PRUs in iQHROM: Achieved with two queries to the Haar random oracle.
- Impossibility of single-query PRUs in iQHROM: No construction with one query to the Haar random oracle.
- Constructing PRSGs and PRFSs in iQHROM: Achieved with one query to the Haar random oracle.

- Unbounded-query secure PRUs in iQHROM: Achieved with two queries to the Haar random oracle.
- Impossibility of single-query PRUs in iQHROM: No construction with one query to the Haar random oracle.
- Constructing PRSGs and PRFSs in iQHROM: Achieved with one query to the Haar random oracle.

- Unbounded-query secure PRUs in iQHROM: Achieved with two queries to the Haar random oracle.
- Impossibility of single-query PRUs in iQHROM: No construction with one query to the Haar random oracle.
- Constructing PRSGs and PRFSs in iQHROM: Achieved with one query to the Haar random oracle.

ABGL (EC)

Shrinking PRU Keys for Free:

Unbounded query secure PRUs exist with keys of size $O(\lambda^{1/c})$ for any constant c, if PRU exists Previously, GJMZ22 showed 1 query PRU with short keys exists if PRU exists.

Shrinking PRU Keys for Free:

Unbounded query secure PRUs exist with keys of size $O(\lambda^{1/c})$ for any constant c, if PRU exists

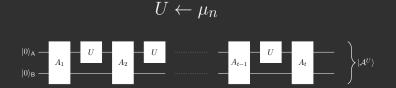
Previously, GJMZ22 showed 1 query PRU with short keys exists if PRU exists.

Shrinking PRU Keys for Free:

Unbounded query secure PRUs exist with keys of size $O(\lambda^{1/c})$ for any constant c, if PRU exists Previously, GJMZ22 showed 1 query PRU with short keys exists if PRU exists.

Techniques

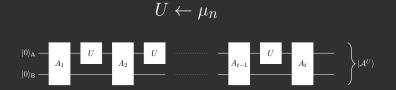
Primitive in iQHROM



 \checkmark Very hard to understand this state.

ABGL ((EC)	

Primitive in iQHROM

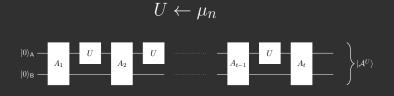


$$\rho_{\mathsf{A}\mathsf{B}}^{\mathcal{A}} = \mathop{\mathbb{E}}_{U \leftarrow \mu_n} \left[|\mathcal{A}^U \rangle \! \langle \mathcal{A}^U |_{\mathsf{A}\mathsf{B}} \right]$$

Very hard to understand this state

ABGL ((EC)	

Primitive in iQHROM



$$\rho_{\mathsf{A}\mathsf{B}}^{\mathcal{A}} = \mathop{\mathbb{E}}_{U \leftarrow \mu_n} \left[|\mathcal{A}^U\rangle\!\langle \mathcal{A}^U|_{\mathsf{A}\mathsf{B}} \right]$$

Very hard to understand this state

ABGL ((EC)	

Purification

$$U \leftarrow \mu_n$$

$$\rho_{\mathsf{A}\mathsf{B}}^{\mathcal{A}} = \underset{\substack{U \leftarrow \mu_n \\ \text{Not unique and still hard to find}}{\mathbb{E}} \left[|\mathcal{A}^U \rangle \! \langle \mathcal{A}^U |_{\mathsf{A}\mathsf{B}} \right]$$

By Schmidt decomposition, for some $|\psi_{\mathcal{A}}
angle$

$$\rho_{\mathsf{A}\mathsf{B}}^{\mathcal{A}} = Tr_{\mathsf{E}}\left(|\psi_{\mathcal{A}}\rangle\!\langle\psi_{\mathcal{A}}|_{\mathsf{A}\mathsf{B}\mathsf{E}}\right)$$

ABGL (EC)

Purification

$$U \leftarrow \mu_n$$

By Schmidt decomposition, for some $|\psi_{\mathcal{A}}\rangle$

$$\rho_{\mathsf{A}\mathsf{B}}^{\mathcal{A}} = Tr_{\mathsf{E}}\left(|\psi_{\mathcal{A}}\rangle\!\langle\psi_{\mathcal{A}}|_{\mathsf{A}\mathsf{B}\mathsf{E}}\right)$$

Path Recording framework

ABGL (EC)

QHROM

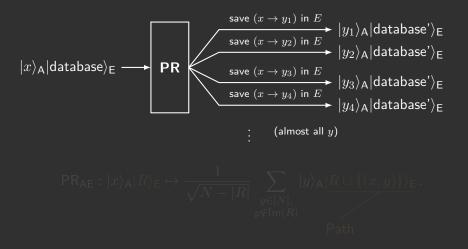
Compressed Purification

AIM: Find a state close to the purification:

$$\mathbb{E}_{U \leftarrow \mu_n} \left[|\mathcal{A}^U \rangle \langle \mathcal{A}^U |_{\mathsf{AB}} \right] \approx Tr_{\mathsf{E}} \left(|\mathcal{A}^{PR} \rangle \langle \mathcal{A}^{PR} |_{\mathsf{ABE}} \right)$$

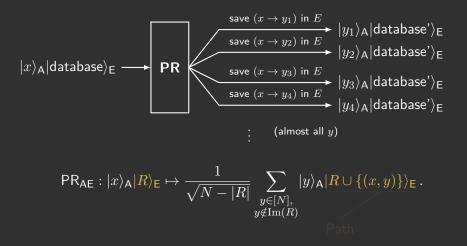
ABGL (EC)

Path Recording



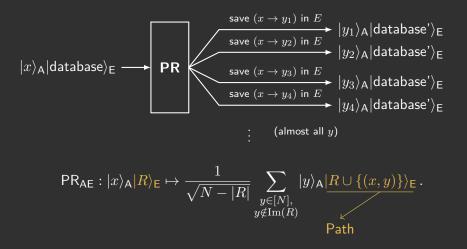
ABGL (EC)

Path Recording



ABGL (EC)

Path Recording



PRU in iQHROM

ABGL (EC)

QHROM

Analysis in iQHROM

PRU in iQHROM : $G^U(k) = UX^kU$

Adversaries state :

Analysis in iQHROM

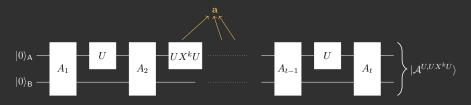
PRU in iQHROM : $G^U(k) = UX^kU$

Adversaries state :

Analysis in iQHROM

PRU in iQHROM : $G^U(k) = UX^kU$

Adversaries state :



Ideal

- $\blacksquare U_1, U_2$
- Separate "paths"
- (x¹, y¹) added to the first path
- (x², y²) added to the second path
- $= |\{(x^1, y^1)\}\rangle|\{(x^2, y^2)\}\rangle -$

$\blacksquare U, UX^kU$

- Single combined path
- (x¹, y¹) added to the combined path
- $\blacksquare \ (x^2,z^2), (z^2 \oplus k,y^2)$ added to the combined path
- $\blacksquare |\{(x^1, y^1)\} \cup \{(x^2, z^2), (z^2 \oplus k, y^2)\}\rangle$

For most keys

Ideal

$\blacksquare U_1, U_2$

- Separate "paths"
- (x¹, y¹) added to the first path
- (x², y²) added to the second path
- $|\{(x^1, y^1)\}\rangle|\{(x^2, y^2)\}\rangle -$

\bullet U, UX^kU

- Single combined path
- (x¹, y¹) added to the combined path
- $\blacksquare \ (x^2,z^2), (z^2 \oplus k,y^2)$ added to the combined path
- $\blacksquare |\{(x^1, y^1)\} \cup \{(x^2, z^2), (z^2 \oplus k, y^2)\}\rangle$

For most keys

Ideal

- $\blacksquare U_1, U_2$
- Separate "paths"
- (x¹, y¹) added to the first path
- (x², y²) added to the second path
- $= |\{(x^1, y^1)\}\rangle|\{(x^2, y^2)\}\rangle -$

Real

- $\blacksquare U, UX^kU$
- Single combined path
- (x¹, y¹) added to the combined path
- ${\ \ \ }$ $(x^2,z^2),(z^2\oplus k,y^2)$ added to the combined path
- $\blacksquare |\{(x^1, y^1)\} \cup \{(x^2, z^2), (z^2 \oplus k, y^2)\}\rangle$

For most keys

ABGL (EC)

QHROM

Ideal

- \bullet U_1, U_2
- Separate "paths"
- (x^1, y^1) added to the first path
- (x², y²) added to the second path
- $|\{(x^1, y^1)\}\rangle|\{(x^2, y^2)\}\rangle|$

Real

- $\blacksquare U, UX^kU$
- Single combined path
- (x^1, y^1) added to the combined path
- ${\mbox{ \ \ one \ }} \ (x^2,z^2),(z^2\oplus k,y^2)$ added to the combined path
- $\blacksquare |\{(x^1, y^1)\} \cup \{(x^2, z^2), (z^2 \oplus k, y^2)\}\rangle$

For most keys

ABGL (EC)

QHROM

Ideal

- \bullet U_1, U_2
- Separate "paths"
- (x^1, y^1) added to the first path
- (x², y²) added to the second path

$|\{(x^1, y^1)\}\rangle|\{(x^2, y^2)\}\rangle$

Real

- $\blacksquare U, UX^kU$
- Single combined path
- (x^1, y^1) added to the combined path
- $(x^2,z^2),(z^2\oplus k,y^2)$ added to the combined path
- $= |\{(x^1, y^1)\} \cup \{(x^2, z^2), (z^2 \oplus k, y^2)\}\rangle$

Ideal

- \bullet U_1, U_2
- Separate "paths"
- (x¹, y¹) added to the first path
- (x², y²) added to the second path
- $\blacksquare |\{(x^1,y^1)\}\rangle|\{(x^2,y^2)\}\rangle$

Real

- $\blacksquare U, UX^kU$
- Single combined path
- (x^1, y^1) added to the combined path
- $(x^2,z^2),(z^2\oplus k,y^2)$ added to the combined path
- $\bullet \ |\{(x^1,y^1)\} \cup \{(x^2,z^2),(z^2 \oplus k,y^2)\}\rangle$

Ideal

- \bullet U_1, U_2
- Separate "paths"
- (x^1, y^1) added to the first path
- (x², y²) added to the second path

 $\blacksquare |\{(x^1, y^1)\}\rangle |\{(x^2, y^2)\}\rangle$

Real

- $\blacksquare U, UX^kU$
- Single combined path
- (x^1, y^1) added to the combined path
- $(x^2,z^2),(z^2\oplus k,y^2)$ added to the combined path

$$\blacksquare |\{(x^1,y^1)\} \cup \{(x^2,z^2),(z^2 \oplus k,y^2)\}\rangle$$

Ideal:

$|\{(x_i^1, y_i^1)\}_{i \in \mathbf{a}}\rangle_{\mathsf{E}_1}|\{(x_i^2, y_i^2)\}_{i \in \mathbf{b}}\rangle_{\mathsf{E}_2}$

Real:

isometry i for most keys

$\sum_{k,\vec{z}} |\{(x_i^1, y_i^1)\}_{i \in \mathbf{b}} \cup \{(x_i^2, z_i^2), (z_i^2 \oplus k, y_i^2)\}_{i \in \mathbf{a}} \rangle_{\mathsf{E}_1} |k\rangle_{\mathsf{K}}$

ABGL (EC)

Ideal:

$|\{(x_i^1, y_i^1)\}_{i \in \mathbf{a}}\rangle_{\mathsf{E}_1}|\{(x_i^2, y_i^2)\}_{i \in \mathbf{b}}\rangle_{\mathsf{E}_2}$

lsometry I for most keys $^{\scriptscriptstyle 2}$

Real:

Ideal:

$$\begin{split} \sum_{\vec{x},\vec{y}} & |\phi_{\vec{x},\vec{y}}\rangle_{AB} \otimes \\ & |\{(x_i^1,y_i^1)\}_{i\in \mathbf{a}}\rangle_{E_1} |\{(x_i^2,y_i^2)\}_{i\in \mathbf{b}}\rangle_{E_2} \\ \\ \text{Real:} & \text{Isometry } I \text{ for most keys} \uparrow \\ & \text{Any isometry on purification doesn't change state} \\ & \sum_{\vec{x},\vec{y}} & |\phi_{\vec{x},\vec{y}}\rangle_{AB} \otimes & \text{Ideal} \approx \text{Real} \end{split}$$

Ideal:

 $\sum_{\vec{x},\vec{y}} |\phi_{\vec{x},\vec{y}}\rangle_{AB} \otimes |\{(x_i^1, y_i^1)\}_{i \in \mathbf{a}}\rangle_{E_1}|\{(x_i^2, y_i^2)\}_{i \in \mathbf{b}}\rangle_{E_2}$ Real: $Isometry \ I \ for \ most \ keys \uparrow$ $Any \ isometry \ on \ purification \ doesn't \ change \ state}$ $Ideal \approx Real$

Ideal:

 $\sum_{ec{x},ec{y}} |\phi_{ec{x},ec{y}}
angle_{\mathsf{AB}}\otimes$

 $\sum |\phi_{\vec{x},\vec{y}}\rangle_{\mathsf{AB}}\otimes$

 $|\{(x_i^1, y_i^1)\}_{i \in \mathbf{a}}\rangle_{\mathsf{E}_1}|\{(x_i^2, y_i^2)\}_{i \in \mathbf{b}}\rangle_{\mathsf{E}_2}$

sometry I for most keys \uparrow

Real:

 $\vec{x}.\vec{u}$

Any isometry on purification doesn't change state

 $\mathsf{Ideal} pprox \mathsf{Real}$

Results and open-problems

ABGL (EC)

Unbounded-query secure PRUs in iQHROM

- Impossibility of single-query PRUs in iQHROM
- Constructing PRSGs and PRFSs in iQHROM
- Shrinking PRU Keys for Free

Unbounded-query secure PRUs in iQHROM

Impossibility of single-query PRUs in iQHROM

Constructing PRSGs and PRFSs in iQHROM

Shrinking PRU Keys for Free

- Unbounded-query secure PRUs in iQHROM
- Impossibility of single-query PRUs in iQHROM
- Constructing PRSGs and PRFSs in iQHROM
- Shrinking PRU Keys for Free

- Unbounded-query secure PRUs in iQHROM
- Impossibility of single-query PRUs in iQHROM
- Constructing PRSGs and PRFSs in iQHROM
- Shrinking PRU Keys for Free

Unbounded-query secure PRUs in QHROM

LOCC for QHROM: Useful for Black-Box Separations

Instantiating QHROM

Intantiating (Kre21) oracle in QHROM

ABGL (EC)

Unbounded-query secure PRUs in QHROM

LOCC for QHROM: Useful for Black-Box Separations

Instantiating QHROM

Intantiating (Kre21) oracle in QHROM

ABGL (EC)

Unbounded-query secure PRUs in QHROM

LOCC for QHROM: Useful for Black-Box Separations

Instantiating QHROM

Intantiating (Kre21) oracle in QHROM

- Unbounded-query secure PRUs in QHROM
- LOCC for QHROM: Useful for Black-Box Separations
- Instantiating QHROM
- Intantiating (Kre21) oracle in QHROM

- Unbounded-query secure PRUs in QHROM Follow-up [ABGL25] shows strong PRU exists in QHROM
- LOCC for QHROM: Useful for Black-Box Separations Follow-up [AGL25] shows LOCC for iQHROM
- Instantiating QHROM
- Intantiating (Kre21) oracle in QHROM

Thank You

ABGL (EC)