EUROCRYPT 2025 Madrid

Computing the endomorphism ring of a supersingular elliptic curve from a full rank suborder

Mingjie Chen, Christophe Petit

COSIC KU Leuven

Outline

Background

Main problem: Suborder to Endomorphism Ring

Another problem: Isogeny to Endomorphism Ring

Main ideas

Applications

Suborder to Endomorphism Ring

May 4, 2025 2 / 24

イロト 不得 トイヨト イヨト 二日

Mingjie Chen

Background

May 4, 2025 3 / 24

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Elliptic curves

Elliptic curves are curves defined by equations of the form

$$y^2 = x^3 + ax + b.$$

May 4, 2025 4 / 24

イロト イ部ト イヨト イヨト 一日

Elliptic curves

Elliptic curves are curves defined by equations of the form

$$y^2 = x^3 + ax + b.$$

Figure: $y^2 = x^3 + x$ Figure: $y^2 = x^3 - 4x$

We will be working with elliptic curves over finite fields of characteristic *p*.

Mingjie Chen

Suborder to Endomorphism Ring

May 4, 2025 4 / 24

Isogenies

An isogeny sends points from one elliptic curve to another.

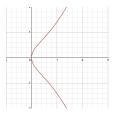


Figure: $y^2 = x^3 + x$

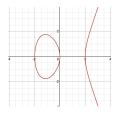


Figure: $y^2 = x^3 - 4x$

Isogenies

An **isogeny** sends points from one elliptic curve to another.

Figure: $y^2 = x^3 + x$ Figure: $y^2 = x^3 - 4x$

$$\phi: (x, y) \mapsto (\frac{x^2 + 1}{x}, \frac{x^2 - 1}{x^2}y)$$

This is an isogeny of **degree** 2.

▶ ◀ ≣ ▶ ■ ∽ ९. May 4, 2025 5 / 24

Endomorphisms

An endomorphism is an isogeny from an elliptic curve to itself.

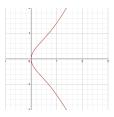


Figure:
$$y^2 = x^3 + x$$

Suborder to Endomorphism Ring

May 4, 2025 6 / 24

э

Endomorphisms

An endomorphism is an isogeny from an elliptic curve to itself.

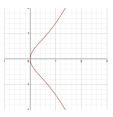


Figure: $y^2 = x^3 + x$

Examples:

 $\iota : (x, y) \mapsto (-x, iy)$ where $i \in \mathbb{F}_{p^2}$ such that $i^2 = -1$ $\pi_p : (x, y) \mapsto (x^p, y^p)$ Anything else? fact&hint: elliptic curve points form a group

Mingjie Chen

Suborder to Endomorphism Ring

May 4, 2025 6 / 24

イロト イポト イヨト イヨト

Endomorphism ring

Consider the set of endomorphisms on a supersingular elliptic curve:

- it is a (non-commutative) ring
- it is a rank 4 \mathbb{Z} -lattice

This is the endomorphism ring of a supersingular elliptic curve.

イロト 不得 トイヨト イヨト 二日

Endomorphism ring

Consider the set of endomorphisms on a supersingular elliptic curve:

- it is a (non-commutative) ring
- it is a rank 4 \mathbb{Z} -lattice

This is the endomorphism ring of a supersingular elliptic curve.

Let $E_0: y^2 = x^3 + x$, then we already know that

$$\operatorname{End}(E_0) \supseteq \mathbb{Z} + \mathbb{Z}\iota + \mathbb{Z}\pi_p + \mathbb{Z}\iota \circ \pi_p.$$

Suborder to Endomorphism Ring

May 4, 2025 7 / 24

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Endomorphism ring

Consider the set of endomorphisms on a supersingular elliptic curve:

- it is a (non-commutative) ring
- it is a rank 4 \mathbb{Z} -lattice

This is the endomorphism ring of a supersingular elliptic curve.

Let $E_0: y^2 = x^3 + x$, then we already know that

$$\operatorname{End}(E_0) \supseteq \mathbb{Z} + \mathbb{Z}\iota + \mathbb{Z}\pi_p + \mathbb{Z}\iota \circ \pi_p.$$

Problem (EndRing)

Let p be a prime and E/\mathbb{F}_{p^2} be a supersingular elliptic curve, compute $\operatorname{End}(E)$. More explicitly, it asks to find a basis of $\operatorname{End}(E)$ as a \mathbb{Z} -lattice.

Main problem: Suborder to Endomorphism Ring

May 4, 2025 8 / 24

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Suborder to Endomorphism Ring

Problem (SubOrderEndRing)

Let p be a prime and E/\mathbb{F}_{p^2} be a supersingular elliptic curve and $\mathcal{R}_E \subseteq \operatorname{End}(E)$ be a suborder of rank 4 of discriminant $\Delta_{\mathcal{R}}$. Compute $\operatorname{End}(E)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Suborder to Endomorphism Ring

Problem (SubOrderEndRing)

Let p be a prime and E/\mathbb{F}_{p^2} be a supersingular elliptic curve and $\mathcal{R}_E \subseteq \operatorname{End}(E)$ be a suborder of rank 4 of discriminant $\Delta_{\mathcal{R}}$. Compute $\operatorname{End}(E)$.

Suborder

- a sublattice
- closed under multiplication

Input

- \mathcal{R}_E will be given by efficient representations of a lattice basis

A D N A B N A B N A B N

- we assume the representations are polynomial in $\text{log}\Delta_{\mathcal{R}}$

Naive approach

Problem (forgetting the multiplicative structure)

Suppose

- These is an unknown target lattice L that contains a known lattice R with known index [L : R].
- There is also an efficient algorithm that detects if a superlattice L' containing R is contained in L or not.

The question is, how to find \mathcal{L} .

< □ > < □ > < □ > < □ > < □ > < □ >

Naive approach

Problem (forgetting the multiplicative structure)

Suppose

- These is an unknown target lattice L that contains a known lattice R with known index [L : R].
- There is also an efficient algorithm that detects if a superlattice L' containing R is contained in L or not.

The question is, how to find \mathcal{L} .

- We can list all the superlattices containing ${\cal R}$ and use the detecting algorithm.
- We can deal with one factor in the index at a time.
- The hard cases are when the index $[\mathcal{L}:\mathcal{R}]$ contains large prime factors.

Mingjie Chen

Suborder to Endomorphism Ring

May 4, 2025 10 / 24

< □ > < □ > < □ > < □ > < □ > < □ >

Known result and main theorem

Known Result (heuristic)

There is a polynomial time quantum algorithm that solves the SubOrderEndRing problem when the suborder \mathcal{R}_E is an embedding of an order of the form $\mathbb{Z} + D \operatorname{End}(E_0) \hookrightarrow \operatorname{End}(E)$ where $D \neq p$ is a prime. [CIIKLP23]

< □ > < 同 > < 回 > < 回 > < 回 >

Known result and main theorem

Known Result (heuristic)

There is a polynomial time quantum algorithm that solves the SubOrderEndRing problem when the suborder \mathcal{R}_E is an embedding of an order of the form $\mathbb{Z} + D \operatorname{End}(E_0) \hookrightarrow \operatorname{End}(E)$ where $D \neq p$ is a prime. [CIIKLP23]

- This was the hard problem underlying a key exchange protocol called pSIDH.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Known result and main theorem

Known Result (heuristic)

There is a polynomial time quantum algorithm that solves the SubOrderEndRing problem when the suborder \mathcal{R}_E is an embedding of an order of the form $\mathbb{Z} + D \operatorname{End}(E_0) \hookrightarrow \operatorname{End}(E)$ where $D \neq p$ is a prime. [CIIKLP23]

- This was the hard problem underlying a key exchange protocol called pSIDH.

Theorem (heuristic,SubOrderEndRing)

Let *E* be a supersingular elliptic curve over \mathbb{F}_{p^2} . Given a full rank suborder $\mathcal{R}_E \subseteq \operatorname{End}(E)$ of discriminant $\Delta_{\mathcal{R}}$, there exists a quantum algorithm that computes $\operatorname{End}(E)$ in polynomial time in $\log \Delta_{\mathcal{R}}$.

イロト イポト イヨト イヨト

Another problem: Isogeny to Endomorphism Ring

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

The isogeny to endomorphism ring problem

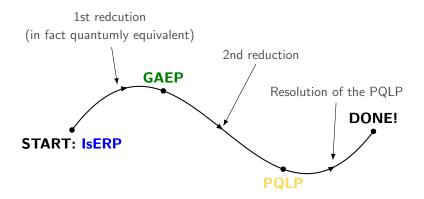
Problem (IsERP)

Let E_0 , E be supersingular elliptic curves over \mathbb{F}_{p^2} and $\varphi : E_0 \to E$ be an isogeny of degree N. Given the endomorphism ring $\operatorname{End}(E_0)$ and a weak isogeny representation ^a of φ , compute $\operatorname{End}(E)$.

ameaning that we know the evaluation of φ on points up to a scalar

< □ > < □ > < □ > < □ > < □ > < □ >

Roadmap from [CIIKLP23]



- Isogeny to Endomorphism Ring Problem (IsERP)
- Group Action Evaluation Problem (GAEP)
- Powersmooth Quaternion Lifting Problem (PQLP)

Mingjie Chen

Suborder to Endomorphism Ring

< □ > < □ > < □ > < □ > < □ > < □ >

[CIIKLP23] main results

Theorem (heuristic, PQLP)

Let $N = \prod \ell_i^{e_i} \neq p$ be an odd integer and has $O(\log(\log p))$ distinct factors, then there exists a randomized polynomial time classical algorithm that solves the PQLP.

Suborder to Endomorphism Ring

(日)

[CIIKLP23] main results

Theorem (heuristic, PQLP)

Let $N = \prod \ell_i^{e_i} \neq p$ be an odd integer and has $O(\log(\log p))$ distinct factors, then there exists a randomized polynomial time classical algorithm that solves the PQLP.

Theorem (heuristic, IsERP)

Let $N = \prod \ell_i^{e_i} \neq p$ that is of size polynomial in p and has $O(\log(\log p))$ distinct factors, then there exists a polynomial time quantum algorithm that solves the IsERP.

イロト 不得下 イヨト イヨト 二日

Main ideas

Suborder to Endomorphism Ring

May 4, 2025 16 / 24

・ロト・西ト・ヨト・ヨー うへぐ

Two tasks

- A Reduce the SubOrderEndRing problem to an instance of the IsERP.
 - A0 We derive an embedding $\mathbb{Z} + N \operatorname{End}(E_0)$ to $\operatorname{End}(E)$ for smallest such N.
 - A1 We first show the existence of an isogeny $\varphi: E_0 \to E$.
 - A2 We then show how to get a weak isogeny representation of φ .

イロト 不得 トイヨト イヨト 二日

Two tasks

- A Reduce the SubOrderEndRing problem to an instance of the IsERP.
 - A0 We derive an embedding $\mathbb{Z} + N \operatorname{End}(E_0)$ to $\operatorname{End}(E)$ for smallest such N.
 - A1 We first show the existence of an isogeny $\varphi: E_0 \to E$.
 - A2 We then show how to get a weak isogeny representation of φ .

Remark

A1,A2 have been done in [Leroux22] when pSIDH was introduced, but only for N = D is a prime not equal to p. Our method is greatly inspired by the technique in [Leroux22].

< □ > < 同 > < 回 > < 回 > < 回 >

Two tasks

- A Reduce the SubOrderEndRing problem to an instance of the IsERP.
 - A0 We derive an embedding $\mathbb{Z} + N \operatorname{End}(E_0)$ to $\operatorname{End}(E)$ for smallest such N.
 - A1 We first show the existence of an isogeny $\varphi: E_0 \to E$.
 - A2 We then show how to get a weak isogeny representation of φ .

Remark

A1,A2 have been done in [Leroux22] when pSIDH was introduced, but only for N = D is a prime not equal to p. Our method is greatly inspired by the technique in [Leroux22].

B Solve the PQLP in full generality.

< □ > < □ > < □ > < □ > < □ > < □ >

Task B - Powersmooth Quaternion Lifting Problem

Problem (Powersmooth Quaternion Lift Problem (PQLP))

Let \mathcal{O} be a maximal order in $\mathcal{B}_{p,\infty}$. Given an integer (N, p) = 1and an element $\sigma_0 \in \mathcal{O}$ such that $(n(\sigma_0), N) = 1$, find $\sigma \in \mathcal{O}$ and $\lambda \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ such that $\sigma = \lambda \sigma_0 \mod N\mathcal{O}$ and that $n(\sigma)$ is powersmooth.

< □ > < □ > < □ > < □ > < □ > < □ >

Task B - Powersmooth Quaternion Lifting Problem

Problem (Powersmooth Quaternion Lift Problem (PQLP))

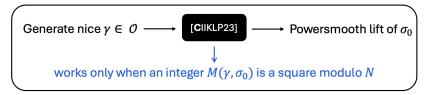
Let \mathcal{O} be a maximal order in $\mathcal{B}_{p,\infty}$. Given an integer (N, p) = 1and an element $\sigma_0 \in \mathcal{O}$ such that $(n(\sigma_0), N) = 1$, find $\sigma \in \mathcal{O}$ and $\lambda \in (\mathbb{Z}/N\mathbb{Z})^{\times}$ such that $\sigma = \lambda \sigma_0 \mod N\mathcal{O}$ and that $n(\sigma)$ is powersmooth.

Think of

- \mathcal{O} as $\operatorname{End}(E_0)$.
- $\mathcal{B}_{p,\infty}$ as $\operatorname{End}(E_0)\otimes_{\mathbb{Z}} \mathbb{Q}$.
- σ_0, σ as endomorphisms of E_0 .
- $n(\sigma_0), n(\sigma)$ as their degrees.
- $\sigma = \lambda \sigma_0 \mod N\mathcal{O}$ as these two endomorphisms having the same action (up to a scalar) on $E_0[N]$ (kernel of $[N] : E_0 \to E_0$).

イロト 不得 トイヨト イヨト 二日

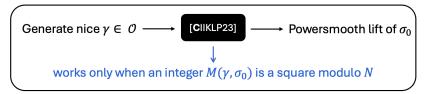
Task B - main idea



Suborder to Endomorphism Ring

May 4, 2025 19 / 24

Task B - main idea

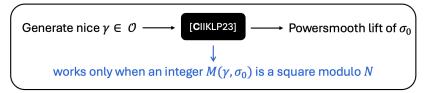


Intuition: Let k be the number of prime factors of N. A random number has $1/2^k$ chance of being a square modulo N, however, it is usually a square modulo half of the prime divisors of N.

Suborder to Endomorphism Ring

May 4, 2025 19 / 24

Task B - main idea



Intuition: Let k be the number of prime factors of N. A random number has $1/2^k$ chance of being a square modulo N, however, it is usually a square modulo half of the prime divisors of N.

- Find σ_1 which is not perfect lift but $\sigma_0 \equiv \sigma_1 \mod N_1 \mathcal{O}$ where N_1 divides N and $N_1 \approx \sqrt{N}$.
- We now solve the PQLP for $\sigma'_0 := \sigma_0 \sigma_1^{-1}$, we will be able to lift σ'_0 for N_2 such that $N_1 \mid N_2$ and $N_2 > N_1$. I.e., we can find σ_2 such that $\sigma'_0 \equiv \sigma_2 \mod N_2 \mathcal{O}$.
- Therefore, $\sigma_2 \sigma_1 \equiv \sigma_0 \sigma_1^{-1} \sigma_1 \mod N_2 \mathcal{O}$, and $n(\sigma_2 \sigma_1)$ is powersmooth.

Mingjie Chen

Suborder to Endomorphism Ring

May 4, 2025 19 / 24

Applications

Suborder to Endomorphism Ring

May 4, 2025 20 / 24

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

More hard problems in isogeny-based cryptography

- EndRing: Given a supersingular elliptic curve E/F_{p²}, compute End(E).
- *l*-lsogeny: Given two supersingular elliptic curves *E*₁, *E*₂, compute an *l*-power isogeny between them.
- Isogeny: Given two supersingular elliptic curves E₁, E₂, compute an arbitrary isogeny between them.
- ➤ OneEnd: Given a supersingular elliptic curve E/\mathbb{F}_{p^2} , compute a non-trivial endomorphism $\theta \in \text{End}(E)$. underlies the security of the SQIsign digital signature
- FullSubOrder: Given a supersingular elliptic curve E/𝔽_{p²}, compute a full rank suborder 𝒫_E ⊆ End(E).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Classical reduction

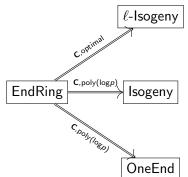


Figure: Polynomial time reductions of EndRing to other hard problems. On the edges, "C" represents *classical* reductions. Labels "optimal, poly(log*p*)" measure the query complexity of each reduction.

Remark

In the case when p is a prime of 256-bits, 2^{208} queries to the oracle O that outputs a solution for OneEnd are needed in the worst case. [PW24].

Mingjie Chen

May 4, 2025 22 / 24

Quantum reduction

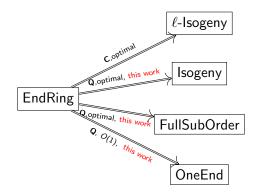


Figure: Polynomial time reductions of EndRing to other hard problems. On the edges, "**C**, **Q**" represents *classical* and *quantum* reductions respectively. Labels "optimal, O(1)" measure the query complexity of each reduction.

Mingjie Chen

Suborder to Endomorphism Ring

May 4, 2025 23 / 24

< □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

Suborder to Endomorphism Ring

May 4, 2025 24 / 24

・ロト・西ト・ヨト・ヨー うへぐ