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Garbling:
e invented in [Ya086], modern practical schemes based on Yao's
e many theoretical and practical applications,
o central building block for threshold schemes (see NIST threshold call)

Free-XOR: Common technique for practical garbling (e.g. ‘Half Gates’ garbling [ZRE15])
Adaptive security: Required for offline precomputation of expensive circuit garbling

Plain model: ROM gives only heuristic security, focus on standard-model security

Our results: Limitations on provable security of free-XOR based garbling in this setting
(applies to [Appl6] and [ZRE15])
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Optimization for public C: free XOR
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C = {1} gec, K ={K" k' 1,1 ...} can be computed offline
For v = (z1,20,...): == (K", /", ..)
Output mapping: f = {k* = 0,k' = 1,...}

Instantiations of free-XOR: [App16], “Half Gates” scheme [ZRE15]
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adaptive indistinguishability
(weaker than simulation-based security)
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Required for offline precomputation
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Security of Yao's Garbling

e LPQ9: selective security proof based on IND-CPA security of SKE

= adaptive security via guessing the input of length n:

SKE e-IND-CPA secure = Yao's scheme 2" - e-secure

o JWI16: adaptive security proof for circuits of depth D via “pebbling”:

SKE &-IND-CPA secure = Yao's scheme 27 . e-secure

o KKPW?21: Any black-box proof of adaptive security for Yao's garbling scheme for
circuits with n-bit input and depth D < 2n based on IND-CPA secure SKE incurs a

security loss 29 vD),
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Discussion of our Results

Theorem (Our results (informal))

Any black-box proof of adaptive security for free-XOR based on LIN-RK-KDM secure
SKE incurs an exponential security loss.

(] app|ies even to NC1 circuits (# Yao's scheme, i.e. proves JO20 right)

@ holds for indistinguishability (weaker security than simulatability) and when output map
f is sent online (AIKW13 doesn't apply here!)

@ holds also for “Half Gates” based on CCR secure hash function

= adaptive security via random guessing essentially best we can do!
SKE &-LIN-RK-KDM secure = free-XOR scheme 2" - e-secure

(applies only to black-box proofs for specific constructions from specific assumptions)



Proof ldea: oracle separation

Theorem (Our results (informal))

Any black-box proof of adaptive security for free-XOR based on LIN-RK-KDM secure
SKE incurs an exponential security loss.

Define oracles £ and A such that
e & = (Enc, Dec) is an ideal SKE scheme

e A is an (inefficient) adversary breaking adaptive security of the free-XOR scheme, but
“not too helpful” in breaking £.



Proof ldea: oracle separation

r

-

LIN-RK-KDM oracle |

Oc¢ k € {Realy, Idealy}

Realk (o, ¥):
ct + Enc¢(k)(¢(k))

Ideali (o, ):
ct < Ency(4)(0)

SKE oracle £
P K
Enc Dec
: <
[ .
reduction C garbling
R ~ adversary
C A
fb S ¢|in7'¢} S \Ulin
A — X0, X1
ct %, f
b
- @@

{0,1}



Proof Idea: the Adversary A

@ Send log-depth circuit C:

AV ARV Y
NP N



Proof Idea: the Adversary A

@ Send log-depth circuit C:

xx/xz X3 Xy Xi‘/X(j XK X3
®

2R
e

y
o Receive C
e Sample x1 < {0,1}", x¢ < {x0 € {0,1}" | C(x0) = C(x1)}
@ Receive X



Proof Idea: the Adversary A

@ Send log-depth circuit C:

AV VA Y
LW
\ /

I

y
o Receive C
e Sample x1 < {0,1}", x¢ < {x0 € {0,1}" | C(x0) = C(x1)}
@ Receive X
@ Output 1 iff

o C wellformed, and
o (C,X) consistent with x;.



Proof Idea: the Adversary A

@ Send log-depth circuit C:

AV VA Y
LW
\ /
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y
o Receive C
e Sample x1 < {0,1}", x¢ < {x0 € {0,1}" | C(x0) = C(x1)}
@ Receive X
@ Output 1 iff

o C wellformed, and
o (C,X) consistent with x;.

(here: consider non-rewinding reduction that runs A once, general case: g-wise independent hash functions)
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Wellformedness of C by brute-force:
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Allows to map keys to bits = check consistency of this map with (X, x1)
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Proof Idea: uselessness of A for R

Og,k S {Realk, Idealk}

R(%E)|k(¢7 1/})
ct <= Ency(i)(¥(k))

Ideal (¢, v):
ct <= Ency(4)(0)

-

s N
LIN-RK-KDM oracle

Some ct must be embedded in a garbling table of an AND gate in C
Enc random expanding function = all ct in C through oracle queries
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1) only secret is A (and enc rand. r, ) & 2) all ct through oracle queries

= either (C, %) malformed w.r.t. x;, or can extract A from queries

(except for negl chance of embedding LIN-RK-KDM challenge key as A consistent with x1 (req. guessing.x1))
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THANK YOU FOR YOUR ATTENTION! OPEN QUESTIONS?



