
Relaxed Vector Commitment for
Shorter Signatures

Seongkwang Kim1, Byeonghak Lee1, and Mincheol Son2

1Samsung SDS, Korea 2KAIST, Korea

Brief Overview

• Relax the vector commitment scheme used in MPCitH-based signature

• Vector semi-commitment (VSC)

- relaxing binding property of vector commitment

- further optimized by utilizing correlated GGM tree

• Application of VSC ➔ rAIMer

- By utilizing VSC, rAIMer has 18% shorter signatures and 112% faster signing speed

2

MPCitH-based Signatures

• Ishai et al. proposed a generic conversion from MPC to ZKPoK

- MPCitH + OWF + FS = Digital Signature

3

Prover Verifier

𝑓(𝑥)

MPCitH-based Signatures

• Ishai et al. proposed a generic conversion from MPC to ZKPoK

- MPCitH + OWF + FS = Digital Signature

• MPCitH enables post-quantum signature schemes

- Minimal assumption: Security of digital signature only relies on the one-wayness of OWF

- 6 of 15 in NIST additional PQC standardization are based on MPCitH: MIRA, MQOM, …

• Variants are still being researched and proposed

- VOLE-in-the-Head, Threshold-Computation-in-the-Head, …

4

MPCitH-based Signatures

• Ishai et al. proposed a generic conversion from MPC to ZKPoK

- MPCitH + OWF + FS = Digital Signature

• MPCitH enables post-quantum signature schemes

- Minimal assumption: Security of digital signature only relies on the one-wayness of OWF

- 6 of 15 in NIST additional PQC standardization are based on MPCitH: MIRA, MQOM, …

• Variants are still being researched and proposed

- VOLE-in-the-Head, Threshold-Computation-in-the-Head, …

➔ Optimizing MPCitH is important

5

Deep Dive into Recent MPCitH (BN Protocol)

6

• BN: MPC-in-the-Head based NIZKPoK for arithmetic circuits

Prover Verifier
commits to following for all 𝑁 parties
1. Additive shares of beaver triples
2. Additive shares of all wires of the circuit

Randomness for the verification

1. Simulate multiplication check protocols
2. Commit to views of parties

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

7

• Prover cheats successfully if:

- Prover corrupted the unopened party ➔ 1/𝑁

- multiplication check protocol fails ➔ soundness error = typically
1

𝔽

Prover Verifier
commits to following for all 𝑁 parties
1. Additive shares of beaver triples
2. Additive shares of all wires of the circuit

Randomness for the verification

1. Simulate multiplication check protocols
2. Commit to views of parties

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Repeat 𝜏 times where
1

𝑁
+

1

𝔽

𝜏

≃ 2−𝜆

8

• Prover cheats successfully if:

- Prover corrupted the unopened party ➔ 1/𝑁

- multiplication check protocol fails ➔ soundness error = typically
1

𝔽

Prover Verifier
commits to following for all 𝑁 parties
1. Additive shares of beaver triples
2. Additive shares of all wires of the circuit

Randomness for the verification

1. Simulate multiplication check protocols
2. Commit to views of parties

Choose 𝑁 − 1 parties to open

De-commit the chosen views

Repeat 𝜏 times where
1

𝑁
+

1

𝔽

𝜏

≃ 2−𝜆

Commits are binding & No parties are corrupted
⇒ inputs to MultCheck protocol are binded
⇒ can cheats only if MultCheck fails for binded inputs

9

• Prover cheats successfully if:

- Prover corrupted the unopened party ➔ 1/𝑁

- multiplication check protocol fails ➔ soundness error = typically
1

𝔽

Prover Verifier
commits to following for all 𝑁 parties
1. Additive shares of beaver triples
2. Additive shares of all wires of the circuit

Randomness for the verification

1. Simulate multiplication check protocols
2. Commit to views of parties

Choose 𝑁 − 1 parties to open

De-commit the chosen views

Repeat 𝜏 times where
1

𝑁
+

1

𝔽

𝜏

≃ 2−𝜆

Commits are semi-binding & No parties are corrupted
⇒ some(=𝑢) inputs to MultCheck protocol are binded
⇒ can cheats only if MultCheck fails for binded inputs

1

𝔽
➔

𝑢

𝔽
?

Our Contribution

10

Vector Commitments (VC)

11

• VC. Commit seed = decom, com

- com ≔ com(1), … , com(8)

• VC. Open decom, ത3 = pdecom

- pdecom ≔ node1,2, node2,1, seed
(4), com(3)

• VC. Verify com, pdecom, ത3 = seed 𝑖
𝑖≠3

or ⊥

Additive shares of wires of circuit Additive shares of beaver triples

PRG seed(𝑖) = 𝑤1
𝑖
, … , 𝑤𝐶

𝑖
, 𝑎1

𝑖
, … , 𝑎𝐶

𝑖
, 𝑏1

𝑖
, … , 𝑏𝐶

𝑖
, 𝑐 𝑖

PRG

Hash

Vector Commitments (VC)

12

• VC is binding: com 𝑖
𝑖∈[𝑁]

binds seed 𝑖
𝑖∈[𝑁]

➔ One cannot find collisions of Hash

➔ requires com 𝑖 ≥ 2𝜆

• VC is hiding: hidden seed cannot be discovered

from pdecom

➔ One cannot find preimage of Hash

➔ requires com 𝑖 ≥ 𝜆

PRG

Hash

Relaxing the binding property of VC will reduce communication cost (=signature size)

Vector Semi-Commitments (VSC)

13

• VC is u-semi-binding

- com 𝑖
𝑖∈[𝑁]

binds few (=u) of seed 𝑖
𝑖∈[𝑁]

- One cannot find large multi-collisions of Hash

• Balls-into-Bins Game

- If Q balls are randomly assigned into 2𝜆 bins

Pr max−load ≥
2𝜆

log 𝜆
≤ O

𝑄

2𝜆

- Set com 𝑖 = 𝜆 then 𝑢 = ??

PRG

Hash

Vector Semi-Commitments (VSC)

14

• Naive computation: u =
2𝜆

log 𝜆

𝑁
which seems quite large

- But malicious prover should find seed 𝑖
𝑖∈[𝑁]

with valid pdecom

2𝜆/ log 𝜆 2𝜆/ log 𝜆⋯

Vector Semi-Commitments (VSC)

15

• # of seed 𝑖
𝑖∈[𝑁]

with valid pdecom: 𝑢 =
𝑁

2
⋅

2𝜆
log 𝜆

2

➔ VSC is 𝑢-semi-binding

1 2𝜆/ log 𝜆 2𝜆/ log 𝜆 1

Vector Semi-Commitments (VSC)

16

• Halved commit size by relaxing binding property

- Reduce 𝜏 ⋅ 𝜆 bits of signature size

• Applied Correlated GGM (cGGM) optimization

- Use first 𝜆-bits of witness as root seed

- Further reduce 𝜏 ⋅ 𝜆 bits of signature size

• Two instantiations: RO-VSC and IC-VSC

- For IC-VSC, we use fixed key AES for tree expansion

➔ a lot faster VSC evaluation

- We provide security proof in ROM/ICM

Differences in Security Proofs

17

• The happy illusion in the beginning

- VSC has u-semi-binding instead of binding(=1-semi-binding)

- Soundness error of multiplication check becomes u-times larger

- EUF-CMA to EUF-KO reduction would be same

Prover Verifiercommits to each party’s seeds

Randomness for the verification

Simulate MultCheck and commit the output

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Differences in Security Proofs

18

• The happy illusion in the beginning

- VSC has u-semi-binding instead of binding(=1-semi-binding)

- Soundness error of multiplication check becomes u-times larger

- EUF-CMA to EUF-KO reduction would be same

But the world was not so simple

Prover Verifiercommits to each party’s seeds

Randomness for the verification

Simulate MultCheck and commit the output

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Differences in Security Proofs (EUF-KO)

19

• The reality is quite complicated

• Soundness error of multiplication check becomes u-times larger and

Prover Verifiercommits to each party’s seeds

Randomness for the verification

Simulate MultCheck and commit the output

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Differences in Security Proofs (EUF-KO)

20

• The reality is quite complicated

• Soundness error of multiplication check becomes u-times larger and

• Malicious prover can find new seeds those are consistent to previously generated commitments

Prover Verifiercommits to each party’s seeds

Randomness for the verification

Simulate MultCheck and commit the output

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Differences in Security Proofs (EUF-KO)

21

• The reality is quite complicated

• Soundness error of multiplication check becomes u-times larger and

• Malicious prover can find new seeds those are consistent to previously generated commitments

- Even after randomness for the verification is known

Prover Verifiercommits to each party’s seeds

Randomness for the verification

Simulate MultCheck and commit the output

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Differences in Security Proofs (EUF-KO)

22

• The reality is quite complicated

• Soundness error of multiplication check becomes u-times larger and

• Malicious prover can find new seeds those are consistent to previously generated commitments

- Even after randomness for the verification is known

- Even after opening parties are known

Prover Verifiercommits to each party’s seeds

Randomness for the verification

Simulate MultCheck and commit the output

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Differences in Security Proofs (EUF-KO)

23

So, we should prove followings (for EUF-KO)

1. u-semi-binding property of VSC

2. Malicious prover cannot find a new seed which is

- Consistent to previously generated commitments and

- Pass the multiplication check protocol

Prover Verifiercommits to each party’s seeds

Randomness for the verification

Simulate MultCheck and commit the output

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Differences in Security Proofs (EUF-CMA)

24

• In VC, the output distribution of VC.Commit and VC.Open are independent to the secret key

• As VSC utilizes cGGM and inserts secret key into the root, we should prove that

- Outputs of VSC.Commit and VSC.Open are indistinguishable to random

• Since we use IC, we should consider all input collisions between

- Tree expansion, Seed hashing, PRG evaluation

Prover Verifiercommits to each party’s seeds

Randomness for the verification

Simulate MultCheck and commit the output

Choose 𝑁 − 1 parties to open

Open the views for chosen parties

Result

25

• reduced BN++: BN++ with IC-VSC

- Shorter commitment size + Key injection with cGGM➔ Shorter signature size

- Use cGGM with fixed key AES ➔ Less PRG/IC calls with faster evaluation

Result

26

- By utilizing VSC, rAIMer has 18% shorter signatures and 112% faster signing speed

Conclusion

27

• Vector semi-commitment (VSC)

- relaxing binding property of vector commitment

- further optimized by utilizing correlated GGM tree

- VSC makes signatures shorter and faster

• Future Works

- VOLE-in-the-Head with VSC? ➔ Yes we can! (will be available soon)

- VSC based on PRG assumption ➔ Useful for Quantum proofs

Thank you
Q&A : byghak.lee@samsung.com

	슬라이드 1: Relaxed Vector Commitment for Shorter Signatures
	슬라이드 2: Brief Overview
	슬라이드 3: MPCitH-based Signatures
	슬라이드 4: MPCitH-based Signatures
	슬라이드 5: MPCitH-based Signatures
	슬라이드 6: Deep Dive into Recent MPCitH (BN Protocol)
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10: Our Contribution
	슬라이드 11: Vector Commitments (VC)
	슬라이드 12: Vector Commitments (VC)
	슬라이드 13: Vector Semi-Commitments (VSC)
	슬라이드 14: Vector Semi-Commitments (VSC)
	슬라이드 15: Vector Semi-Commitments (VSC)
	슬라이드 16: Vector Semi-Commitments (VSC)
	슬라이드 17: Differences in Security Proofs
	슬라이드 18: Differences in Security Proofs
	슬라이드 19: Differences in Security Proofs (EUF-KO)
	슬라이드 20: Differences in Security Proofs (EUF-KO)
	슬라이드 21: Differences in Security Proofs (EUF-KO)
	슬라이드 22: Differences in Security Proofs (EUF-KO)
	슬라이드 23: Differences in Security Proofs (EUF-KO)
	슬라이드 24: Differences in Security Proofs (EUF-CMA)
	슬라이드 25: Result
	슬라이드 26: Result
	슬라이드 27: Conclusion
	슬라이드 28: Thank you

