Faster ABE for Turing Machines

from Circular Evasive LWE

Valerio Cini Hoeteck Wee

Bocconi (©) NTTResearch



Attribute-Based Encryption [SahaiWaters05]




Attribute-Based Encryption [SahaiWaters05]

(1%, F)— Setup




Attribute-Based Encryption [SahaiWaters05]

class description F

(17, F)—

Setup

1/11



Attribute-Based Encryption [SahaiWaters05]

o arithmetic circuits
class description F, e.g.

(1%, F)— Setup

1/11



Attribute-Based Encryption [SahaiWaters05]

o arithmetic circuits
class description F, e.g. ) _
Turing machines

(1%, F)— Setup

1/11



Attribute-Based Encryption [SahaiWaters05]

arithmetic circuits
Turing machines

class description F, e.g. {

(1)‘,.7:')% Setup —— msk

mpk

1/11



Attribute-Based Encryption [SahaiWaters05]

o arithmetic circuits
class description F, e.g. _ _
Turing machines

(1)‘,.7:')% Setup —— msk

mpk

message /i, input/attribute x, time bound T € N

Enc

—— Cly

T

1/11



Attribute-Based Encryption [SahaiWaters05]

arithmetic circuits M ¢ F

class description F, e.g. { _ .
Turing machines J

(1%, F)— Setup —— msk ——1 KeyGen —— sky

mpk Enc —— cix

T

message /i, input/attribute x, time bound T € N

1/11



Attribute-Based Encryption [SahaiWaters05]

class description F, e.g. {

arithmetic circuits
Turing machines

(1%, F)— Setup

Me F

J

—— msk ——

mpk

KeyGen —— sk

|

Dec— M
[ iff M(x, T) =0

Enc

—— Cly

T

message /i, input/attribute x, time bound T € N

1/11



ABE for Turing Machines

[AgrawalKumariYamada24]
- |et| = O(T?)
- 1sk| = O(IMP)

- from Circular Evasive LWE [HLL23] + Tensor LWE [w22]

2/11



ABE for Turing Machines

Our Results
- |ct| = O(T) and Time(Enc) = O(T)
- |sk| = O(1) and Time(KeyGen) = O(|M|)

- from Circular Evasive LWE [HLL23] —I—W

2/11



ABE for Turing Machines

Our Results
- |ct| = O(T) and Time(Enc) = O(T)
- |sk| = O(1) and Time(KeyGen) = O(|M|)

- from Circular Evasive LWE [HLL23] —I—W

new encoding and techniques to switch b/w them

2/11



Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

s(A—-z®G) =[s(A; — z1G)|...|s(A; — zG)]

3/11



Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit

3/11



Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

s(A—-z®G) =[s(A; — z1G)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

3/11



Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

this work :  dual encodings of z € {0,1}¢

3/11



Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

this work :  dual encodings of z € {0,1}¢

SA, — diag(z) - SG = [s1(Ag — z1G) \\ ... \\ s¢(A¢ — z/G)]

3/11



Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

this work :  dual encodings of z € {0,1}¢
SA, — diag(z) - SG = [s,(Ag — 2G)\\ ...\ 5:(Ao — 2G)

VoA = 0(1)

3/11



Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

this work :  dual encodings of z € {0,1}¢
SA, — diag(z) - SG = [s,(Ag — 2G)\\ ...\ 5:(Ao — 2G)

X only support projections V' Al = 0(1)

3/11



Recoding of Attribute Encodings

_ — dual encoding for (global) work tape
Main ldea: _ _
— BGG™ encodings for (local) computation

4/11



Recoding of Attribute Encodings

_ — dual encoding for (global) work tape
Main ldea: _ _
— BGG™ encodings for (local) computation

how to switch between
the two types of encodings?

4/11



Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

4/11



Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

(C,C') = (SB,SW + S'G)
K+« B (AG (W) - WG '(A}))

4/11



Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B,W ¢ mpk
(C,C') = (SB,SW + S'G) YV EmP

K<+ B '(AG (W) - WG (A))

4/11



Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B, W € mpk
ciphertext  (C,C') = (SB,SW + S'G) Ve mp

K<+ B '(AG (W) - WG (A))

4/11



Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B, W € mpk
ciphertext  (C,C') = (SB,SW + S'G) Ve mp

secret key K+« B (AG (W) - WG '(A}))

4/11



Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B.W € mpk
ciphertext  (C,C') = (SB,SW + S'G) Ve mp

secret key K+« B (AG (W) - WG '(A}))

(C,C")| = O(|z]) +— linear in size of attribute / depend on S, S’
K| = O(1) <— constant size / independent

4/11



Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B.W € mpk
ciphertext  (C,C') = (SB,SW + S'G) Ve mp

secret key K+« B (AG (W) - WG '(A}))

similar results hold
} } . : } for all other
|ciphertext component| «<— linear in size of attribute | possible recodings
1) dual-to-dual
k . 2) BGG'-to-dual
|key component| «— constant size 3) dual-to-BGG
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» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

z;[write(t)] = z;_1[write(t)]

2 [write(D)] = F(zeafread(n)]) T

zo—x|05£—>---—>zt—{

It captures Oblivious TM with 25-1 states and alphabet {0,1}

Arbitrary TM with O(log T) overhead [PippengerFischer79]
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A - 7 v
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» warm-up: all S; are independent, secure but quadratic size/time

» attempt 1: all S; are the same, linear time but insecure
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» 1 recoding
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C.[write secret key: O(1)
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» security under evasive LWE? intermediate quantities computed during
decryption are jointly pseudorandom

)

What about noise-growth? LWE

\
techniques from [HseihLinLuo23|
to handle unbounded depth computation

4

need to use their circular-secure variant of evasive LWE

» construction gets modified accordingly
(need to add circular encryptions)
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