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ABE for Turing Machines

[AgrawalKumariYamada24]

- |ct| = O(T 2)

- |sk| = O(|M |2)

- from Circular Evasive LWE [HLL23] + Tensor LWE [W22]

new encoding and techniques to switch b/w them
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Attribute Encodings[
BonehGentryGorbunovHaleviNikolaenko
SegevVaikuntanathanVinayagamurthy14

]
: BGG+ encodings of z ∈ {0, 1}ℓ

s(A− z⊗ G) = [s(A1 − z1G)| . . . |s(Aℓ − zℓG)]

homomorphically evaluate any circuit

|A| = O(|z|)

this work : dual encodings of z ∈ {0, 1}ℓ

SA0 − diag(z) · SG = [s1(A0 − z1G) \\ . . . \\ sℓ(A0 − zℓG)]

only support projections

|A0| = O(1)
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Recoding of Attribute Encodings

Main Idea:
– dual encoding for (global) work tape

– BGG+ encodings for (local) computation

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent
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Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T ] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])

→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT ) overhead [PippengerFischer79]
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Roadmap to final scheme

Decryption invariant: StA0 − diag(zt) · StG

S0,S1, . . . ,ST︸ ︷︷ ︸
associated with ciphertext

∈ ZS×n
q A0︸︷︷︸

associated with secret key

∈ Zn×m
q

▶ warm-up: all St are independent, secure but quadratic size/time

▶ attempt 1: all St are the same, linear time but insecure

▶ final: each St fresh random in Ut , with |Ut | = O(L).
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Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT ]

for some sets U1,U2, . . . ,UT . Need |Ui | = O(L) for efficiency

8 / 11



Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT ]

for some sets U1,U2, . . . ,UT . Need |Ui | = O(L) for efficiency

8 / 11



Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for

Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT ]

for some sets U1,U2, . . . ,UT .

Need |Ui | = O(L) for efficiency

8 / 11



Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for

Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT ]

for some sets U1,U2, . . . ,UT . Need |Ui | = O(L) for efficiency

8 / 11



Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT ]

for some sets U1,U2, . . . ,UT . Need |Ui | = O(L) for efficiency

8 / 11



Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)] C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding unchangedwrite(t) ∩ Ut▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T )
secret key: O(1)
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Security

▶ security under evasive LWE?

need to show that all the
intermediate quantities computed during
decryption are jointly pseudorandom

⇑
LWE

What about noise-growth?

techniques from [HseihLinLuo23]
to handle unbounded depth computation

⇓

⇓
need to use their circular-secure variant of evasive LWE

▶ construction gets modified accordingly
(need to add circular encryptions)
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