Faster ABE for Turing Machines from Circular Evasive LWE

<u>Valerio Cini</u> Hoeteck Wee

$$(1^{\lambda}, \mathcal{F}) \rightarrow \overline{\mathsf{Setup}}$$

class description ${\cal F}$

$$(1^{\lambda}, \mathcal{F}) \rightarrow \overline{\mathsf{Setup}}$$

class description \mathcal{F} , e.g. $\left\{ \begin{array}{l} \text{arithmetic circuits} \end{array} \right.$

$$(1^{\lambda}, \mathcal{F}) \rightarrow \mathsf{Setup}$$

class description \mathcal{F} , e.g. $\begin{cases} arithmetic circuits \\ \underline{Turing machines} \end{cases}$

$$(1^{\lambda}, \mathcal{F}) \rightarrow \mathsf{Setup}$$

class description
$$\mathcal{F}$$
, e.g. $\begin{cases} \text{arithmetic circuits} \\ \underline{\text{Turing machines}} \end{cases}$
 $(1^{\lambda}, \mathcal{F}) \rightarrow \boxed{\text{Setup}} \longrightarrow \text{msk}}$
 \downarrow
 mpk

[AgrawalKumariYamada24]

- $|ct| = O(T^2)$
- $|{\sf sk}| = O(|M|^2)$
- from Circular Evasive LWE [HLL23] + Tensor LWE [W22]

Our Results

- $|\mathsf{ct}| = O(T)$ and $\mathsf{Time}(\mathsf{Enc}) = O(T)$
- $|\mathsf{sk}| = O(1)$ and $\mathsf{Time}(\mathsf{KeyGen}) = O(|M|)$
- from Circular Evasive LWE [HLL23] + Tensor LWE [W22]

Our Results

- $|\mathsf{ct}| = O(T)$ and $\mathsf{Time}(\mathsf{Enc}) = O(T)$
- $|\mathsf{sk}| = O(1)$ and $\mathsf{Time}(\mathsf{KeyGen}) = O(|M|)$
- from Circular Evasive LWE [HLL23] + Tensor LWE [W22]

new encoding and techniques to switch $\ensuremath{\mathsf{b}}/\ensuremath{\mathsf{w}}$ them

 $\begin{bmatrix} \mathsf{BonehGentryGorbunovHaleviNikolaenko}\\ \mathsf{SegevVaikuntanathanVinayagamurthy14} \end{bmatrix}: \quad \mathsf{BGG^+} \text{ encodings of } \mathbf{z} \in \{0,1\}^\ell$

$$\mathbf{s}(\mathbf{A} - \mathbf{z} \otimes \mathbf{G}) = [\mathbf{s}(\mathbf{A}_1 - z_1\mathbf{G})| \dots |\mathbf{s}(\mathbf{A}_\ell - z_\ell\mathbf{G})]$$

 $\begin{bmatrix} \mathsf{BonehGentryGorbunovHaleviNikolaenko}\\ \mathsf{SegevVaikuntanathanVinayagamurthy14} \end{bmatrix}: \quad \mathsf{BGG^+} \text{ encodings of } \mathbf{z} \in \{0,1\}^\ell$

$$\mathbf{s}(\mathbf{A} - \mathbf{z} \otimes \mathbf{G}) = [\mathbf{s}(\mathbf{A}_1 - z_1\mathbf{G})| \dots |\mathbf{s}(\mathbf{A}_\ell - z_\ell\mathbf{G})]$$

 \checkmark homomorphically evaluate any circuit

 $\begin{bmatrix} \mathsf{BonehGentryGorbunovHaleviNikolaenko}\\ \mathsf{SegevVaikuntanathanVinayagamurthy14} \end{bmatrix}: \quad \mathsf{BGG^+} \text{ encodings of } \mathbf{z} \in \{0,1\}^\ell$

$$\mathsf{s}(\mathsf{A}-\mathsf{z}\otimes\mathsf{G})=[\mathsf{s}(\mathsf{A}_1-z_1\mathsf{G})|\dots|\mathsf{s}(\mathsf{A}_\ell-z_\ell\mathsf{G})]$$

 \checkmark homomorphically evaluate any circuit $X |\mathbf{A}| = O(|\mathbf{z}|)$

 $\begin{bmatrix} \mathsf{BonehGentryGorbunovHaleviNikolaenko}\\ \mathsf{SegevVaikuntanathanVinayagamurthy14} \end{bmatrix}: \quad \mathsf{BGG^+} \text{ encodings of } \mathbf{z} \in \{0,1\}^\ell$

$$\mathbf{s}(\mathbf{A} - \mathbf{z} \otimes \mathbf{G}) = [\mathbf{s}(\mathbf{A}_1 - z_1\mathbf{G})| \dots |\mathbf{s}(\mathbf{A}_\ell - z_\ell\mathbf{G})]$$

 \checkmark homomorphically evaluate any circuit igstarrow igstarrow |f A| = O(|f z|)

this work : dual encodings of $z \in \{0, 1\}^{\ell}$

 $\begin{bmatrix} \mathsf{BonehGentryGorbunovHaleviNikolaenko}\\ \mathsf{SegevVaikuntanathanVinayagamurthy14} \end{bmatrix}: \quad \mathsf{BGG^+} \text{ encodings of } \mathbf{z} \in \{0,1\}^\ell$

$$\mathbf{s}(\mathbf{A} - \mathbf{z} \otimes \mathbf{G}) = [\mathbf{s}(\mathbf{A}_1 - z_1\mathbf{G})| \dots |\mathbf{s}(\mathbf{A}_\ell - z_\ell\mathbf{G})]$$

 \checkmark homomorphically evaluate any circuit igstarrow igstarrow |f A| = O(|f z|)

this work : dual encodings of $z \in \{0, 1\}^{\ell}$

$$\mathsf{SA}_0 - \mathsf{diag}(\mathsf{z}) \cdot \mathsf{SG} = [\mathsf{s}_1(\mathsf{A}_0 - z_1\mathsf{G}) \setminus\!\! \setminus \ldots \setminus\!\! \setminus \mathsf{s}_\ell(\mathsf{A}_0 - z_\ell\mathsf{G})]$$

 $\begin{bmatrix} \mathsf{BonehGentryGorbunovHaleviNikolaenko}\\ \mathsf{SegevVaikuntanathanVinayagamurthy14} \end{bmatrix}: \quad \mathsf{BGG}^+ \text{ encodings of } \mathbf{z} \in \{0,1\}^\ell$

$$\mathbf{s}(\mathbf{A} - \mathbf{z} \otimes \mathbf{G}) = [\mathbf{s}(\mathbf{A}_1 - z_1\mathbf{G})| \dots |\mathbf{s}(\mathbf{A}_\ell - z_\ell\mathbf{G})]$$

 \checkmark homomorphically evaluate any circuit igstarrow igstarrow |f A| = O(|f z|)

this work : dual encodings of $\mathbf{z} \in \{0,1\}^{\ell}$

$$egin{aligned} \mathbf{SA}_0 - \operatorname{diag}(\mathbf{z}) \cdot \mathbf{SG} &= \left[\mathbf{s}_1(\mathbf{A}_0 - z_1\mathbf{G}) ightharpoonline \dots ightharpoonline \mathbf{s}_\ell(\mathbf{A}_0 - z_\ell\mathbf{G})
ight] \ & \checkmark \quad |\mathbf{A}_0| = O(1) \end{aligned}$$

 $[ext{BonehGentryGorbunovHaleviNikolaenko}]: \mathsf{BGG}^+ ext{ encodings of } \mathsf{z} \in \{0,1\}^\ell$

$$\mathbf{s}(\mathbf{A} - \mathbf{z} \otimes \mathbf{G}) = [\mathbf{s}(\mathbf{A}_1 - z_1\mathbf{G})| \dots |\mathbf{s}(\mathbf{A}_\ell - z_\ell\mathbf{G})]$$

 \checkmark homomorphically evaluate any circuit igstarrow igstarrow |f A| = O(|f z|)

this work : dual encodings of $\mathbf{z} \in \{0, 1\}^{\ell}$

$$\mathbf{SA}_0 - \operatorname{diag}(\mathbf{z}) \cdot \mathbf{SG} = [\mathbf{s}_1(\mathbf{A}_0 - z_1\mathbf{G}) \setminus\!\! \setminus \ldots \setminus\!\! \setminus \mathbf{s}_\ell(\mathbf{A}_0 - z_\ell\mathbf{G})]$$

imes only support projections imes $|\mathbf{A}_0| = O(1)$

Main Idea: - dual encoding for (global) work tape - BGG⁺ encodings for (local) computation

- dual encoding for (global) work tape

Main Idea:

– BGG^+ encodings for (local) computation

how to switch between the two types of encodings?

$$egin{aligned} & (\mathbf{C},\mathbf{C}') = (\mathbf{SB},\mathbf{SW}+\mathbf{S}'\mathbf{G}) \ & \mathbf{K} \leftarrow \mathbf{B}^{-1}ig(\,\mathbf{A}_0\mathbf{G}^{-1}(\mathbf{W})-\mathbf{W}\mathbf{G}^{-1}(\mathbf{A}_0')\,ig) \end{aligned}$$

$$\begin{split} \textbf{(C, C')} &= \textbf{(SB, SW + S'G)} & \textbf{B, W} \in \mathsf{mpk} \\ \textbf{K} \leftarrow \textbf{B}^{-1} \big(\textbf{A}_0 \textbf{G}^{-1} (\textbf{W}) - \textbf{W} \textbf{G}^{-1} (\textbf{A}_0') \, \big) \end{split}$$

 $\begin{array}{ll} \mbox{ciphertext} & (\textbf{C},\textbf{C}') = (\textbf{SB},\textbf{SW}+\textbf{S}'\textbf{G}) & \textbf{B},\textbf{W}\in \mbox{mpk} \\ & \textbf{K}\leftarrow \textbf{B}^{-1}\big(\,\textbf{A}_0\textbf{G}^{-1}(\textbf{W})-\textbf{W}\textbf{G}^{-1}(\textbf{A}_0')\,\big) \end{array}$

 $\begin{array}{ll} \mbox{ciphertext} & (\textbf{C},\textbf{C}') = (\textbf{SB},\textbf{SW}+\textbf{S}'\textbf{G}) & \textbf{B},\textbf{W}\in \mbox{mpk} \\ \mbox{secret key} & \textbf{K}\leftarrow \textbf{B}^{-1}\big(\,\textbf{A}_0\textbf{G}^{-1}(\textbf{W})-\textbf{W}\textbf{G}^{-1}(\textbf{A}_0')\,\big) \end{array}$

$$\overbrace{z, \quad SA_0 - \operatorname{diag}(z) \cdot SG}^{\text{dual encoding of } z \text{ under } S, A_0} \longrightarrow \overbrace{S'A'_0 - \operatorname{diag}(z) \cdot S'G}^{\text{dual encoding of } z \text{ under } S', A'_0}$$

 $\begin{array}{ll} \mbox{ciphertext} & (\textbf{C},\textbf{C}') = (\textbf{SB},\textbf{SW}+\textbf{S}'\textbf{G}) & \textbf{B},\textbf{W}\in\mbox{mpk} \\ \mbox{secret key} & \textbf{K}\leftarrow\textbf{B}^{-1}\big(\,\textbf{A}_0\textbf{G}^{-1}(\textbf{W})-\textbf{W}\textbf{G}^{-1}(\textbf{A}_0')\,\big) \end{array}$

 $|(\mathbf{C}, \mathbf{C}')| = O(|\mathbf{z}|) \longleftarrow$ linear in size of attribute / depend on \mathbf{S}, \mathbf{S}' $|\mathbf{K}| = O(1) \longleftarrow$ constant size / independent

 $\begin{array}{ll} \mbox{ciphertext} & (\textbf{C},\textbf{C}') = (\textbf{SB},\textbf{SW}+\textbf{S}'\textbf{G}) & \textbf{B},\textbf{W}\in\mbox{mpk} \\ \mbox{secret key} & \textbf{K}\leftarrow\textbf{B}^{-1}\big(\,\textbf{A}_0\textbf{G}^{-1}(\textbf{W})-\textbf{W}\textbf{G}^{-1}(\textbf{A}_0')\,\big) \end{array}$

 $|ciphertext component| \longleftarrow linear in size of attribute$

 $|\text{key component}| \leftarrow \text{constant size}$

similar results hold for all other possible recodings 1) dual-to-dual 2) BGG⁺-to-dual 3) dual-to-BGG⁺

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L, \quad \text{read, write}: [T] \longrightarrow {S \choose L}, \quad L \ll S \leq T$$

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L$$
, read, write : $[T] \longrightarrow \begin{pmatrix} S \\ L \end{pmatrix}$, $L \ll S \leq T$

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L$$
, read, write : $[T] \longrightarrow \begin{pmatrix} S \\ L \end{pmatrix}$, $L \ll S \leq T$

$$|\mathbf{z}_0 = \mathbf{x}||0^{S-\ell}|$$

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L$$
, read, write : $[T] \longrightarrow \begin{pmatrix} S \\ L \end{pmatrix}$, $L \ll S \leq T$

$$\mathbf{z}_0 = \mathbf{x} || \mathbf{0}^{S-\ell} \to \cdots \to \mathbf{z}_t$$

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L$$
, read, write : $[T] \longrightarrow \begin{pmatrix} S \\ L \end{pmatrix}$, $L \ll S \leq T$

$$\mathbf{z}_0 = \mathbf{x} || \mathbf{0}^{S-\ell} o \dots o \mathbf{z}_t = egin{cases} \mathbf{z}_t[\overline{\operatorname{write}(t)}] = \mathbf{z}_{t-1}[\overline{\operatorname{write}(t)}] \ \end{bmatrix}$$

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L$$
, read, write : $[T] \longrightarrow \begin{pmatrix} S \\ L \end{pmatrix}$, $L \ll S \leq T$

$$\mathbf{z}_0 = \mathbf{x} || \mathbf{0}^{S-\ell} \to \dots \to \mathbf{z}_t = \begin{cases} \mathbf{z}_t[\overline{\mathsf{write}(t)}] = \mathbf{z}_{t-1}[\overline{\mathsf{write}(t)}] \\ \mathbf{z}_t[\mathsf{write}(t)] = f(\mathbf{z}_{t-1}[\mathsf{read}(t)]) \end{cases}$$

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L, \quad \text{read}, \text{write}: [T] \longrightarrow {S \choose L}, \quad L \ll S \leq T$$

$$\mathbf{z}_0 = \mathbf{x} || \mathbf{0}^{S-\ell} \to \dots \to \mathbf{z}_t = \begin{cases} \mathbf{z}_t[\overline{\mathsf{write}(t)}] = \mathbf{z}_{t-1}[\overline{\mathsf{write}(t)}] \\ \mathbf{z}_t[\mathsf{write}(t)] = f(\mathbf{z}_{t-1}[\mathsf{read}(t)]) \end{cases} \to \dots \to \mathbf{z}_T$$
Iterated Computation

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L, \quad \text{read}, \text{write}: [T] \longrightarrow {S \choose L}, \quad L \ll S \leq T$$

▶ $\mathbf{z}_t \in \{0,1\}^{S}$, t = 0, 1, ..., T, denotes the work tape at step t

$$\mathbf{z}_0 = \mathbf{x} || \mathbf{0}^{S-\ell} \to \dots \to \mathbf{z}_t = \begin{cases} \mathbf{z}_t[\overline{\mathsf{write}(t)}] = \mathbf{z}_{t-1}[\overline{\mathsf{write}(t)}] \\ \mathbf{z}_t[\mathsf{write}(t)] = f(\mathbf{z}_{t-1}[\mathsf{read}(t)]) \end{cases} \to \dots \to \mathbf{z}_T$$

It captures Oblivious TM with 2^{L-1} states and alphabet $\{0, 1\}$

Iterated Computation

ABE for Iterated Computation with locality L, space S, and time T

$$f: \{0,1\}^L \longrightarrow \{0,1\}^L, \quad \text{read, write}: [T] \longrightarrow {S \choose L}, \quad L \ll S \leq T$$

▶ $\mathbf{z}_t \in \{0,1\}^{S}$, t = 0, 1, ..., T, denotes the work tape at step t

$$\mathbf{z}_0 = \mathbf{x} || \mathbf{0}^{S-\ell} \to \dots \to \mathbf{z}_t = \begin{cases} \mathbf{z}_t[\overline{\mathsf{write}(t)}] = \mathbf{z}_{t-1}[\overline{\mathsf{write}(t)}] \\ \mathbf{z}_t[\mathsf{write}(t)] = f(\mathbf{z}_{t-1}[\mathsf{read}(t)]) \end{cases} \to \dots \to \mathbf{z}_T$$

It captures Oblivious TM with 2^{L-1} states and alphabet $\{0, 1\}$

Arbitrary TM with $O(\log T)$ overhead [PippengerFischer79]

Decryption invariant:

$$\mathbf{S}_t \mathbf{A}_0 - \operatorname{diag}(\mathbf{z}_t) \cdot \mathbf{S}_t \mathbf{G}$$

Decryption invariant: $\mathbf{S}_t \mathbf{A}_0 - dia$

$$\mathbf{S}_t \mathbf{A}_0 - \operatorname{diag}(\mathbf{z}_t) \cdot \mathbf{S}_t \mathbf{G}$$

$$\underbrace{\mathbf{S}_0,\mathbf{S}_1,\ldots,\mathbf{S}_T}_{\boldsymbol{\mathcal{S}}} \in \mathbb{Z}_q^{\boldsymbol{\mathcal{S}}\times\boldsymbol{n}}$$

associated with ciphertext

associated with secret key

 \mathbf{A}_0

 $\in \mathbb{Z}_q^{n \times m}$

Decryption invariant: $\mathbf{S}_t \mathbf{A}_0 - \operatorname{diag}(\mathbf{z}_t) \cdot \mathbf{S}_t \mathbf{G}$

 \blacktriangleright warm-up: all **S**_t are independent, secure but quadratic size/time

 \blacktriangleright warm-up: all **S**_t are independent, secure but quadratic size/time

 \blacktriangleright attempt 1: all **S**_t are the same, linear time but insecure

 \blacktriangleright warm-up: all **S**_t are independent, secure but quadratic size/time

• attempt 1: all \mathbf{S}_t are the same, linear time but insecure

▶ final: each \mathbf{S}_t fresh random in U_t , with $|U_t| = O(L)$.

Warm-Up Construction

 $\tilde{\mathbf{C}}_{t-1} \coloneqq \mathbf{S}_{t-1} \mathbf{A}_0 - \mathsf{diag}(\mathbf{z}_{t-1}) \cdot \mathbf{S}_{t-1} \mathbf{G}$

$$\tilde{\mathbf{C}}_t \coloneqq \mathbf{S}_t \mathbf{A}_0 - \operatorname{diag}(\mathbf{z}_t) \cdot \mathbf{S}_t \mathbf{G}$$

$$\begin{array}{c|c} \hline \textbf{Warm-Up Construction} \\ \hline \textbf{Step } t \\ \hline \textbf{C}_{t-1} & \overbrace{\textbf{C}_{t-1}}^{\text{step } t} \textbf{C}_{t-1} = \textbf{S}_{t-1}\textbf{A}_0 - \text{diag}(\textbf{z}_{t-1}) \cdot \textbf{S}_{t-1}\textbf{G} \\ \hline \textbf{C}_{t-1}[\text{read}(t)] & \quad \textbf{C}_{t-1}[\overline{\text{write}(t)}] \end{array}$$

$$ilde{\mathbf{C}}_t \coloneqq \mathbf{S}_t \mathbf{A}_0 - \operatorname{diag}(\mathbf{z}_t) \cdot \mathbf{S}_t \mathbf{G}$$

$$\begin{array}{c|c} \hline \textbf{Warm-Up Construction} \\ \hline \textbf{S}_{\text{computation}} & \tilde{\textbf{C}}_{t-1} \coloneqq \textbf{S}_{t-1} \textbf{A}_0 - \text{diag}(\textbf{z}_{t-1}) \cdot \textbf{S}_{t-1}\textbf{G} \\ \hline \tilde{\textbf{C}}_{t-1}[\text{read}(t)] & \tilde{\textbf{C}}_{t-1}[\overline{\text{write}(t)}] \\ & \downarrow \text{dual-to-BGG}^+ \\ \textbf{s}_{t-1}'(\textbf{D} - \textbf{z}_{t-1}[\text{read}(t)] \otimes \textbf{G}) \end{array}$$

$$\tilde{\mathbf{C}}_t[\text{write}(t)] \qquad \qquad \tilde{\mathbf{C}}_t[\overline{\text{write}(t)}] \\ \overbrace{\mathbf{C}_t} \coloneqq \mathbf{S}_t \mathbf{A}_0 - \text{diag}(\mathbf{z}_t) \cdot \mathbf{S}_t \mathbf{G}$$

7 / 11

$$\begin{array}{c|c} \hline \textbf{Warm-Up Construction} \\ \hline \textbf{Step } t \\ \hline \textbf{computation} \\ \hline \tilde{\textbf{C}}_{t-1} \coloneqq \textbf{S}_{t-1} \textbf{A}_0 - \text{diag}(\textbf{z}_{t-1}) \cdot \textbf{S}_{t-1} \textbf{G} \\ \hline \tilde{\textbf{C}}_{t-1}[\text{read}(t)] \\ \hline \textbf{U}_{t-1}[\text{read}(t)] \\ \hline \textbf{U}_{t-1}(\textbf{D} - \textbf{z}_{t-1}[\text{read}(t)]) \otimes \textbf{G}) \\ \hline \textbf{U}_{t-1}(\textbf{D}_f - \underbrace{f(\textbf{z}_{t-1}[\text{read}(t)])}_{\textbf{z}_t[\text{write}(t)]} \\ \hline \textbf{U}_{t-1}(\textbf{D}_f - \underbrace{f(\textbf{z}_{t-1}[\text{read}(t)])}_{\textbf{z}_t[\text{write}(t)]} \\ \hline \textbf{U}_{t-1}(\textbf{D}_f - \underbrace{f(\textbf{z}_{t-1}[\text{read}(t)])}_{\textbf{z}_t[\text{write}(t)]} \\ \hline \textbf{U}_{t-1}(\textbf{U}_f - \underbrace{f(\textbf{z}_{t-1}[\text{verd}(t)])}_{\textbf{z}_t[\text{write}(t)]} \\ \hline \textbf{U}_{t-1}(\textbf{U}_f - \underbrace{f(\textbf{u}_t)}_{\textbf{z}_t[\text{write}(t)]} \\ \hline \textbf{U}_{t-1}(\textbf{U}_t - \underbrace{f(\textbf{u}_t)}_{\textbf{z}_t[\text{write}(t)}_{\textbf{z}_t]} \\ \hline \textbf{U}_{t-1}(\textbf{U}_t - \underline{f(\textbf{u}_t)}_{\textbf{z}_t[\text{write}(t)]} \\ \hline \textbf{U}_{t-1}(\textbf{U}_t - \underline{f(\textbf{u}$$

$$\begin{array}{c|c} \hline \textbf{Warm-Up Construction} \\ \hline \textbf{Step } t \\ \hline \textbf{computation} \\ \hline \tilde{\textbf{C}}_{t-1} \coloneqq \textbf{S}_{t-1} \textbf{A}_0 - \text{diag}(\textbf{z}_{t-1}) \cdot \textbf{S}_{t-1} \textbf{G} \\ \hline \tilde{\textbf{C}}_{t-1}[\text{read}(t)] \\ \hline \textbf{U}_{t-1}[\text{read}(t)] \\ \hline \textbf{U}_{t-1}(\textbf{D} - \textbf{z}_{t-1}[\text{read}(t)] \otimes \textbf{G}) \\ \hline \textbf{S}_{t-1}(\textbf{D}_{t-1} - \textbf{f}(\textbf{z}_{t-1}[\text{read}(t)]) \otimes \textbf{G}) \\ \hline \textbf{S}_{t}[\text{write}(t)] \\ \hline \textbf{S}_{t}[\text{write}(t)] \\ \hline \textbf{C}_{t}[\text{write}(t)] \\ \hline \textbf{C}_{t}[\text{write}(t)] \\ \hline \textbf{C}_{t} = \textbf{S}_{t}\textbf{A}_{0} - \text{diag}(\textbf{z}_{t}) \cdot \textbf{S}_{t}\textbf{G} \end{array} \right)$$

Can we set $\mathbf{S}_0 = \mathbf{S}_1 = \cdots = \mathbf{S}_T$?

Can we set $\mathbf{S}_0 = \mathbf{S}_1 = \cdots = \mathbf{S}_T$?

 $\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{A}}_0-\mathsf{diag}(\boldsymbol{\mathsf{z}}_0)\cdot\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{G}},\quad \boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{A}}_0-\mathsf{diag}(\boldsymbol{\mathsf{z}}_1)\cdot\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{G}}$

 \implies it leaks partial information about ${f S}_0$ whenever ${f z}_0
eq {f z}_1$

Can we set $\mathbf{S}_0 = \mathbf{S}_1 = \cdots = \mathbf{S}_T$?

 $\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{A}}_0-\mathsf{diag}(\boldsymbol{\mathsf{z}}_0)\cdot\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{G}},\quad \boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{A}}_0-\mathsf{diag}(\boldsymbol{\mathsf{z}}_1)\cdot\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{G}}$

 \implies it leaks partial information about ${f S}_0$ whenever ${f z}_0
eq {f z}_1$

Instead, we use fresh randomness for

 $\mathbf{S}_1[U_1], \mathbf{S}_2[U_2], \ldots, \mathbf{S}_T[U_T]$

for some sets U_1, U_2, \ldots, U_T .

Can we set $\mathbf{S}_0 = \mathbf{S}_1 = \cdots = \mathbf{S}_T$?

 $\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{A}}_0-\mathsf{diag}(\boldsymbol{\mathsf{z}}_0)\cdot\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{G}},\quad \boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{A}}_0-\mathsf{diag}(\boldsymbol{\mathsf{z}}_1)\cdot\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{G}}$

 \implies it leaks partial information about ${f S}_0$ whenever ${f z}_0
eq {f z}_1$

Instead, we use fresh randomness for

 $\mathbf{S}_1[U_1], \mathbf{S}_2[U_2], \ldots, \mathbf{S}_T[U_T]$

for some sets U_1, U_2, \ldots, U_T . Need $|U_i| = O(L)$ for efficiency

Can we set $\mathbf{S}_0 = \mathbf{S}_1 = \cdots = \mathbf{S}_T$?

 $\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{A}}_0-\mathsf{diag}(\boldsymbol{\mathsf{z}}_0)\cdot\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{G}},\quad \boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{A}}_0-\mathsf{diag}(\boldsymbol{\mathsf{z}}_1)\cdot\boldsymbol{\mathsf{S}}_0\boldsymbol{\mathsf{G}}$

 \implies it leaks partial information about **S**₀ whenever $z_0 \neq z_1$ X

Instead, we use fresh randomness for

 $U_t\coloneqq \mathsf{write}(t)\cup\mathsf{read}(t)$

 $\mathbf{S}_1[U_1], \mathbf{S}_2[U_2], \ldots, \mathbf{S}_T[U_T]$

for some sets U_1, U_2, \ldots, U_T . Need $|U_i| = O(L)$ for efficiency

security under evasive LWE?

security under evasive LWE?

need to show that all the intermediate quantities computed during decryption are jointly pseudorandom

security under evasive LWE?

need to show that all the intermediate quantities computed during decryption are jointly pseudorandom LWE

security under evasive LWE? Mhat about noise-growth?

Security

need to show that all the intermediate quantities computed during security under evasive LWE? decryption are jointly pseudorandom IWF What about noise-growth? techniques from [HseihLinLuo23] to handle unbounded depth computation need to use their circular-secure variant of evasive LWE

Security

 construction gets modified accordingly (need to add circular encryptions)

Conclusion

New Encoding and Recoding Techniques

- New Encoding and Recoding Techniques
- ▶ New ABE for Turing Machines with better efficiency

- New Encoding and Recoding Techniques
- New ABE for Turing Machines with better efficiency
- Improving assumption? [AgrawalModiYadavYamada25]

- New Encoding and Recoding Techniques
- New ABE for Turing Machines with better efficiency
- Improving assumption? [AgrawalModiYadavYamada25]
- Other applications?

- New Encoding and Recoding Techniques
- New ABE for Turing Machines with better efficiency
- Improving assumption? [AgrawalModiYadavYamada25]
- Other applications?

Thank you!