Faster ABE for Turing Machines

from Circular Evasive LWE

Valerio Cini Hoeteck Wee

Bocconi (©) NTTResearch

Attribute-Based Encryption [SahaiWaters05]

Attribute-Based Encryption [SahaiWaters05]

(1%, F)— Setup

Attribute-Based Encryption [SahaiWaters05]

class description F

(17, F)—

Setup

1/11

Attribute-Based Encryption [SahaiWaters05]

o arithmetic circuits
class description F, e.g.

(1%, F)— Setup

1/11

Attribute-Based Encryption [SahaiWaters05]

o arithmetic circuits
class description F, e.g.) _
Turing machines

(1%, F)— Setup

1/11

Attribute-Based Encryption [SahaiWaters05]

arithmetic circuits
Turing machines

class description F, e.g. {

(1)‘,.7:')% Setup —— msk

mpk

1/11

Attribute-Based Encryption [SahaiWaters05]

o arithmetic circuits
class description F, e.g. _ _
Turing machines

(1)‘,.7:')% Setup —— msk

mpk

message /i, input/attribute x, time bound T € N

Enc

—— Cly

T

1/11

Attribute-Based Encryption [SahaiWaters05]

arithmetic circuits M ¢ F

class description F, e.g. { _ .
Turing machines J

(1%, F)— Setup —— msk ——1 KeyGen —— sky

mpk Enc —— cix

T

message /i, input/attribute x, time bound T € N

1/11

Attribute-Based Encryption [SahaiWaters05]

class description F, e.g. {

arithmetic circuits
Turing machines

(1%, F)— Setup

Me F

J

—— msk ——

mpk

KeyGen —— sk

|

Dec— M
[iff M(x, T) =0

Enc

—— Cly

T

message /i, input/attribute x, time bound T € N

1/11

ABE for Turing Machines

[AgrawalKumariYamada24]
- |et| = O(T?)
- 1sk| = O(IMP)

- from Circular Evasive LWE [HLL23] + Tensor LWE [w22]

2/11

ABE for Turing Machines

Our Results
- |ct| = O(T) and Time(Enc) = O(T)
- |sk| = O(1) and Time(KeyGen) = O(|M|)

- from Circular Evasive LWE [HLL23] —I—W

2/11

ABE for Turing Machines

Our Results
- |ct| = O(T) and Time(Enc) = O(T)
- |sk| = O(1) and Time(KeyGen) = O(|M|)

- from Circular Evasive LWE [HLL23] —I—W

new encoding and techniques to switch b/w them

2/11

Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

s(A—-z®G) =[s(A; — z1G)|...|s(A; — zG)]

3/11

Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit

3/11

Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

s(A—-z®G) =[s(A; — z1G)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

3/11

Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

this work : dual encodings of z € {0,1}¢

3/11

Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

this work : dual encodings of z € {0,1}¢

SA, — diag(z) - SG = [s1(Ag — z1G) \\ ... \\ s¢(A¢ — z/G)]

3/11

Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

this work : dual encodings of z € {0,1}¢
SA, — diag(z) - SG = [s,(Ag — 2G)\\ ...\ 5:(Ao — 2G)

VoA = 0(1)

3/11

Attribute Encodings

BonehGentryGorbunovHaleviNikolaenko7 . + : ¢
[SegevVaikuntanathanVinayagamurthy14} : BGG encodmgs of z € {07 1}

S(A—2z®G) = [s(A; — zG)|...|s(A; — zG)]

v/ homomorphically evaluate any circuit X |A| = O(|z|)

this work : dual encodings of z € {0,1}¢
SA, — diag(z) - SG = [s,(Ag — 2G)\\ ...\ 5:(Ao — 2G)

X only support projections V' Al = 0(1)

3/11

Recoding of Attribute Encodings

_ — dual encoding for (global) work tape
Main ldea: _ _
— BGG™ encodings for (local) computation

4/11

Recoding of Attribute Encodings

_ — dual encoding for (global) work tape
Main ldea: _ _
— BGG™ encodings for (local) computation

how to switch between
the two types of encodings?

4/11

Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

4/11

Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

(C,C') = (SB,SW + S'G)
K+« B (AG (W) - WG '(A}))

4/11

Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B,W ¢ mpk
(C,C') = (SB,SW + S'G) YV EmP

K<+ B '(AG (W) - WG (A))

4/11

Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B, W € mpk
ciphertext (C,C') = (SB,SW + S'G) Ve mp

K<+ B '(AG (W) - WG (A))

4/11

Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B, W € mpk
ciphertext (C,C') = (SB,SW + S'G) Ve mp

secret key K+« B (AG (W) - WG '(A}))

4/11

Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B.W € mpk
ciphertext (C,C') = (SB,SW + S'G) Ve mp

secret key K+« B (AG (W) - WG '(A}))

(C,C")| = O(|z]) +— linear in size of attribute / depend on S, S’
K| = O(1) <— constant size / independent

4/11

Recoding of Attribute Encodings

dual encoding of z under S, Ag dual encoding of z under S/, A

z, SA, — diag(z) - SG = —— B’Ag — diag(z) - S'G

B.W € mpk
ciphertext (C,C') = (SB,SW + S'G) Ve mp

secret key K+« B (AG (W) - WG '(A}))

similar results hold
} } . : } for all other
|ciphertext component| «<— linear in size of attribute | possible recodings
1) dual-to-dual
k . 2) BGG'-to-dual
|key component| «— constant size 3) dual-to-BGG

4/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T

f:{0,1}* — {0,1}*, read,write : [T] — (f) L<S<T

5/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T
f:{0,1}* — {0,1}*, read,write : [T] — (i) L<S<T

» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

5/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T
S
f:{0,1}* — {0,1}*, read,write : [T] — <L> L<S<T
» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

zy = x||0°~*

5/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T
S
f:{0,1}* — {0,1}*, read,write : [T] — <L> L<S<T
» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

zo=x||0°" = ... = z

5/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T
S
f:{0,1}* — {0,1}*, read,write : [T] — <L> L<S<T
» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

{zt[write(t)] = z,_1[write(t)]

zo=x|]|0°f = ... 5z, =

5/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T
f:{0,1}* — {0,1}*, read,write : [T] — (i) L<S<T

» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

z;[write(t)] = z;_1[write(t)]

20 = x||[05¢ 5 -+ 3 7, = _
10775 = = {zt[wrlte(t)] = f(z¢-1[read(t)])

5/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T
f:{0,1}* — {0,1}*, read,write : [T] — (i) L<S<T

» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

B ~) z¢[write(t)] = z;_1[write(t)] iy g
zo=x|]|0°f = ... 5z, = {zt[write(t)] _ (2, 1[read(£)]) — s = 2Z7

5/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T
f:{0,1}* — {0,1}*, read,write : [T] — (i) L<S<T

» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

z:[write(t)] = z;_1[write(t)] iz

20 = x||[05¢ 5 -+ 3 7, = _
10775 = = {zt[wrlte(t)] = f(z¢-1[read(t)])

It captures Oblivious TM with 25-1 states and alphabet {0,1}

5/11

lterated Computation

ABE for lterated Computation with locality L, space S, and time T
f:{0,1}* — {0,1}*, read,write : [T] — (i) L<S<T

» z, € {0,1}°, t =0,1,..., T, denotes the work tape at step t

z;[write(t)] = z;_1[write(t)]

2 [write(D)] = F(zeafread(n)]) T

zo—x|05£—>---—>zt—{

It captures Oblivious TM with 25-1 states and alphabet {0,1}

Arbitrary TM with O(log T) overhead [PippengerFischer79]

5/11

Roadmap to final scheme

Decryption invariant: S.A, — diag(z;) - S;G

6/11

Roadmap to final scheme

Decryption invariant: S.A, — diag(z;) - S;G
So,S1,...,St Gngn A Gngm

associated with ciphertext associated with secret key

6/11

Roadmap to final scheme

Decryption invariant: S.A, — diag(z;) - S;G
S X
So,S1,...,St Gqun A GZQ m
A - 7 v
associated with ciphertext associated with secret key

» warm-up: all S; are independent, secure but quadratic size/time

6/11

Roadmap to final scheme

Decryption invariant: S.A, — diag(z;) - S;G
S X
So,S1,...,St Gqun A GZQ m
A - 7 v
associated with ciphertext associated with secret key

» warm-up: all S; are independent, secure but quadratic size/time

» attempt 1: all S; are the same, linear time but insecure

6/11

Roadmap to final scheme

Decryption invariant: S.A, — diag(z;) - S;G
S X
So,S1,...,St Gqun A GZQ m
A - 7 v
associated with ciphertext associated with secret key

» warm-up: all S; are independent, secure but quadratic size/time

» attempt 1: all S; are the same, linear time but insecure

» final: each S; fresh random in U;, with |U;| = O(L).

6/11

Warm-Up Construction

step t —~ . .
computation Ct—l = St—lAO - dlag(zt—l) : St—lG

Ct = StAO — diag(zt) . StG

7/11

Warm-Up Construction

step t

computation / ét—l = St—lAO - diag(zt—l) : St—lG \
C;_1[read(t)] C._1[write(t)]

Ct = StAO — diag(zt) . StG

7/11

Warm-Up Construction

corr?;?ﬁcal:tion / ét—l = St—lAO - diag(zt—l) : St—lG \
C;_1[read(t)] C._1[write(t)]
C[write(t)] C[write(t)]
\ Ct = StAO — diag(zt) . StG /

7/11

Warm-Up Construction

step t

computation / ét—l = St—lAO - diag(zt—l) : St—lG \

C;_1[read(t)] C._1[write(t)]
ldual—to—BGGJr
s, 1(D —z;_1[read(t)] ® G)

C[write(t)] C[write(t)]
(z;) - S:G —

7/11

Warm-Up Construction

step t

computation / ét—l = St—lAO - diag(zt—l) : St—lG \

C;_1[read(t)] C;_1[write(1)]
ldual—to—BGGJr
s, 1(D —z;_1[read(t)] ® G)
lBGGJr homomorphic computation
s, (Df — f(zt_l[read(t)]Z@)G)

z[write(t)]

C[write(t)] C[write(t)]
T C, =S,A, — diag(z;) - S:G —

7/11

Warm-Up Construction

step t

computation / ét—l = St—lAO - diag(zt—l) : St—lG \

C;_1[read(t)] C;_1[write(1)]
ldual—to—BGGJr
s, 1(D —z;_1[read(t)] ® G)
lBGGJr homomorphic computation
s, (Df — f(zt_l[read(t)]Z@)G)
2 [write()]

) 1 BGG*-to-dual .
C:[write(t)] C[write(t)]

\ Ct = StAO — diag(zt) . StG /

7/11

Warm-Up Construction

step t

computation / ét—l = St—lAO - diag(zt—l) : St—lG \

C,_1[read(t)] C,_1[write(t)]
ldual—to—BGGJr
s, (D — z;_1[read(t)] ® G)
lBGGJr homomorphic computation d“é'ééﬁ'aﬂéa'
s, 1(Df— f(zt_l[read(t)]Z@)G)

z;[write(t)]
) 1 BGG™-to-dual)
C:[write(t)] C[write(t)]

\ Ct = StAO — diag(zt) . StG /

7/11

Warm-Up Construction

corr?;?ﬁcal:tion / ét—l = St—lAO - diag(zt—l) : St—lG \
C;_1[read(t)] C._1[write(t)]
ldual—to—BGGJr
s;_1(D — z¢1[read(t)] ® G) S:_1[write(t)]
lBGGJr homomorphic computation [dual—t(oi—_dual
recoding
s._1(Df — F(z:1[read(1)])) R
 foee(o)] S;[write(t)]
) I BGG*-to-dual .
C:[write(t)] C[write(t)]

\ Ct = StAO — diag(zt) . StG /

7/11

Warm-Up Construction

step t

computation / ét—l = St—lAO - diag(zt—l) : St—lG \

P [40\

» attribute size: L
» 2 recodings

» 1 BGG™ evaluation
s

o

ciphertext: O(L)
secret key: O(1)

hic computation

\-thVl ILC\L}J

C._1[write(t)]

S;_1[write(t)]
|
S;[write(t)]
C[write(t)]

\ Ct = StAO — diag(zt) . StG /

7/11

Warm-Up Construction

step t
computation

P [40\

S

o

» attribute size: L
» 2 recodings
» 1 BGG' evaluation

ciphertext: O(L)
secret key: O(1)

hic computati

\-thVl ILC\L}J

_— Ci 1 :=S; 1A — diag(z;-1) - S;-1G N

Pl [71

» attribute size: S — L
» 1 recoding

ciphertext: O(S — L)
secret key: O(1)

\.—thVI ILC\L}J

\ Ct = StAO — diag(zt) . StG /

7/11

Warm-Up Construction

step t

computation

Pa

_— Ci 1 :=S; 1A — diag(z;-1) - S;-1G N

[MYAAN

S

o

» attribute size: L
» 2 recodings
» 1 BGG' evaluation |hic computati

ciphertext: O(L)
secret key: O(1)

Pl [71

» attribute size: S — L
» 1 recoding

ciphertext: O(S — L)
secret key: O(1)

A"

over T computation steps {

ciphertext: O(S- T)
secret key: O(1)

7/11

Improving Efficiency (1/2)

Canweset S =S =---=577

8/11

Improving Efficiency (1/2)

Canweset Sg=S;=---=S5+7
SoAO — diag(zo) . SoG, Svo — diag(zl) : SOG

— it leaks partial information about Sy whenever zy # z; X

8/11

Improving Efficiency (1/2)

Canweset Sg=S;=---=S5+7
SoAO — diag(zo) . SoG, Svo — diag(zl) : SOG

— it leaks partial information about Sy whenever zy # z; X

Instead, we use fresh randomness for
S1[U1], So[Us], . . ., S7[UT]

for some sets Uy, Us, ..., Ut.

8/11

Improving Efficiency (1/2)

Canweset Sg=S;=---=S5+7
SoAO — diag(zo) . SoG, Svo — diag(zl) : SOG

— it leaks partial information about Sy whenever zy # z; X

Instead, we use fresh randomness for
S1[U1], So[Us], . . ., S7[UT]

for some sets Uy, U, ..., Ur. Need |U;| = O(L) for efficiency

8/11

Improving Efficiency (1/2)

Canweset Sg=S;=---=S5+7
SoAO — diag(zo) . SoG, Svo — diag(zl) : SOG

— it leaks partial information about Sy whenever zy # z; X

Instead, we use fresh randomness for Uy = write(t) U read(t)

S1[U1], So[Us], . . ., S7[UT]
for some sets Uy, U, ..., Ur. Need |U;| = O(L) for efficiency

8/11

Improving Efficiency (2/2)

before: Now:
C._1[write(t)] C._1[write(t)]
dual-to-dual
recoding

C[write(t)] C[write(t)]

9/11

Improving Efficiency (2/2)

before: now:
C._1[write(t)] C._1[write(t)]
C._1[write(t) N read(t)] C._1[write(t) U read(t)]
dual-to-dual
recoding

C[write(t)] C[write(t)]

Improving Efficiency (2/2)

before: now:
C._1[write(t)] C._1[write(t)]
C._1[write(t) N read(t)] C._1[write(t) U read(t)]
oding write(t) N U;

C[write(t)] C[write(t)]

Improving Efficiency (2/2)

before: NOW:

C._1[write(t)] C._1[write(t)]
— T
C._1[write(t) N read(t)] C._1[write(t) U read(t)]

dual-to-dual dual-to-dual
recoding recoding

C[write(t) N read(t)]

C[write(t)] C[write(t)]

Improving Efficiency (2/2)

before: NOW:

C._1[write(t)] C._1[write(t)]

— T

C._1[write(t) N read(t)] C._1[write(t) U read(t)]

duaticdua e | change
C[write(t) N read(t)] C[write(t) U read(t)]

C[write(t)] C[write(t)]

Improving Efficiency (2/2)

before: NOW:

C._1[write(t)] C._1[write(t)]

— T

C._1[write(t) N read(t)] C._1[write(t) U read(t)]

duaticdua e | change
C[write(t) N read(t)] C[write(t) U read(t)]

\ /

C[write(t)] C[write(t)]

Improving Efficiency (2/2)

before: NOW:

C._1[write(t)] C._1[write(t)]

— T

C._1[write(t) N read(t)] C._1[write(t) U read(t)]

dual-tz—_dual . ‘
recoding » attribute size: < L

» 1 recoding

ciphertext: O(L)
C.[write secret key: O(1)

9/11

Improving Efficiency (2/2)

before: NOW:

C._1[write(t)] C._1[write(t)]

— T

C._1[write(t) N read(t)] C._1[write(t) U read(t)]

dual-tz—_dual . ‘
recoding » attribute size: < L

» 1 recoding

ciphertext: O(L)
C.[write secret key: O(1)

over T steps

ciphertext: O(S+L-T)
secret key: O(1)

9/11

Security

» security under evasive LWE?

10/11

Security

need to show that all the

» security under evasive LWE? intermediate quantities computed during
decryption are jointly pseudorandom

10/11

Security

need to show that all the

» security under evasive LWE? intermediate quantities computed during
decryption are jointly pseudorandom

i
LWE

10/11

Security

need to show that all the

» security under evasive LWE? intermediate quantities computed during
decryption are jointly pseudorandom

)

What about noise-growth? LWE

10/11

Security

need to show that all the

» security under evasive LWE? intermediate quantities computed during
decryption are jointly pseudorandom

)

What about noise-growth? LWE

U
techniques from [HseihLinLuo23|

to handle unbounded depth computation

10/11

Security

need to show that all the

» security under evasive LWE? intermediate quantities computed during
decryption are jointly pseudorandom

)

What about noise-growth? LWE

\
techniques from [HseihLinLuo23|
to handle unbounded depth computation

4

need to use their circular-secure variant of evasive LWE

10/11

Security

need to show that all the

» security under evasive LWE? intermediate quantities computed during
decryption are jointly pseudorandom

)

What about noise-growth? LWE

\
techniques from [HseihLinLuo23|
to handle unbounded depth computation

4

need to use their circular-secure variant of evasive LWE

» construction gets modified accordingly
(need to add circular encryptions)

10/11

Conclusion

» New Encoding and Recoding Techniques

11/11

Conclusion

» New Encoding and Recoding Techniques

» New ABE for Turing Machines with better efficiency

11/11

Conclusion

» New Encoding and Recoding Techniques
» New ABE for Turing Machines with better efficiency

» Improving assumption? [AgrawalModiYadavYamada25]

11/11

Conclusion

» New Encoding and Recoding Techniques
» New ABE for Turing Machines with better efficiency
» Improving assumption? [AgrawalModiYadavYamada25]

» Other applications?

11/11

Conclusion

» New Encoding and Recoding Techniques
» New ABE for Turing Machines with better efficiency
» Improving assumption? [AgrawalModiYadavYamada25]

» Other applications?

Thank youl!

/11

