
Faster ABE for Turing Machines
from Circular Evasive LWE

Valerio Cini Hoeteck Wee

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup msk KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F

, e.g.

{
arithmetic circuits

Turing machines

1 / 11

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup

msk KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F

, e.g.

{
arithmetic circuits

Turing machines

1 / 11

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup

msk KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F

, e.g.

{
arithmetic circuits

Turing machines

1 / 11

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup

msk KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F , e.g.

{
arithmetic circuits

Turing machines

1 / 11

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup

msk KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F , e.g.

{
arithmetic circuits

Turing machines

1 / 11

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup msk

KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F , e.g.

{
arithmetic circuits

Turing machines

1 / 11

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup msk

KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F , e.g.

{
arithmetic circuits

Turing machines

1 / 11

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup msk KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F , e.g.

{
arithmetic circuits

Turing machines

1 / 11

Attribute-Based Encryption [SahaiWaters05]

(1λ,F) Setup msk KeyGen skM

mpk

M ∈ F

Enc

message µ, input/attribute x, time bound T ∈ N

ctx

Dec µ

iff M(x,T) = 0

class description F , e.g.

{
arithmetic circuits

Turing machines

1 / 11

ABE for Turing Machines

[AgrawalKumariYamada24]

- |ct| = O(T 2)

- |sk| = O(|M |2)

- from Circular Evasive LWE [HLL23] + Tensor LWE [W22]

new encoding and techniques to switch b/w them

2 / 11

ABE for Turing Machines

Our Results

- |ct| = O(T) and Time(Enc) = O(T)

- |sk| = O(1) and Time(KeyGen) = O(|M |)

- from Circular Evasive LWE [HLL23] +
((((((((((((hhhhhhhhhhhh
Tensor LWE [W22]

new encoding and techniques to switch b/w them

2 / 11

ABE for Turing Machines

Our Results

- |ct| = O(T) and Time(Enc) = O(T)

- |sk| = O(1) and Time(KeyGen) = O(|M |)

- from Circular Evasive LWE [HLL23] +
((((((((((((hhhhhhhhhhhh
Tensor LWE [W22]

new encoding and techniques to switch b/w them

2 / 11

Attribute Encodings[
BonehGentryGorbunovHaleviNikolaenko
SegevVaikuntanathanVinayagamurthy14

]
: BGG+ encodings of z ∈ {0, 1}ℓ

s(A− z⊗ G) = [s(A1 − z1G)| . . . |s(Aℓ − zℓG)]

homomorphically evaluate any circuit

|A| = O(|z|)

this work : dual encodings of z ∈ {0, 1}ℓ

SA0 − diag(z) · SG = [s1(A0 − z1G) \\ . . . \\ sℓ(A0 − zℓG)]

only support projections

|A0| = O(1)

3 / 11

Attribute Encodings[
BonehGentryGorbunovHaleviNikolaenko
SegevVaikuntanathanVinayagamurthy14

]
: BGG+ encodings of z ∈ {0, 1}ℓ

s(A− z⊗ G) = [s(A1 − z1G)| . . . |s(Aℓ − zℓG)]

homomorphically evaluate any circuit

|A| = O(|z|)

this work : dual encodings of z ∈ {0, 1}ℓ

SA0 − diag(z) · SG = [s1(A0 − z1G) \\ . . . \\ sℓ(A0 − zℓG)]

only support projections

|A0| = O(1)

3 / 11

Attribute Encodings[
BonehGentryGorbunovHaleviNikolaenko
SegevVaikuntanathanVinayagamurthy14

]
: BGG+ encodings of z ∈ {0, 1}ℓ

s(A− z⊗ G) = [s(A1 − z1G)| . . . |s(Aℓ − zℓG)]

homomorphically evaluate any circuit |A| = O(|z|)

this work : dual encodings of z ∈ {0, 1}ℓ

SA0 − diag(z) · SG = [s1(A0 − z1G) \\ . . . \\ sℓ(A0 − zℓG)]

only support projections

|A0| = O(1)

3 / 11

Attribute Encodings[
BonehGentryGorbunovHaleviNikolaenko
SegevVaikuntanathanVinayagamurthy14

]
: BGG+ encodings of z ∈ {0, 1}ℓ

s(A− z⊗ G) = [s(A1 − z1G)| . . . |s(Aℓ − zℓG)]

homomorphically evaluate any circuit |A| = O(|z|)

this work : dual encodings of z ∈ {0, 1}ℓ

SA0 − diag(z) · SG = [s1(A0 − z1G) \\ . . . \\ sℓ(A0 − zℓG)]

only support projections

|A0| = O(1)

3 / 11

Attribute Encodings[
BonehGentryGorbunovHaleviNikolaenko
SegevVaikuntanathanVinayagamurthy14

]
: BGG+ encodings of z ∈ {0, 1}ℓ

s(A− z⊗ G) = [s(A1 − z1G)| . . . |s(Aℓ − zℓG)]

homomorphically evaluate any circuit |A| = O(|z|)

this work : dual encodings of z ∈ {0, 1}ℓ

SA0 − diag(z) · SG = [s1(A0 − z1G) \\ . . . \\ sℓ(A0 − zℓG)]

only support projections

|A0| = O(1)

3 / 11

Attribute Encodings[
BonehGentryGorbunovHaleviNikolaenko
SegevVaikuntanathanVinayagamurthy14

]
: BGG+ encodings of z ∈ {0, 1}ℓ

s(A− z⊗ G) = [s(A1 − z1G)| . . . |s(Aℓ − zℓG)]

homomorphically evaluate any circuit |A| = O(|z|)

this work : dual encodings of z ∈ {0, 1}ℓ

SA0 − diag(z) · SG = [s1(A0 − z1G) \\ . . . \\ sℓ(A0 − zℓG)]

only support projections

|A0| = O(1)

3 / 11

Attribute Encodings[
BonehGentryGorbunovHaleviNikolaenko
SegevVaikuntanathanVinayagamurthy14

]
: BGG+ encodings of z ∈ {0, 1}ℓ

s(A− z⊗ G) = [s(A1 − z1G)| . . . |s(Aℓ − zℓG)]

homomorphically evaluate any circuit |A| = O(|z|)

this work : dual encodings of z ∈ {0, 1}ℓ

SA0 − diag(z) · SG = [s1(A0 − z1G) \\ . . . \\ sℓ(A0 − zℓG)]

only support projections |A0| = O(1)

3 / 11

Recoding of Attribute Encodings

Main Idea:
– dual encoding for (global) work tape

– BGG+ encodings for (local) computation

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Recoding of Attribute Encodings

Main Idea:
– dual encoding for (global) work tape

– BGG+ encodings for (local) computation

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Recoding of Attribute Encodings

z,

dual encoding of z under S,A0︷ ︸︸ ︷
SA0 − diag(z) · SG −−−→

dual encoding of z under S′,A′
0︷ ︸︸ ︷

S′A′0 − diag(z) · S′G

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Recoding of Attribute Encodings

z,

dual encoding of z under S,A0︷ ︸︸ ︷
SA0 − diag(z) · SG −−−→

dual encoding of z under S′,A′
0︷ ︸︸ ︷

S′A′0 − diag(z) · S′G

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)

B,W ∈ mpk
ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Recoding of Attribute Encodings

z,

dual encoding of z under S,A0︷ ︸︸ ︷
SA0 − diag(z) · SG −−−→

dual encoding of z under S′,A′
0︷ ︸︸ ︷

S′A′0 − diag(z) · S′G

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Recoding of Attribute Encodings

z,

dual encoding of z under S,A0︷ ︸︸ ︷
SA0 − diag(z) · SG −−−→

dual encoding of z under S′,A′
0︷ ︸︸ ︷

S′A′0 − diag(z) · S′G

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Recoding of Attribute Encodings

z,

dual encoding of z under S,A0︷ ︸︸ ︷
SA0 − diag(z) · SG −−−→

dual encoding of z under S′,A′
0︷ ︸︸ ︷

S′A′0 − diag(z) · S′G

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Recoding of Attribute Encodings

z,

dual encoding of z under S,A0︷ ︸︸ ︷
SA0 − diag(z) · SG −−−→

dual encoding of z under S′,A′
0︷ ︸︸ ︷

S′A′0 − diag(z) · S′G

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|

ciphertext component

| ←− linear in size of attribute

|

key component

| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Recoding of Attribute Encodings

z,

dual encoding of z under S,A0︷ ︸︸ ︷
SA0 − diag(z) · SG −−−→

dual encoding of z under S′,A′
0︷ ︸︸ ︷

S′A′0 − diag(z) · S′G

how to switch between
the two types of encodings?

(C,C′) = (SB,SW + S′G)

K← B−1
(
A0G

−1(W)−WG−1(A′0)
)B,W ∈ mpk

ciphertext

secret key

similar results hold
for all other

possible recodings
1) dual-to-dual
2) BGG+-to-dual
3) dual-to-BGG+

|(C,C′)| = O(|z|)

|K| = O(1)

|ciphertext component| ←− linear in size of attribute

|key component| ←− constant size

←− linear in size of attribute / depend on S,S′

←− constant size / independent

4 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])

→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])

→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ

→ · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])

→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt

=

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])

→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])
→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])

→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])
→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])
→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Iterated Computation
ABE for Iterated Computation with locality L, space S , and time T

f : {0, 1}L −→ {0, 1}L, read,write : [T] −→
(
S

L

)
, L≪ S ≤ T

▶ zt ∈ {0, 1}S , t = 0, 1, . . . ,T , denotes the work tape at step t

z0 = x||0S−ℓ → · · · → zt =

{
zt[write(t)] = zt−1[write(t)]

zt[write(t)] = f (zt−1[read(t)])
→ · · · → zT

It captures Oblivious TM with 2L−1 states and alphabet {0, 1}

Arbitrary TM with O(logT) overhead [PippengerFischer79]

5 / 11

Roadmap to final scheme

Decryption invariant: StA0 − diag(zt) · StG

S0,S1, . . . ,ST︸ ︷︷ ︸
associated with ciphertext

∈ ZS×n
q A0︸︷︷︸

associated with secret key

∈ Zn×m
q

▶ warm-up: all St are independent, secure but quadratic size/time

▶ attempt 1: all St are the same, linear time but insecure

▶ final: each St fresh random in Ut , with |Ut | = O(L).

6 / 11

Roadmap to final scheme

Decryption invariant: StA0 − diag(zt) · StG

S0,S1, . . . ,ST︸ ︷︷ ︸
associated with ciphertext

∈ ZS×n
q A0︸︷︷︸

associated with secret key

∈ Zn×m
q

▶ warm-up: all St are independent, secure but quadratic size/time

▶ attempt 1: all St are the same, linear time but insecure

▶ final: each St fresh random in Ut , with |Ut | = O(L).

6 / 11

Roadmap to final scheme

Decryption invariant: StA0 − diag(zt) · StG

S0,S1, . . . ,ST︸ ︷︷ ︸
associated with ciphertext

∈ ZS×n
q A0︸︷︷︸

associated with secret key

∈ Zn×m
q

▶ warm-up: all St are independent, secure but quadratic size/time

▶ attempt 1: all St are the same, linear time but insecure

▶ final: each St fresh random in Ut , with |Ut | = O(L).

6 / 11

Roadmap to final scheme

Decryption invariant: StA0 − diag(zt) · StG

S0,S1, . . . ,ST︸ ︷︷ ︸
associated with ciphertext

∈ ZS×n
q A0︸︷︷︸

associated with secret key

∈ Zn×m
q

▶ warm-up: all St are independent, secure but quadratic size/time

▶ attempt 1: all St are the same, linear time but insecure

▶ final: each St fresh random in Ut , with |Ut | = O(L).

6 / 11

Roadmap to final scheme

Decryption invariant: StA0 − diag(zt) · StG

S0,S1, . . . ,ST︸ ︷︷ ︸
associated with ciphertext

∈ ZS×n
q A0︸︷︷︸

associated with secret key

∈ Zn×m
q

▶ warm-up: all St are independent, secure but quadratic size/time

▶ attempt 1: all St are the same, linear time but insecure

▶ final: each St fresh random in Ut , with |Ut | = O(L).

6 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)

7 / 11

Warm-Up Construction
C̃t−1 := St−1A0 − diag(zt−1) · St−1G

step t
computation

C̃t−1[read(t)]

s′t−1(D− zt−1[read(t)]⊗ G)

s′t−1(Df − f (zt−1[read(t)])︸ ︷︷ ︸
zt [write(t)]

⊗G)

C̃t [write(t)]

C̃t−1[write(t)]

C̃t[write(t)]

C̃t := StA0 − diag(zt) · StG

dual-to-dual
recoding

St−1[write(t)]

St [write(t)]

dual-to-BGG+

BGG+ homomorphic computation

BGG+-to-dual

▶ attribute size: L

▶ 2 recodings

▶ 1 BGG+ evaluation

ciphertext: O(L)
secret key: O(1)

▶ attribute size: S − L

▶ 1 recoding

ciphertext: O(S − L)
secret key: O(1)

over T computation steps

{
ciphertext: O(S · T)

secret key: O(1)
7 / 11

Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT]

for some sets U1,U2, . . . ,UT . Need |Ui | = O(L) for efficiency

8 / 11

Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT]

for some sets U1,U2, . . . ,UT . Need |Ui | = O(L) for efficiency

8 / 11

Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for

Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT]

for some sets U1,U2, . . . ,UT .

Need |Ui | = O(L) for efficiency

8 / 11

Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for

Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT]

for some sets U1,U2, . . . ,UT . Need |Ui | = O(L) for efficiency

8 / 11

Improving Efficiency (1/2)

Can we set S0 = S1 = · · · = ST?

S0A0 − diag(z0) · S0G, S0A0 − diag(z1) · S0G

=⇒ it leaks partial information about S0 whenever z0 ̸= z1

Instead, we use fresh randomness for Ut := write(t) ∪ read(t)

S1[U1],S2[U2], . . . ,ST [UT]

for some sets U1,U2, . . . ,UT . Need |Ui | = O(L) for efficiency

8 / 11

Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)] C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding unchangedwrite(t) ∩ Ut▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T)
secret key: O(1)

9 / 11

Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)] C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding unchangedwrite(t) ∩ Ut▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T)
secret key: O(1)

9 / 11

Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)] C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding unchanged

write(t) ∩ Ut

▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T)
secret key: O(1)

9 / 11

Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)]

C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding

unchangedwrite(t) ∩ Ut▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T)
secret key: O(1)

9 / 11

Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)] C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding unchanged

write(t) ∩ Ut▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T)
secret key: O(1)

9 / 11

Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)] C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding unchanged

write(t) ∩ Ut▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T)
secret key: O(1)

9 / 11

Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)] C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding unchanged

write(t) ∩ Ut

▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T)
secret key: O(1)

9 / 11

Improving Efficiency (2/2)
before: now:

C̃t−1[write(t)] C̃t−1[write(t)]

C̃t−1[write(t) ∩ read(t)] C̃t−1[write(t) ∪ read(t)]

C̃t[write(t) ∩ read(t)] C̃t [write(t) ∪ read(t)]

C̃t[write(t)]C̃t [write(t)]

dual-to-dual
recoding

dual-to-dual
recoding unchanged

write(t) ∩ Ut

▶ attribute size: ≤ L

▶ 1 recoding

ciphertext: O(L)
secret key: O(1)

over T steps

ciphertext: O(S + L · T)
secret key: O(1)

9 / 11

Security

▶ security under evasive LWE?

need to show that all the
intermediate quantities computed during
decryption are jointly pseudorandom

⇑
LWE

What about noise-growth?

techniques from [HseihLinLuo23]
to handle unbounded depth computation

⇓

⇓
need to use their circular-secure variant of evasive LWE

▶ construction gets modified accordingly
(need to add circular encryptions)

10 / 11

Security

▶ security under evasive LWE?

need to show that all the
intermediate quantities computed during
decryption are jointly pseudorandom

⇑
LWEWhat about noise-growth?

techniques from [HseihLinLuo23]
to handle unbounded depth computation

⇓

⇓
need to use their circular-secure variant of evasive LWE

▶ construction gets modified accordingly
(need to add circular encryptions)

10 / 11

Security

▶ security under evasive LWE?

need to show that all the
intermediate quantities computed during
decryption are jointly pseudorandom

⇑
LWE

What about noise-growth?

techniques from [HseihLinLuo23]
to handle unbounded depth computation

⇓

⇓
need to use their circular-secure variant of evasive LWE

▶ construction gets modified accordingly
(need to add circular encryptions)

10 / 11

Security

▶ security under evasive LWE?

need to show that all the
intermediate quantities computed during
decryption are jointly pseudorandom

⇑
LWEWhat about noise-growth?

techniques from [HseihLinLuo23]
to handle unbounded depth computation

⇓

⇓
need to use their circular-secure variant of evasive LWE

▶ construction gets modified accordingly
(need to add circular encryptions)

10 / 11

Security

▶ security under evasive LWE?

need to show that all the
intermediate quantities computed during
decryption are jointly pseudorandom

⇑
LWEWhat about noise-growth?

techniques from [HseihLinLuo23]
to handle unbounded depth computation

⇓

⇓
need to use their circular-secure variant of evasive LWE

▶ construction gets modified accordingly
(need to add circular encryptions)

10 / 11

Security

▶ security under evasive LWE?

need to show that all the
intermediate quantities computed during
decryption are jointly pseudorandom

⇑
LWEWhat about noise-growth?

techniques from [HseihLinLuo23]
to handle unbounded depth computation

⇓

⇓
need to use their circular-secure variant of evasive LWE

▶ construction gets modified accordingly
(need to add circular encryptions)

10 / 11

Security

▶ security under evasive LWE?

need to show that all the
intermediate quantities computed during
decryption are jointly pseudorandom

⇑
LWEWhat about noise-growth?

techniques from [HseihLinLuo23]
to handle unbounded depth computation

⇓

⇓
need to use their circular-secure variant of evasive LWE

▶ construction gets modified accordingly
(need to add circular encryptions)

10 / 11

Conclusion

▶ New Encoding and Recoding Techniques

▶ New ABE for Turing Machines with better efficiency

▶ Improving assumption? [AgrawalModiYadavYamada25]

▶ Other applications?

Thank you!

11 / 11

Conclusion

▶ New Encoding and Recoding Techniques

▶ New ABE for Turing Machines with better efficiency

▶ Improving assumption? [AgrawalModiYadavYamada25]

▶ Other applications?

Thank you!

11 / 11

Conclusion

▶ New Encoding and Recoding Techniques

▶ New ABE for Turing Machines with better efficiency

▶ Improving assumption? [AgrawalModiYadavYamada25]

▶ Other applications?

Thank you!

11 / 11

Conclusion

▶ New Encoding and Recoding Techniques

▶ New ABE for Turing Machines with better efficiency

▶ Improving assumption? [AgrawalModiYadavYamada25]

▶ Other applications?

Thank you!

11 / 11

Conclusion

▶ New Encoding and Recoding Techniques

▶ New ABE for Turing Machines with better efficiency

▶ Improving assumption? [AgrawalModiYadavYamada25]

▶ Other applications?

Thank you!

11 / 11

