
zkSNARKs for Virtual Machines
are Non-Malleable

Matteo Campanelli, Antonio Faonio, Luigi Russo

Malleability in Cryptography

”Efficiently transforming a
cryptographic object into a
new valid one”

Métamorphose de Narcisse, Salvador Dalí (1937)

2

The double face of Malleability

3

The double face of Malleability: (zk)SNARKs

4

The previous talk This talk

Proofs of program execution

P(x ,w) = y

Input: P, x, w Input: P, y

Output: accept/reject

5

 π

P

zkSNARK
- Zero-knowledge
- Non-Interactive
- Succinct
- Knowledge-sound

zkSNARKs: frontends and backends

6

C++, Rust, Java R1CS, Plonkish,CCS

Frontend
Converts program to
a mathematical IR

Backend
Proves that the IR is satisfied

π

Groth16, Plonk, Spartan

7

Frontend: zkVM

8

Universal Circuit

x y

Frontend: zkVM

9

Universal Circuit

x y+ Auditing and formal verification on one circuit

+ Re-use existing languages and tooling

Frontend: zkVM

10

Universal Circuit

x y+ Auditing and formal verification on one circuit

+ Re-use existing languages and tooling

zkVM
Frontend: zkVM

Applications & Use Cases

Generic
- Proof of solvency
- Image provenance
- Content moderation

Blockchain-related
- Private transactions
- Private smart contracts
- ZK-Rollups

11

Applications & Use Cases

Generic
- Proof of solvency
- Image provenance
- Content moderation

Blockchain-related
- Private transactions
- Private smart contracts
- ZK-Rollups

12

Can old proofs be useful to the adversary?

Malleability of zkSNARKs

Malleability attack

Modify an existing proof into a new

proof without knowing the witness

13

Input: π, P Input: P

Output: accept/reject

π*π

Malleability of zkSNARKs

Malleability attack

Modify an existing proof into a new

proof without knowing the witness

14

Input: π, P Input: P

Output: accept/reject

π*π

Not ruled out by zero-knowledge

and knowledge soundness

15

x*,π*

x
π

Non-Malleability of zkSNARKs

16

x*,π*

x
π

Non-Malleability of zkSNARKs

= Simulation Extractability

Non-Malleability of existing zkSNARKs

Bulletproofs
Spartan

Sonic
PLONK
Marlin
Lunar

Basilisk
HyperPlonk

[GOP+22][GKK+22][DG23][FFK+23][KPT23][Lib24]

17

✓ ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

The complexity of a zkVM

18

A universal circuit is large
It must be able to execute any operation at
each step, e.g. RISC-V has 50 operations

19

It’s not only about instructions
The zkSNARK-Prover proves that:
- The memory is consistent throughout

the entire computation
- The fetch and decode are correctly

executed

RAM

PC Registers

The complexity of a zkVM

A universal circuit is large
It must be able to execute any operation at
each step, e.g. RISC-V has 50 operations

20

Our Results

 A “natural” (and truly zero-knowledge) zkVM, inspired by Jolt1

 A framework for the non-malleability of “composable” zkSNARKs2

21

Our Results

 A “natural” (and truly zero-knowledge) zkVM, inspired by Jolt1

 A framework for the non-malleability of “composable” zkSNARKs2

Joltish: a modular zkVM

22

- Many zkVM’s designs are modular (it’s just natural)
- Jolt [AST24] is the first zkVM based on the lookup-singularity
- Our Joltish: inspired by Jolt, but not quite Jolt

zkVM
SNARK for

Memory Checking,
Fetch/Decode, …

SNARK for
CPU instructions

23

zk Jolt from Joltish

SNARK for
CPU instructions

zkVM
SNARK for
Memory
Checking

SNARK for
Fetch/

Decode

24

RAM

PC Registers

… RAM

PC Registers

w

Joltish: a modular zkVM

SNARK for
Memory Checking,
Fetch/Decode, …

SNARK for
CPU instructions

zkVM

25

What are the conditions for the non-malleability of Joltish?

Joltish: a modular zkVM

zkVM
SNARK for

Memory Checking,
Fetch/Decode, …

SNARK for
CPU instructions

26

Lego-ish

Joltish

From Joltish to -

Lego-ish: a modular zkSNARK

27

zkSNARK #N

What are the conditions for the non-malleability of
 modular zkSNARKs?

zkSNARK #2zkSNARK #1 …

Non-Malleability challenges

28

SNARK #2SNARK #1

29

Copy & Paste attacks
Composition of non-malleable SNARKs may be malleable

Non-Malleability challenges

SNARK #2SNARK #1

30

Our Results

 A “natural” (and truly zero-knowledge) zkVM, inspired by Jolt1

 A framework for the non-malleability of “composable” zkSNARKs2

Commit-and-Prove Relations

31

A commit-and-prove relation (c, x; w) in R iff:
- P(x,w) = 1
- c = Commit(w)

Commit-and-Prove Relations

32

A commit-and-prove relation (c, x; w) in R iff:
- P(x,w) = 1
- c = Commit(w)

Conjunction of R1 and R2 with shared witness w:
- Instance (c, x1, x2)
- P1(x1, w) = 1 AND P2(x2, w) = 1 AND c = Commit(w)

When is Conjunction Non-Malleable?

33

2 (slightly different) Non-Malleable Compositions

SNARK #2SNARK #1

When is Conjunction Non-Malleable? (1)

34

SNARK #2SNARK #1

If SNARK #1 AND SNARK #2 are both:

Trapdoorless zero-knowledge and non-malleable

When is Conjunction Non-Malleable? (2)

35

SNARK #2SNARK #1

- SNARK #1 is witness-indistinguishable,
 efficient witness-computable (easy to find w for x1)

- SNARK #2 is Trapdoorless zero-knowledge, non-malleable SoK

On the Non-Malleability of Joltish

36

zkVM
SNARK for

Memory Checking,
Fetch/Decode, …

SNARK for
CPU instructions

- Witness-indistinguishable SNARK for Memory Checking, Fetch/Decode, …

On the Non-Malleability of Joltish

37

zkVM
SNARK for

Memory Checking,
Fetch/Decode, …

SNARK for
CPU instructions

- Witness-indistinguishable SNARK for Memory Checking, Fetch/Decode, …

- Non-Malleable zkSNARK for CPU instructions

On the Non-Malleability of Joltish

38

- Statement: (P,x,y) s.t. P(x)=y on RISC-V architecture.
- ZK-Simulator for (P,x,y) s.t. P(x)=y’≠ y on RISC-V architecture

1) Hack the instructions set s.t. P(x)=y
2) Run P(x)=y on hacked architecture to obtain program trace W
3) W good trace for (P,x,y) for SNARK#1 => Run Prover#1
4) W not good witness for P(x)=y for SNARK#2 => Simulated Proof

39

zkVM
SNARK for

Memory Checking,
Fetch/Decode, …

(Indexed)
Lookup Argument

- Witness-indistinguishable SNARK for Memory Checking, Fetch/Decode, …

- Non-Malleable Lookup Argument

The Lookup Singularity based zkVM

Lookup Arguments

- Lookup Arguments prove that committed vector F is sub-vector of big table T

- |F| << |T|

- prover complexity is proportional to |F|

40

Lookup Arguments

- Lookup Arguments prove that committed vector F is sub-vector of big table T

- |F| << |T|

- prover complexity is proportional to |F|

- Lookup Argument in Jolt is Lasso [STW24]

- It can handle very big table as big as truth tables of all RISC-V instructions

41

zk-Lasso

- Define a zero-knowledge version of Lasso

- Prove Sim-Extractability: based on the framework of [FKMV12]

(Trapdoorless ZK + Unique Response + Special Soundness => Sim Ext)

- We extend and improve over [DG23]
- (Lasso is based on Spartan)

42

Future Work

- Non-Malleability w/o simulation extractability?

- Non-Malleability for composition of Reduction-of-Knowledge: very natural!

- Non-Malleability of other Lookup Arguments?

43

Thank you
ia.cr/2024/1551

http://ia.cr/2024/1551

References

[AST24] Arasu Arun, Srinath Setty, Justin Thaler. Jolt: SNARKs for Virtual Machines via Lookups.
EUROCRYPT 2024

[DG23] Quang Dao and Paul Grubbs. Spartan and bulletproofs are simulation-extractable (for
free!). EUROCRYPT 2023

[FFK+23] Antonio Faonio, Dario Fiore, Markulf Kohlweiss, Luigi Russo, and Michal Zajac. From
polynomial IOP and commitments to non-malleable zkSNARKs. TCC 2023

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On
the Non-malleability of the Fiat-Shamir Transform. INDOCRYPT 2012

45

[GKK+22] Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Nitulescu, and
Michal Zajac. What makes fiat-shamir zksnarks (updatable SRS) simulation extractable? SCN
2022

[GOP+22] Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi.
Fiat-shamir bulletproofs are non-malleable (in the algebraic group model). EUROCRYPT 2022

[KPT23] Markulf Kohlweiss, Mahak Pancholi, and Akira Takahashi. How to compile polynomial IOP
into simulation-extractable SNARKs: A modular approach. TCC 2023

[Lib24] Benoit Libert. Simulation-Extractable KZG Polynomial Commitments and Applications to
HyperPlonk. PKC 2024

[STW24] Srinath Setty, Justin Thaler, Riad Wahby. Unlocking the lookup singularity with Lasso.
EUROCRYPT 2024

46

Credits

All images used in this presentation are being used for educational
purposes in accordance with the principles of fair use. The copyright of
these images remains with their respective owners. No infringement is
intended.

47

