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Malleability in Cryptography

”Efficiently transforming a 
cryptographic object into a 
new valid one”

Métamorphose de Narcisse, Salvador Dalí (1937)
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The double face of Malleability
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The double face of Malleability: (zk)SNARKs
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The previous talk This talk



Proofs of program execution

P(x ,w) = y

Input: P, x, w Input: P, y

Output: accept/reject
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 π

P

zkSNARK
- Zero-knowledge
- Non-Interactive
- Succinct
- Knowledge-sound



zkSNARKs: frontends and backends
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C++, Rust, Java R1CS, Plonkish,CCS

Frontend
Converts program to 
a mathematical IR

Backend
Proves that the IR is satisfied

π

Groth16, Plonk, Spartan
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Frontend: zkVM
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Universal Circuit

x y

Frontend: zkVM
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Universal Circuit

x y+ Auditing and formal verification on one circuit

+ Re-use existing languages and tooling

Frontend: zkVM
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Universal Circuit

x y+ Auditing and formal verification on one circuit

+ Re-use existing languages and tooling

zkVM
Frontend: zkVM



Applications & Use Cases

Generic
- Proof of solvency
- Image provenance
- Content moderation

Blockchain-related
- Private transactions
- Private smart contracts
- ZK-Rollups
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Can old proofs be useful to the adversary?



Malleability of zkSNARKs

Malleability attack

Modify an existing proof into a new 

proof without knowing the witness
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Input: π, P Input: P

Output: accept/reject

π*π



Malleability of zkSNARKs

Malleability attack

Modify an existing proof into a new 

proof without knowing the witness
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Input: π, P Input: P

Output: accept/reject

π*π

Not ruled out by zero-knowledge

and knowledge soundness
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x*,π*

x
π

Non-Malleability of zkSNARKs
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x*,π*

x
π

Non-Malleability of zkSNARKs

= Simulation Extractability



Non-Malleability of existing zkSNARKs

Bulletproofs
Spartan

Sonic 
PLONK
Marlin
Lunar

Basilisk
HyperPlonk

[GOP+22][GKK+22][DG23][FFK+23][KPT23][Lib24]
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✓ ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓
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The complexity of a zkVM
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A universal circuit is large
It must be able to execute any operation at 
each step, e.g. RISC-V has 50 operations



19

It’s not only about instructions
The zkSNARK-Prover proves that:
- The memory is consistent throughout 

the entire computation 
- The fetch and decode are correctly 

executed

RAM

PC Registers

The complexity of a zkVM

A universal circuit is large
It must be able to execute any operation at 
each step, e.g. RISC-V has 50 operations
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Our Results

  A “natural” (and truly zero-knowledge) zkVM, inspired by Jolt1

  A framework for the non-malleability of “composable” zkSNARKs2
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Our Results
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Joltish: a modular zkVM
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- Many zkVM’s designs are modular (it’s just natural)
- Jolt [AST24] is the first zkVM based on the lookup-singularity
- Our Joltish: inspired by Jolt, but not quite Jolt

zkVM
SNARK for

Memory Checking, 
Fetch/Decode, …

SNARK for
CPU instructions
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zk Jolt from Joltish

SNARK for
CPU instructions

zkVM
SNARK for
Memory 
Checking

SNARK for
Fetch/

Decode
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RAM

PC Registers

… RAM

PC Registers

w

Joltish: a modular zkVM

SNARK for
Memory Checking, 
Fetch/Decode, …

SNARK for
CPU instructions

zkVM
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What are the conditions for the non-malleability of Joltish?

Joltish: a modular zkVM

zkVM
SNARK for

Memory Checking, 
Fetch/Decode, …

SNARK for
CPU instructions
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Lego-ish

Joltish

From Joltish to                           -



Lego-ish: a modular zkSNARK
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zkSNARK #N

What are the conditions for the non-malleability of
 modular zkSNARKs?

zkSNARK #2zkSNARK #1 …



Non-Malleability challenges
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SNARK #2SNARK #1
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Copy & Paste attacks
Composition of non-malleable SNARKs may be malleable

Non-Malleability challenges

SNARK #2SNARK #1
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Our Results

  A “natural” (and truly zero-knowledge) zkVM, inspired by Jolt1

  A framework for the non-malleability of “composable” zkSNARKs2



Commit-and-Prove Relations

31

A commit-and-prove relation (c, x; w) in R iff: 
- P(x,w) = 1 
- c = Commit(w) 



Commit-and-Prove Relations
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A commit-and-prove relation (c, x; w) in R iff: 
- P(x,w) = 1 
- c = Commit(w) 

Conjunction of R1 and R2 with shared witness w:
- Instance (c, x1, x2)
- P1(x1, w) = 1 AND P2(x2, w) = 1 AND c = Commit(w)



When is Conjunction Non-Malleable?
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2 (slightly different) Non-Malleable Compositions

SNARK #2SNARK #1



When is Conjunction Non-Malleable? (1)
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SNARK #2SNARK #1

If SNARK #1 AND SNARK #2 are both:

Trapdoorless zero-knowledge and non-malleable 



When is Conjunction Non-Malleable? (2)
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SNARK #2SNARK #1

- SNARK #1 is witness-indistinguishable, 
                      efficient witness-computable (easy to find w for x1)

- SNARK #2 is Trapdoorless zero-knowledge, non-malleable SoK



On the Non-Malleability of Joltish
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zkVM
SNARK for

Memory Checking, 
Fetch/Decode, …

SNARK for
CPU instructions

- Witness-indistinguishable SNARK for Memory Checking, Fetch/Decode, …



On the Non-Malleability of Joltish
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zkVM
SNARK for

Memory Checking, 
Fetch/Decode, …

SNARK for
CPU instructions

- Witness-indistinguishable SNARK for Memory Checking, Fetch/Decode, …

- Non-Malleable zkSNARK for CPU instructions



On the Non-Malleability of Joltish
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- Statement: (P,x,y) s.t. P(x)=y on RISC-V architecture.
- ZK-Simulator for (P,x,y) s.t. P(x)=y’≠ y on RISC-V architecture 

1) Hack the instructions set s.t. P(x)=y
2) Run P(x)=y on hacked architecture to obtain program trace W
3) W good trace for (P,x,y) for SNARK#1  => Run Prover#1 
4) W not good witness for P(x)=y for SNARK#2 => Simulated Proof
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zkVM
SNARK for

Memory Checking, 
Fetch/Decode, …

(Indexed)
Lookup Argument

- Witness-indistinguishable SNARK for Memory Checking, Fetch/Decode, …

- Non-Malleable Lookup Argument

The Lookup Singularity based zkVM



Lookup Arguments

- Lookup Arguments prove that committed vector F is sub-vector of big table T 

- |F| << |T|

- prover complexity is proportional to |F|
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Lookup Arguments

- Lookup Arguments prove that committed vector F is sub-vector of big table T 

- |F| << |T|

- prover complexity is proportional to |F|

- Lookup Argument in Jolt is Lasso [STW24]

- It can handle very big table as big as truth tables of all RISC-V instructions
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zk-Lasso

- Define a zero-knowledge version of Lasso

- Prove Sim-Extractability: based on the framework of [FKMV12]

(Trapdoorless ZK + Unique Response + Special Soundness => Sim Ext)

- We extend and improve over  [DG23]
- (Lasso is based on Spartan)
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Future Work

- Non-Malleability w/o simulation extractability?

- Non-Malleability for composition of Reduction-of-Knowledge: very natural!

- Non-Malleability of other Lookup Arguments?
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Thank you
ia.cr/2024/1551

http://ia.cr/2024/1551
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