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Authenticated Encryption and Committing Security

[DGRW18]

[LGR21]

[ADG+22]

6=

CMT(-3/4) [CR22, BH22]

(K,N,AD,M) (K ′, N ′, AD′,M ′)

C

Previous work:

• popular and deployed AE schemes not committing:
AES-GCM, OCB, ChaCha20/Poly1305, etc.
[GLR17, DGRW18, LGR21, ADG+22]

• dedicated modifications (e.g., [BH22])

• generic transforms (e.g., [ADG+22, BH22, BCC+24])
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Our Motivation

• Existing generic transforms have one of the following
shortcomings:

1 not committing to the entire encryption context
(i.e., the whole (K,N,AD,M) tuple)

2 involving non-standard primitives

3 not a black-box transform

4 provide limited committing security

For example:

CommitKeyΠ [ADG+22]

only key-committing

SIV [BCC+24]

key-committing MAC

CTX [CR22]

“tag-based” AE

PACT/comPACT [BBD24]

committing tag
from blockcipher

⇒ Investigate how to achieve committing AE using
black-box generic transforms with standard primitives

Context commitment naming stems from [MLGR23].
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Choosing Building Blocks

(Authenticated) Encryption

• look at both plain privacy-only encryption
(E) and authenticated encryption (AE)
schemes

→ crypto-agility

Hash Functions

• to achieve CMT-secure AE: idealized
assumption, like ideal cipher or random oracle
model is currently unavoidable (for practical
instantiations)

• we opt-out for hash functions (and random oracle

model):

known and widely deployed primitive

easily gives us committing property (collision
resistance)

CMT security can easily be increased by
taking longer digest
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Our Transforms: HtAE

HtAE
(Hash-then-AE)

NK ADM

TC

H

AE.Enc

• HtAE rekeys underlying AE for every encryption query

costly, but still similar performance in comparison

to existing transforms that rekey internally
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Our Transforms: AEaH

AEaH
(AE-and-Hash)

K N ADM

TC

HAE.Enc

• AEaH is fully parallelizable
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Our Transforms: EtH

EtH
(Encrypt-then-Hash)

K N ADM

TC

H

E.Enc

• Encryption primitive E only privacy-secure, but can also be AE

crypto-agility
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Security Results
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• Our HtAE, AEaH and EtH transforms are:

privacy, authenticity and CMT-secure
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(Encryption) Performance Evaluation

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

7x

8x

9x
HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

wolfSSL v5.7.0

Message length in bytes

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• recommendation: use AEaH if you aim for efficiency, and EtH if you have short messages and/or only

access to E.

• here our (parallelizable) AEaH is implemented sequentially; dedicated implementation would perform

even better

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 10
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What if ...

... a nonce repeats in the encryption?
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What if a Nonce Repeats in the Encryption?

AE.Enc

N AD M

C

AE.Dec

K key

N nonce

AD associated data

M message

C ciphertext

K K

≈

$

privacy

⊥M ∨

authenticity

N AD C

forgery

�

�
(nonce) misuse-resistant authenticated encryption

MRAE
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MRAE-Preserving Transform: AEtH

K N ADM

TC

H

AE.Enc

C|τ
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e

• Black-box generalization of CTX [CR22] (authors of [CR22] did not show MRAE security)

MRAE-secure AE + coll. res. H AEtH is MRAE- and CMT-secure
ROM
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MRAE-Preserving Transform: AEtH

K N ADM

TC

H

AE.Enc

C|τ

AEtH

al
re

ad
y

M
R

A
E

-s
ec

ur
e

• Black-box generalization of CTX [CR22] (authors of [CR22] did not show MRAE security)

MRAE-secure AE + coll. res. H AEtH is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 13
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MRAE-Lifting Transform: chaSIV
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(Encryption) Performance Evaluation: MRAE-secure Transforms
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Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• MRAE-preserving transforms: our AEtH (black-box generalization of CTX) performs the best

additionally: CTX decryption algorithm would need two passes using OpenSSL’s API, and would
even be impossible to implement in wolfSSL

• In wolfSSL: AEtH beats the benchmark AES-SIV for all message lengths

• In OpenSSL: AEtH beats the benchmark AES-GCM-SIV for long messages
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Takeaway

3 basic committing AE-secure transforms
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• easy to grasp and implement (standardized primitives)

• our transforms, implemented only with black-box primitives
from common cryptographic libraries, are very efficient

• hope: fast adoption of committing AEAD

• please contact us if you’re interested in our work

ePrint

many more details
(e.g. CDY security)

Code Artifact

IACR Results

Reproduced

Thanks!

Questions?
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Backup Slides

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 21



CMT and CDY Security Notions
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CTX vs. black-box generalization AEtH
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Performance Evaluation Details: AE-secure Transforms

• Implemented encryption algorithm of our transforms and existing transforms

HtE ◦ UtC [BH22], CTY [BH24], comPACT [BBD24]

that target the same (i.e., strongest) CMT security in OpenSSL and wolfSSL:

Use AES-GCM as AE in both libraries

Use AES-CTR as E in OpenSSL and AES-GCM as E in wolfSSL

Use truncated SHA-512 as H

• Performance measured as overhead over baseline (non-committing) AES-GCM speed.

Testing setup: Intel Core i5-8265U CPU (Skylake microarchitecture), with the base
frequency of 1.6GHz and the hyper-threading, frequency scaling and turbo mode
functionalities disabled
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Performance Evaluation Details: MRAE-secure Transforms

• Implemented encryption algorithm of our and existing MRAE-secure transforms

HtE ◦ RtC [BH22], CTX [CR22], PACT [BBD24]

that target the same (i.e., strongest) CMT security in OpenSSL and wolfSSL:

Use AES-GCM-SIV as AE in OpenSSL and AES-SIV in wolfSSL

Use AES-CTR as E in OpenSSL and AES-GCM as E in wolfSSL

Use truncated SHA-512 as H + plain AES as F

• Performance measured as overhead over baseline (non-committing) AES-GCM-SIV / AES-SIV
speed.

Testing setup: Intel Core i5-8265U CPU (Skylake microarchitecture), with the base
frequency of 1.6GHz and the hyper-threading, frequency scaling and turbo mode
functionalities disabled
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