
Eurocrypt 2025

Committing Authenticated Encryption:
Generic Transforms with Hash Functions

Shan Chen 1 Vukašin Karadžić 2

1 Southern University of Science and Technology, Shenzhen, China
2 Technische Universität Darmstadt, Germany



Authenticated Encryption and Committing Security

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 1



Authenticated Encryption

M ∨ ⊥

N AD C

AE.Enc

N AD M

C

AE.Dec

K key

N nonce

AD associated data

M message

C ciphertext

K K

K K

≈

$

privacy

⊥M ∨

authenticity

N AD C

forgery

�

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 2



Authenticated Encryption

M ∨ ⊥

N AD C

AE.Enc

N AD M

C

AE.Dec

K key

N nonce

AD associated data

M message

C ciphertext

K K

K K

≈

$

privacy

⊥M ∨

authenticity

N AD C

forgery

�

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 2



Authenticated Encryption

M ∨ ⊥

N AD C

AE.Enc

N AD M

C

AE.Dec

K key

N nonce

AD associated data

M message

C ciphertext

K K

K K

≈

$

privacy

⊥M ∨

authenticity

N AD C

forgery

�

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 2



Authenticated Encryption

M ∨ ⊥

N AD C

AE.Enc

N AD M

C

AE.Dec

K key

N nonce

AD associated data

M message

C ciphertext

K K

K K

≈

$

privacy

⊥M ∨

authenticity

N AD C

forgery

�

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 2



Authenticated Encryption and Committing Security

[DGRW18]

[LGR21]

[ADG+22]

6=

CMT(-3/4) [CR22, BH22]

(K,N,AD,M) (K ′, N ′, AD′,M ′)

C

Previous work:

• popular and deployed AE schemes not committing:
AES-GCM, OCB, ChaCha20/Poly1305, etc.
[GLR17, DGRW18, LGR21, ADG+22]

• dedicated modifications (e.g., [BH22])

• generic transforms (e.g., [ADG+22, BH22, BCC+24])

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 3



Authenticated Encryption and Committing Security

[DGRW18]

[LGR21]

[ADG+22]

6=

CMT(-3/4) [CR22, BH22]

(K,N,AD,M) (K ′, N ′, AD′,M ′)

C

Previous work:

• popular and deployed AE schemes not committing:
AES-GCM, OCB, ChaCha20/Poly1305, etc.
[GLR17, DGRW18, LGR21, ADG+22]

• dedicated modifications (e.g., [BH22])

• generic transforms (e.g., [ADG+22, BH22, BCC+24])

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 3



Authenticated Encryption and Committing Security

[DGRW18]

[LGR21]

[ADG+22]

6=

CMT(-3/4) [CR22, BH22]

(K,N,AD,M) (K ′, N ′, AD′,M ′)

C

Previous work:

• popular and deployed AE schemes not committing:
AES-GCM, OCB, ChaCha20/Poly1305, etc.
[GLR17, DGRW18, LGR21, ADG+22]

• dedicated modifications (e.g., [BH22])

• generic transforms (e.g., [ADG+22, BH22, BCC+24])

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 3



Authenticated Encryption and Committing Security

[DGRW18]

[LGR21]

[ADG+22]

6=

CMT(-3/4) [CR22, BH22]

(K,N,AD,M) (K ′, N ′, AD′,M ′)

C

Previous work:

• popular and deployed AE schemes not committing:
AES-GCM, OCB, ChaCha20/Poly1305, etc.
[GLR17, DGRW18, LGR21, ADG+22]

• dedicated modifications (e.g., [BH22])

• generic transforms (e.g., [ADG+22, BH22, BCC+24])

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 3



Authenticated Encryption and Committing Security

[DGRW18]

[LGR21]

[ADG+22]

6=

CMT(-3/4) [CR22, BH22]

(K,N,AD,M) (K ′, N ′, AD′,M ′)

C

Previous work:

• popular and deployed AE schemes not committing:
AES-GCM, OCB, ChaCha20/Poly1305, etc.
[GLR17, DGRW18, LGR21, ADG+22]

• dedicated modifications (e.g., [BH22])

• generic transforms (e.g., [ADG+22, BH22, BCC+24])

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 3



Authenticated Encryption and Committing Security

[DGRW18]

[LGR21]

[ADG+22]

6=

CMT(-3/4) [CR22, BH22]

(K,N,AD,M) (K ′, N ′, AD′,M ′)

C

Previous work:

• popular and deployed AE schemes not committing:
AES-GCM, OCB, ChaCha20/Poly1305, etc.
[GLR17, DGRW18, LGR21, ADG+22]

• dedicated modifications (e.g., [BH22])

• generic transforms (e.g., [ADG+22, BH22, BCC+24])

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 3



Authenticated Encryption and Committing Security

[DGRW18]

[LGR21]

[ADG+22]

6=

CMT(-3/4) [CR22, BH22]

(K,N,AD,M) (K ′, N ′, AD′,M ′)

C

Previous work:

• popular and deployed AE schemes not committing:
AES-GCM, OCB, ChaCha20/Poly1305, etc.
[GLR17, DGRW18, LGR21, ADG+22]

• dedicated modifications (e.g., [BH22])

• generic transforms (e.g., [ADG+22, BH22, BCC+24])

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 3



Our Motivation

• Existing generic transforms have one of the following
shortcomings:

1 not committing to the entire encryption context
(i.e., the whole (K,N,AD,M) tuple)

2 involving non-standard primitives

3 not a black-box transform

4 provide limited committing security

For example:

CommitKeyΠ [ADG+22]

only key-committing

SIV [BCC+24]

key-committing MAC

CTX [CR22]

“tag-based” AE

PACT/comPACT [BBD24]

committing tag
from blockcipher

⇒ Investigate how to achieve committing AE using
black-box generic transforms with standard primitives

Context commitment naming stems from [MLGR23].

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 4



Our Motivation

• Existing generic transforms have one of the following
shortcomings:

1 not committing to the entire encryption context
(i.e., the whole (K,N,AD,M) tuple)

2 involving non-standard primitives

3 not a black-box transform

4 provide limited committing security

For example:

CommitKeyΠ [ADG+22]

only key-committing

SIV [BCC+24]

key-committing MAC

CTX [CR22]

“tag-based” AE

PACT/comPACT [BBD24]

committing tag
from blockcipher

⇒ Investigate how to achieve committing AE using
black-box generic transforms with standard primitives

Context commitment naming stems from [MLGR23].

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 4



Our Motivation

• Existing generic transforms have one of the following
shortcomings:

1 not committing to the entire encryption context
(i.e., the whole (K,N,AD,M) tuple)

2 involving non-standard primitives

3 not a black-box transform

4 provide limited committing security

For example:

CommitKeyΠ [ADG+22]

only key-committing

SIV [BCC+24]

key-committing MAC

CTX [CR22]

“tag-based” AE

PACT/comPACT [BBD24]

committing tag
from blockcipher

⇒ Investigate how to achieve committing AE using
black-box generic transforms with standard primitives

Context commitment naming stems from [MLGR23].

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 4



Our Motivation

• Existing generic transforms have one of the following
shortcomings:

1 not committing to the entire encryption context
(i.e., the whole (K,N,AD,M) tuple)

2 involving non-standard primitives

3 not a black-box transform

4 provide limited committing security

For example:

CommitKeyΠ [ADG+22]

only key-committing

SIV [BCC+24]

key-committing MAC

CTX [CR22]

“tag-based” AE

PACT/comPACT [BBD24]

committing tag
from blockcipher

⇒ Investigate how to achieve committing AE using
black-box generic transforms with standard primitives

Context commitment naming stems from [MLGR23].

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 4



Our Motivation

• Existing generic transforms have one of the following
shortcomings:

1 not committing to the entire encryption context
(i.e., the whole (K,N,AD,M) tuple)

2 involving non-standard primitives

3 not a black-box transform

4 provide limited committing security

For example:

CommitKeyΠ [ADG+22]

only key-committing

SIV [BCC+24]

key-committing MAC

CTX [CR22]

“tag-based” AE

PACT/comPACT [BBD24]

committing tag
from blockcipher

⇒ Investigate how to achieve committing AE using
black-box generic transforms with standard primitives

Context commitment naming stems from [MLGR23].

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 4



Our Motivation

• Existing generic transforms have one of the following
shortcomings:

1 not committing to the entire encryption context
(i.e., the whole (K,N,AD,M) tuple)

2 involving non-standard primitives

3 not a black-box transform

4 provide limited committing security

For example:

CommitKeyΠ [ADG+22]

only key-committing

SIV [BCC+24]

key-committing MAC

CTX [CR22]

“tag-based” AE

PACT/comPACT [BBD24]

committing tag
from blockcipher

⇒ Investigate how to achieve committing AE using
black-box generic transforms with standard primitives

Context commitment naming stems from [MLGR23].

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 4



Choosing Building Blocks

(Authenticated) Encryption

• look at both plain privacy-only encryption
(E) and authenticated encryption (AE)
schemes

→ crypto-agility

Hash Functions

• to achieve CMT-secure AE: idealized
assumption, like ideal cipher or random oracle
model is currently unavoidable (for practical
instantiations)

• we opt-out for hash functions (and random oracle

model):

known and widely deployed primitive

easily gives us committing property (collision
resistance)

CMT security can easily be increased by
taking longer digest

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 5



Choosing Building Blocks

(Authenticated) Encryption

• look at both plain privacy-only encryption
(E) and authenticated encryption (AE)
schemes

→ crypto-agility

Hash Functions

• to achieve CMT-secure AE: idealized
assumption, like ideal cipher or random oracle
model is currently unavoidable (for practical
instantiations)

• we opt-out for hash functions (and random oracle

model):

known and widely deployed primitive

easily gives us committing property (collision
resistance)

CMT security can easily be increased by
taking longer digest

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 5



Choosing Building Blocks

(Authenticated) Encryption

• look at both plain privacy-only encryption
(E) and authenticated encryption (AE)
schemes

→ crypto-agility

Hash Functions

• to achieve CMT-secure AE: idealized
assumption, like ideal cipher or random oracle
model is currently unavoidable (for practical
instantiations)

• we opt-out for hash functions (and random oracle

model):

known and widely deployed primitive

easily gives us committing property (collision
resistance)

CMT security can easily be increased by
taking longer digest

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 5



Choosing Building Blocks

(Authenticated) Encryption

• look at both plain privacy-only encryption
(E) and authenticated encryption (AE)
schemes

→ crypto-agility

Hash Functions

• to achieve CMT-secure AE: idealized
assumption, like ideal cipher or random oracle
model is currently unavoidable (for practical
instantiations)

• we opt-out for hash functions (and random oracle

model):

known and widely deployed primitive

easily gives us committing property (collision
resistance)

CMT security can easily be increased by
taking longer digest

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 5



Choosing Building Blocks

(Authenticated) Encryption

• look at both plain privacy-only encryption
(E) and authenticated encryption (AE)
schemes

→ crypto-agility

Hash Functions

• to achieve CMT-secure AE: idealized
assumption, like ideal cipher or random oracle
model is currently unavoidable (for practical
instantiations)

• we opt-out for hash functions (and random oracle

model):

known and widely deployed primitive

easily gives us committing property (collision
resistance)

CMT security can easily be increased by
taking longer digest

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 5



Choosing Building Blocks

(Authenticated) Encryption

• look at both plain privacy-only encryption
(E) and authenticated encryption (AE)
schemes

→ crypto-agility

Hash Functions

• to achieve CMT-secure AE: idealized
assumption, like ideal cipher or random oracle
model is currently unavoidable (for practical
instantiations)

• we opt-out for hash functions (and random oracle

model):

known and widely deployed primitive

easily gives us committing property (collision
resistance)

CMT security can easily be increased by
taking longer digest

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 5



Our Transforms: HtAE

HtAE
(Hash-then-AE)

NK ADM

TC

H

AE.Enc

• HtAE rekeys underlying AE for every encryption query

costly, but still similar performance in comparison

to existing transforms that rekey internally

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 6



Our Transforms: HtAE

HtAE
(Hash-then-AE)

NK ADM

TC

H

AE.Enc

• HtAE rekeys underlying AE for every encryption query

costly, but still similar performance in comparison

to existing transforms that rekey internally

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 6



Our Transforms: HtAE

HtAE
(Hash-then-AE)

NK ADM

TC

H

AE.Enc

• HtAE rekeys underlying AE for every encryption query

costly, but still similar performance in comparison

to existing transforms that rekey internally

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 6



Our Transforms: AEaH

AEaH
(AE-and-Hash)

K N ADM

TC

HAE.Enc

• AEaH is fully parallelizable

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 7



Our Transforms: AEaH

AEaH
(AE-and-Hash)

K N ADM

TC

HAE.Enc

• AEaH is fully parallelizable

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 7



Our Transforms: EtH

EtH
(Encrypt-then-Hash)

K N ADM

TC

H

E.Enc

• Encryption primitive E only privacy-secure, but can also be AE

crypto-agility

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 8



Our Transforms: EtH

EtH
(Encrypt-then-Hash)

K N ADM

TC

H

E.Enc

• Encryption primitive E only privacy-secure

, but can also be AE

crypto-agility

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 8



Our Transforms: EtH

EtH
(Encrypt-then-Hash)

K N ADM

TC

H

E.Enc

• Encryption primitive E only privacy-secure, but can also be AE

crypto-agility

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 8



Our Transforms: EtH

EtH
(Encrypt-then-Hash)

K N ADM

TC

H

E.Enc

• Encryption primitive E only privacy-secure, but can also be AE

crypto-agility

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 8



Security Results

HtAE

NK ADM

TC

H

AE.Enc

AEaH

K N ADM

TC

HAE.Enc

EtH

K N ADM

TC

H

E.Enc

• Our HtAE, AEaH and EtH transforms are:

privacy, authenticity and CMT-secure

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 9



Security Results

HtAE

NK ADM

TC

H

AE.Enc

AEaH

K N ADM

TC

HAE.Enc

EtH

K N ADM

TC

H

E.Enc

• Our HtAE, AEaH and EtH transforms are:

privacy, authenticity and CMT-secure

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 9



(Encryption) Performance Evaluation

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

7x

8x

9x
HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

wolfSSL v5.7.0

Message length in bytes

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• recommendation: use AEaH if you aim for efficiency, and EtH if you have short messages and/or only

access to E.

• here our (parallelizable) AEaH is implemented sequentially; dedicated implementation would perform

even better

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 10



(Encryption) Performance Evaluation

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

7x

8x

9x
HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

wolfSSL v5.7.0

Message length in bytes

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• recommendation: use AEaH if you aim for efficiency, and EtH if you have short messages and/or only

access to E.

• here our (parallelizable) AEaH is implemented sequentially; dedicated implementation would perform

even better

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 10



(Encryption) Performance Evaluation

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

7x

8x

9x
HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

wolfSSL v5.7.0

Message length in bytes

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• recommendation: use AEaH if you aim for efficiency, and EtH if you have short messages and/or only

access to E.

• here our (parallelizable) AEaH is implemented sequentially; dedicated implementation would perform

even better

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 10



(Encryption) Performance Evaluation

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M

16 32 64 128 256 512 1024 2048

1x

2x

3x

4x

5x

6x

7x

8x

9x
HtE ◦ UtC [BH22]

HtAE [our work]

comPACT [BBD24]

AEaH [our work]

CTY [BH24]

EtH [our work]

wolfSSL v5.7.0

Message length in bytes

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• recommendation: use AEaH if you aim for efficiency, and EtH if you have short messages and/or only

access to E.

• here our (parallelizable) AEaH is implemented sequentially; dedicated implementation would perform

even better
06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 10



What if ...

... a nonce repeats in the encryption?

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 11



What if a Nonce Repeats in the Encryption?

AE.Enc

N AD M

C

AE.Dec

K key

N nonce

AD associated data

M message

C ciphertext

K K

≈

$

privacy

⊥M ∨

authenticity

N AD C

forgery

�

�
(nonce) misuse-resistant authenticated encryption

MRAE

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 12



What if a Nonce Repeats in the Encryption?

AE.Enc

N AD M

C

AE.Dec

K key

N nonce

AD associated data

M message

C ciphertext

K K

≈

$

privacy

⊥M ∨

authenticity

N AD C

forgery

�

�

(nonce) misuse-resistant authenticated encryption
MRAE

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 12



What if a Nonce Repeats in the Encryption?

AE.Enc

N AD M

C

AE.Dec

K key

N nonce

AD associated data

M message

C ciphertext

K K

≈

$

privacy

⊥M ∨

authenticity

N AD C

forgery

��

(nonce) misuse-resistant authenticated encryption
MRAE

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 12



MRAE-Preserving Transform: AEtH

K N ADM

TC

H

AE.Enc

C|τ

AEtH

al
re

ad
y

M
R

A
E

-s
ec

ur
e

• Black-box generalization of CTX [CR22] (authors of [CR22] did not show MRAE security)

MRAE-secure AE + coll. res. H AEtH is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 13



MRAE-Preserving Transform: AEtH

K N ADM

TC

H

AE.Enc

C|τ

AEtH

al
re

ad
y

M
R

A
E

-s
ec

ur
e

• Black-box generalization of CTX [CR22] (authors of [CR22] did not show MRAE security)

MRAE-secure AE + coll. res. H AEtH is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 13



MRAE-Preserving Transform: AEtH

K N ADM

TC

H

AE.Enc

C|τ

AEtH

al
re

ad
y

M
R

A
E

-s
ec

ur
e

• Black-box generalization of CTX [CR22] (authors of [CR22] did not show MRAE security)

MRAE-secure AE + coll. res. H AEtH is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 13



MRAE-Preserving Transform: AEtH

K N ADM

TC

H

AE.Enc

C|τ

AEtH

al
re

ad
y

M
R

A
E

-s
ec

ur
e

• Black-box generalization of CTX [CR22] (authors of [CR22] did not show MRAE security)

MRAE-secure AE + coll. res. H AEtH is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 13



MRAE-Lifting Transform: chaSIV

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

on
ly

pr
iv

ac
y-

se
cu

re

bu
t

ca
n

al
so

be
A

E

PRF

could
be

inst.
with

AES, so
no

new

prim
itive

im
plem

entation
is

needed

• committing hash-based SIV

• first generic transform that promotes plain E to committing MRAE-secure scheme

privacy-secure E+ coll. res. H+PRF F chaSIV is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 14



MRAE-Lifting Transform: chaSIV

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

on
ly

pr
iv

ac
y-

se
cu

re

bu
t

ca
n

al
so

be
A

E

PRF

could
be

inst.
with

AES, so
no

new

prim
itive

im
plem

entation
is

needed

• committing hash-based SIV

• first generic transform that promotes plain E to committing MRAE-secure scheme

privacy-secure E+ coll. res. H+PRF F chaSIV is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 14



MRAE-Lifting Transform: chaSIV

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

on
ly

pr
iv

ac
y-

se
cu

re

bu
t

ca
n

al
so

be
A

E

PRF

could
be

inst.
with

AES, so
no

new

prim
itive

im
plem

entation
is

needed

• committing hash-based SIV

• first generic transform that promotes plain E to committing MRAE-secure scheme

privacy-secure E+ coll. res. H+PRF F chaSIV is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 14



MRAE-Lifting Transform: chaSIV

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV
on

ly
pr

iv
ac

y-
se

cu
re

bu
t

ca
n

al
so

be
A

E

PRF

could
be

inst.
with

AES, so
no

new

prim
itive

im
plem

entation
is

needed

• committing hash-based SIV

• first generic transform that promotes plain E to committing MRAE-secure scheme

privacy-secure E+ coll. res. H+PRF F chaSIV is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 14



MRAE-Lifting Transform: chaSIV

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV
on

ly
pr

iv
ac

y-
se

cu
re

bu
t

ca
n

al
so

be
A

E
PRF

could
be

inst.
with

AES, so
no

new

prim
itive

im
plem

entation
is

needed

• committing hash-based SIV

• first generic transform that promotes plain E to committing MRAE-secure scheme

privacy-secure E+ coll. res. H+PRF F chaSIV is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 14



MRAE-Lifting Transform: chaSIV

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV
on

ly
pr

iv
ac

y-
se

cu
re

bu
t

ca
n

al
so

be
A

E
PRF

could
be

inst.
with

AES, so
no

new

prim
itive

im
plem

entation
is

needed

• committing hash-based SIV

• first generic transform that promotes plain E to committing MRAE-secure scheme

privacy-secure E+ coll. res. H+PRF F chaSIV is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 14



MRAE-Lifting Transform: chaSIV

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV
on

ly
pr

iv
ac

y-
se

cu
re

bu
t

ca
n

al
so

be
A

E
PRF

could
be

inst.
with

AES, so
no

new

prim
itive

im
plem

entation
is

needed

• committing hash-based SIV

• first generic transform that promotes plain E to committing MRAE-secure scheme

privacy-secure E+ coll. res. H+PRF F chaSIV is MRAE- and CMT-secure
ROM

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 14



(Encryption) Performance Evaluation: MRAE-secure Transforms

16 32 64 128 256 512 1024 2048

0x

1x

2x

3x

4x

HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M
-S

IV

16 32 64 128 256 512 1024 2048
-0.6x

-0.4x

-0.2x

0x

0.2x

0.4x

0.6x

0.8x
HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

wolfSSL v5.7.0

O
ve

rh
ea

d
ov

er
A

E
S

-S
IV

Message length in bytesMessage length in bytes

··

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• MRAE-preserving transforms: our AEtH (black-box generalization of CTX) performs the best

additionally: CTX decryption algorithm would need two passes using OpenSSL’s API, and would
even be impossible to implement in wolfSSL

• In wolfSSL: AEtH beats the benchmark AES-SIV for all message lengths

• In OpenSSL: AEtH beats the benchmark AES-GCM-SIV for long messages

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 15



(Encryption) Performance Evaluation: MRAE-secure Transforms

16 32 64 128 256 512 1024 2048

0x

1x

2x

3x

4x

HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M
-S

IV

16 32 64 128 256 512 1024 2048
-0.6x

-0.4x

-0.2x

0x

0.2x

0.4x

0.6x

0.8x
HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

wolfSSL v5.7.0

O
ve

rh
ea

d
ov

er
A

E
S

-S
IV

Message length in bytesMessage length in bytes

··

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• MRAE-preserving transforms: our AEtH (black-box generalization of CTX) performs the best

additionally: CTX decryption algorithm would need two passes using OpenSSL’s API, and would
even be impossible to implement in wolfSSL

• In wolfSSL: AEtH beats the benchmark AES-SIV for all message lengths

• In OpenSSL: AEtH beats the benchmark AES-GCM-SIV for long messages

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 15



(Encryption) Performance Evaluation: MRAE-secure Transforms

16 32 64 128 256 512 1024 2048

0x

1x

2x

3x

4x

HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M
-S

IV

16 32 64 128 256 512 1024 2048
-0.6x

-0.4x

-0.2x

0x

0.2x

0.4x

0.6x

0.8x
HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

wolfSSL v5.7.0

O
ve

rh
ea

d
ov

er
A

E
S

-S
IV

Message length in bytesMessage length in bytes

··

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• MRAE-preserving transforms: our AEtH (black-box generalization of CTX) performs the best

additionally: CTX decryption algorithm would need two passes using OpenSSL’s API, and would
even be impossible to implement in wolfSSL

• In wolfSSL: AEtH beats the benchmark AES-SIV for all message lengths

• In OpenSSL: AEtH beats the benchmark AES-GCM-SIV for long messages

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 15



(Encryption) Performance Evaluation: MRAE-secure Transforms

16 32 64 128 256 512 1024 2048

0x

1x

2x

3x

4x

HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M
-S

IV

16 32 64 128 256 512 1024 2048
-0.6x

-0.4x

-0.2x

0x

0.2x

0.4x

0.6x

0.8x
HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

wolfSSL v5.7.0

O
ve

rh
ea

d
ov

er
A

E
S

-S
IV

Message length in bytesMessage length in bytes

··

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• MRAE-preserving transforms: our AEtH (black-box generalization of CTX) performs the best

additionally: CTX decryption algorithm would need two passes using OpenSSL’s API, and would
even be impossible to implement in wolfSSL

• In wolfSSL: AEtH beats the benchmark AES-SIV for all message lengths

• In OpenSSL: AEtH beats the benchmark AES-GCM-SIV for long messages

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 15



(Encryption) Performance Evaluation: MRAE-secure Transforms

16 32 64 128 256 512 1024 2048

0x

1x

2x

3x

4x

HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M
-S

IV

16 32 64 128 256 512 1024 2048
-0.6x

-0.4x

-0.2x

0x

0.2x

0.4x

0.6x

0.8x
HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

wolfSSL v5.7.0

O
ve

rh
ea

d
ov

er
A

E
S

-S
IV

Message length in bytesMessage length in bytes
·

·

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• MRAE-preserving transforms: our AEtH (black-box generalization of CTX) performs the best

additionally: CTX decryption algorithm would need two passes using OpenSSL’s API, and would
even be impossible to implement in wolfSSL

• In wolfSSL: AEtH beats the benchmark AES-SIV for all message lengths

• In OpenSSL: AEtH beats the benchmark AES-GCM-SIV for long messages

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 15



(Encryption) Performance Evaluation: MRAE-secure Transforms

16 32 64 128 256 512 1024 2048

0x

1x

2x

3x

4x

HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

OpenSSL v3.3.2

O
ve

rh
ea

d
ov

er
A

E
S

-G
C

M
-S

IV

16 32 64 128 256 512 1024 2048
-0.6x

-0.4x

-0.2x

0x

0.2x

0.4x

0.6x

0.8x
HtE ◦ RtC [BH22]

PACT [BBD24]

chaSIV [our work]

AEtH [our work]

wolfSSL v5.7.0

O
ve

rh
ea

d
ov

er
A

E
S

-S
IV

Message length in bytesMessage length in bytes

·

·

Note: all transforms are implemented using only black-box primitive implementations of the underlying library

• MRAE-preserving transforms: our AEtH (black-box generalization of CTX) performs the best

additionally: CTX decryption algorithm would need two passes using OpenSSL’s API, and would
even be impossible to implement in wolfSSL

• In wolfSSL: AEtH beats the benchmark AES-SIV for all message lengths

• In OpenSSL: AEtH beats the benchmark AES-GCM-SIV for long messages

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 15



Takeaway

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 16



Takeaway

3 basic committing AE-secure transforms

NK ADM

TC

H

AE.Enc

HtAE

K N ADM

TC

HAE.Enc

AEaH

K N ADM

TC

H

E.Enc

EtH

2 advanced committing MRAE-secure transforms

K N ADM

TC

H

AE.Enc

C|τ

AEtH

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

• easy to grasp and implement (standardized primitives)

• our transforms, implemented only with black-box primitives
from common cryptographic libraries, are very efficient

• hope: fast adoption of committing AEAD

• please contact us if you’re interested in our work

ePrint

many more details
(e.g. CDY security)

Code Artifact

IACR Results

Reproduced

Thanks!

Questions?

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 17



Takeaway

3 basic committing AE-secure transforms

NK ADM

TC

H

AE.Enc

HtAE

K N ADM

TC

HAE.Enc

AEaH

K N ADM

TC

H

E.Enc

EtH

2 advanced committing MRAE-secure transforms

K N ADM

TC

H

AE.Enc

C|τ

AEtH

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

• easy to grasp and implement (standardized primitives)

• our transforms, implemented only with black-box primitives
from common cryptographic libraries, are very efficient

• hope: fast adoption of committing AEAD

• please contact us if you’re interested in our work

ePrint

many more details
(e.g. CDY security)

Code Artifact

IACR Results

Reproduced

Thanks!

Questions?

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 17



Takeaway

3 basic committing AE-secure transforms

NK ADM

TC

H

AE.Enc

HtAE

K N ADM

TC

HAE.Enc

AEaH

K N ADM

TC

H

E.Enc

EtH

2 advanced committing MRAE-secure transforms

K N ADM

TC

H

AE.Enc

C|τ

AEtH

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

• easy to grasp and implement (standardized primitives)

• our transforms, implemented only with black-box primitives
from common cryptographic libraries, are very efficient

• hope: fast adoption of committing AEAD

• please contact us if you’re interested in our work

ePrint

many more details
(e.g. CDY security)

Code Artifact

IACR Results

Reproduced

Thanks!

Questions?

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 17



Takeaway

3 basic committing AE-secure transforms

NK ADM

TC

H

AE.Enc

HtAE

K N ADM

TC

HAE.Enc

AEaH

K N ADM

TC

H

E.Enc

EtH

2 advanced committing MRAE-secure transforms

K N ADM

TC

H

AE.Enc

C|τ

AEtH

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

• easy to grasp and implement (standardized primitives)

• our transforms, implemented only with black-box primitives
from common cryptographic libraries, are very efficient

• hope: fast adoption of committing AEAD

• please contact us if you’re interested in our work

ePrint

many more details
(e.g. CDY security)

Code Artifact

IACR Results

Reproduced

Thanks!

Questions?

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 17



Takeaway

3 basic committing AE-secure transforms

NK ADM

TC

H

AE.Enc

HtAE

K N ADM

TC

HAE.Enc

AEaH

K N ADM

TC

H

E.Enc

EtH

2 advanced committing MRAE-secure transforms

K N ADM

TC

H

AE.Enc

C|τ

AEtH

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

• easy to grasp and implement (standardized primitives)

• our transforms, implemented only with black-box primitives
from common cryptographic libraries, are very efficient

• hope: fast adoption of committing AEAD

• please contact us if you’re interested in our work

ePrint

many more details
(e.g. CDY security)

Code Artifact

IACR Results

Reproduced

Thanks!

Questions?

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 17



Takeaway

3 basic committing AE-secure transforms

NK ADM

TC

H

AE.Enc

HtAE

K N ADM

TC

HAE.Enc

AEaH

K N ADM

TC

H

E.Enc

EtH

2 advanced committing MRAE-secure transforms

K N ADM

TC

H

AE.Enc

C|τ

AEtH

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

• easy to grasp and implement (standardized primitives)

• our transforms, implemented only with black-box primitives
from common cryptographic libraries, are very efficient

• hope: fast adoption of committing AEAD

• please contact us if you’re interested in our work

ePrint

many more details
(e.g. CDY security)

Code Artifact

IACR Results

Reproduced

Thanks!

Questions?

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 17



Takeaway

3 basic committing AE-secure transforms

NK ADM

TC

H

AE.Enc

HtAE

K N ADM

TC

HAE.Enc

AEaH

K N ADM

TC

H

E.Enc

EtH

2 advanced committing MRAE-secure transforms

K N ADM

TC

H

AE.Enc

C|τ

AEtH

K N ADM

TC

H

E.Enc

F

Ke

T|r

chaSIV

• easy to grasp and implement (standardized primitives)

• our transforms, implemented only with black-box primitives
from common cryptographic libraries, are very efficient

• hope: fast adoption of committing AEAD

• please contact us if you’re interested in our work

ePrint

many more details
(e.g. CDY security)

Code Artifact

IACR Results

Reproduced

Thanks!

Questions?

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 17



References I

[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg.
How to abuse and fix authenticated encryption without key commitment.
In Kevin R. B. Butler and Kurt Thomas, editors, USENIX Security 2022: 31st USENIX Security Symposium, pages
3291–3308, Boston, MA, USA, August 10–12, 2022. USENIX Association.

[BBD24] Arghya Bhattacharjee, Ritam Bhaumik, and Chandranan Dhar.
Universal context commitment without ciphertext expansion.
Cryptology ePrint Archive, Report 2024/1382, 2024.

[BCC+24] Ritam Bhaumik, Bishwajit Chakraborty, Wonseok Choi, Avijit Dutta, Jérôme Govinden, and Yaobin Shen.
The committing security of MACs with applications to generic composition.
In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology – CRYPTO 2024, Part IV, volume 14923 of Lecture
Notes in Computer Science, pages 425–462, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham, Switzerland.

[BH22] Mihir Bellare and Viet Tung Hoang.
Efficient schemes for committing authenticated encryption.
In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, Part II, volume 13276
of Lecture Notes in Computer Science, pages 845–875, Trondheim, Norway, May 30 – June 3, 2022. Springer, Cham,
Switzerland.

[BH24] Mihir Bellare and Viet Tung Hoang.
Succinctly-committing authenticated encryption.
In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology – CRYPTO 2024, Part IV, volume 14923 of Lecture
Notes in Computer Science, pages 305–339, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham, Switzerland.

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 18



References II

[CR22] John Chan and Phillip Rogaway.
On committing authenticated-encryption.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors, ESORICS 2022: 27th
European Symposium on Research in Computer Security, Part II, volume 13555 of Lecture Notes in Computer Science,
pages 275–294, Copenhagen, Denmark, September 26–30, 2022. Springer, Cham, Switzerland.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part I, volume 10991 of
Lecture Notes in Computer Science, pages 155–186, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Cham,
Switzerland.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart.
Message franking via committing authenticated encryption.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part III, volume 10403 of
Lecture Notes in Computer Science, pages 66–97, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Cham,
Switzerland.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart.
Partitioning oracle attacks.
In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021: 30th USENIX Security Symposium, pages
195–212. USENIX Association, August 11–13, 2021.

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 19



References III

[MLGR23] Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart.
Context discovery and commitment attacks - how to break CCM, EAX, SIV, and more.
In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part IV, volume 14007 of
Lecture Notes in Computer Science, pages 379–407, Lyon, France, April 23–27, 2023. Springer, Cham, Switzerland.

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 20



Backup Slides

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 21



CMT and CDY Security Notions

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 22



CTX vs. black-box generalization AEtH

K N ADM

TC

H

AE.Enc

C|τ

AEtH [our work]

K N ADM

T ′

TC

H

AE.Enc

CTX [CR22]

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 23



Performance Evaluation Details: AE-secure Transforms

• Implemented encryption algorithm of our transforms and existing transforms

HtE ◦ UtC [BH22], CTY [BH24], comPACT [BBD24]

that target the same (i.e., strongest) CMT security in OpenSSL and wolfSSL:

Use AES-GCM as AE in both libraries

Use AES-CTR as E in OpenSSL and AES-GCM as E in wolfSSL

Use truncated SHA-512 as H

• Performance measured as overhead over baseline (non-committing) AES-GCM speed.

Testing setup: Intel Core i5-8265U CPU (Skylake microarchitecture), with the base
frequency of 1.6GHz and the hyper-threading, frequency scaling and turbo mode
functionalities disabled

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 24



Performance Evaluation Details: MRAE-secure Transforms

• Implemented encryption algorithm of our and existing MRAE-secure transforms

HtE ◦ RtC [BH22], CTX [CR22], PACT [BBD24]

that target the same (i.e., strongest) CMT security in OpenSSL and wolfSSL:

Use AES-GCM-SIV as AE in OpenSSL and AES-SIV in wolfSSL

Use AES-CTR as E in OpenSSL and AES-GCM as E in wolfSSL

Use truncated SHA-512 as H + plain AES as F

• Performance measured as overhead over baseline (non-committing) AES-GCM-SIV / AES-SIV
speed.

Testing setup: Intel Core i5-8265U CPU (Skylake microarchitecture), with the base
frequency of 1.6GHz and the hyper-threading, frequency scaling and turbo mode
functionalities disabled

06.05.2025 Committing AE: Generic Transforms with Hash Functions S. Chen, V. Karadžić 25


	Authenticated Encryption and Committing Security
	Takeaway
	Backup Slides

