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IND-RCCA secure rerandomizable PKE

Given: IND-CPA secure rerandomizable PKE
Needed: IND-RCCA secure rerandomizable PKE

IND-CPA PKE

IND-CCA PKE

Naor-Yung transform [NY90]
ct′ = (ct1, ct2, π)

IND-CPA rerandomizable PKE

IND-RCCA rerandomizable PKE

Naor-Yung transform
ct′ = (ct1, ct2, π)
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Dec oracle returns ⋄ if ciphertext decrypts to m⋆
0 or m⋆

1

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 3 / 13



IND-RCCA secure rerandomizable PKE

Given: IND-CPA secure rerandomizable PKE
Needed: IND-RCCA secure rerandomizable PKE

IND-CPA PKE

IND-CCA PKE

Naor-Yung transform [NY90]
ct′ = (ct1, ct2, π)

IND-CPA rerandomizable PKE

IND-RCCA rerandomizable PKE

Naor-Yung transform
ct′ = (ct1, ct2, π)

ct1 and ct2 encrypt the same message

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 3 / 13



IND-RCCA secure rerandomizable PKE

Given: IND-CPA secure rerandomizable PKE
Needed: IND-RCCA secure rerandomizable PKE

IND-CPA PKE

IND-CCA PKE

Naor-Yung transform [NY90]
ct′ = (ct1, ct2, π)

IND-CPA rerandomizable PKE

IND-RCCA rerandomizable PKE

Naor-Yung transform
ct′ = (ct1, ct2, π)

ct1 and ct2 encrypt the same message ct1 and ct2 encrypt the same message

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 3 / 13



IND-RCCA secure rerandomizable PKE

Given: IND-CPA secure rerandomizable PKE
Needed: IND-RCCA secure rerandomizable PKE

IND-CPA PKE

IND-CCA PKE

Naor-Yung transform [NY90]
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IND-CPA rerandomizable PKE

IND-RCCA rerandomizable PKE

Naor-Yung transform
ct′ = (ct1, ct2, π)

ct1 and ct2 encrypt the same message ct1 and ct2 encrypt the same message

Proof system must support:
rerandomization
adapt the statement to
rerandomized ciphertexts
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Malleable NIZKs [CKLM12]

NP relation R
Allowed transformations T

such that
∀(x , w) ∈ R, (Tx , Tw ) ∈ T → (Tx (x), Tw (w)) ∈ R

A malleable NIZK for R and T is
a NIZK for R
with the following extra feature

π
(Tx ,Tw )−−−−−→ π′

Derivation-privacy: (π, π′) indistinguishable from directly generated proofs for x and Tx (x)
Simulation-soundness: Takes into account that simulated statements can be modified with T
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Instantiations of malleable NIZKs

Groth-Sahai proofs [CKLM12]:
✓ Very efficient
✗ Only for a specific R

(pairing-product
equations)

✗ Only for a specific T
✗ Not post-quantum secure

Generically from SNARKs
[CKLM13]:

✓ Any NP-relation R
✓ Any set of valid

transformations T
✓ Post-quantum

instantiation possible
✗ Number of transformations

is bounded
✗ Not derivation private

Generically from SNARKs
[our work]:

✓ Any NP-relation R
✓ Any set of valid

transformations T
✓ Post-quantum

instantiation possible
✓ Unbounded

transformations
✓ Derivation private
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Malleable NIZKs from SNARKs

π
(Tx ,Tw )−−−−−→ π′

x is true x ′ = Tx (x) is true

Recursive usage of SNARKs
succinctness avoids blow-up of proof size/verification time
✓zero-knowledge ✓derivation private (by zero-knowledge of the SNARK)
also used for incrementally verifiable computation (IVC), proof carrying data (PCD),
blockchains (to compress proofs)
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Soundness

Soundness (SNARK variant): ∀A outputting (x , π) s.t π proves x
∃E outputting w s.t. (x , w) ∈ R.

In our case: E can output
w s.t. (x , w) ∈ R
(Tx , Tw ) ∈ T , x̂ , π̂ s.t. x = Tx (x̂) and π̂ proves x̂

Issue 1: Runtime of the extractor can explode

Solution: We assume a fast extractor:

TimeE ≤ TimeA + poly(λ)

Issue 2: Recursion might never stop

Main technical challenge
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Warm-up solution: Counters [CKLM13]

Fixed bound B on recursion depth

Add a counter ℓ to SNARK statements

ℓ = 1 for non-recursive proofs
ℓ is incremented by 1 in each recursion
Recursion is only allowed for ℓ < B

π
(Tx ,Tw )−−−−−→ π′

✓ Soundness

✗ Limited derivation privacy (counters leak # recursions)
✗ Only bounded number of recursions
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Non-solution: One-way permutation

OWP f : X → X
Counter ℓ is replaced by ξ ∈ X

Initially: ξ ← X
Recursion ξ′ = f (ξ)

Idea: Extractor would have to break one-wayness if

# recursion for extraction > # recursion to generate the proof (honestly)

Issue: Soundness has to hold for adversarially generated proofs
E.g. adversary can choose initial ξ ∈ X from a different distribution.

We need a variant of OWF that is secure
if the adversary chooses the value x to invert.
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Adversarial one-way functions (AOWFs)

Stateful 2-stage adversary (A1,A2)

1st attempt: A1 outputs y
A2 outputs x (A1,A2) wins if f (x) = y

Unsatisfiable! A1 samples x ← X and outputs y := f (x). A2 outputs x .

Make the problem harder for the adversary:

2nd attempt: A1 outputs y
A2 outputs x (A1,A2) wins if f n(x) = y

If

f is only sequentially computable
n depends on the runtime of A1 (TimeA1 < n · Timef (·))

there is no trivial attack!
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Candidates for AOWFs

Our candidate: A cryptographic hash function

Justification: RO is an AOWFs

✓ Soundness
✓ Unbounded # recursions
✗ Derivation privacy
✓ Derivation privacy if AOWF is unlinkable (requires randomization)

For our candidate this can be achieved by inputting additional random bits in the hash function

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 11 / 13



Candidates for AOWFs

Our candidate: A cryptographic hash function
Justification: RO is an AOWFs

✓ Soundness
✓ Unbounded # recursions
✗ Derivation privacy
✓ Derivation privacy if AOWF is unlinkable (requires randomization)

For our candidate this can be achieved by inputting additional random bits in the hash function

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 11 / 13



Candidates for AOWFs

Our candidate: A cryptographic hash function
Justification: RO is an AOWFs

✓ Soundness

✓ Unbounded # recursions
✗ Derivation privacy
✓ Derivation privacy if AOWF is unlinkable (requires randomization)

For our candidate this can be achieved by inputting additional random bits in the hash function

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 11 / 13



Candidates for AOWFs

Our candidate: A cryptographic hash function
Justification: RO is an AOWFs

✓ Soundness
✓ Unbounded # recursions

✗ Derivation privacy
✓ Derivation privacy if AOWF is unlinkable (requires randomization)

For our candidate this can be achieved by inputting additional random bits in the hash function

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 11 / 13



Candidates for AOWFs

Our candidate: A cryptographic hash function
Justification: RO is an AOWFs

✓ Soundness
✓ Unbounded # recursions
✗ Derivation privacy

✓ Derivation privacy if AOWF is unlinkable (requires randomization)

For our candidate this can be achieved by inputting additional random bits in the hash function

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 11 / 13



Candidates for AOWFs

Our candidate: A cryptographic hash function
Justification: RO is an AOWFs

✓ Soundness
✓ Unbounded # recursions
✗ Derivation privacy
✓ Derivation privacy if AOWF is unlinkable (requires randomization)

For our candidate this can be achieved by inputting additional random bits in the hash function

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 11 / 13



Candidates for AOWFs

Our candidate: A cryptographic hash function
Justification: RO is an AOWFs

✓ Soundness
✓ Unbounded # recursions
✗ Derivation privacy
✓ Derivation privacy if AOWF is unlinkable (requires randomization)

For our candidate this can be achieved by inputting additional random bits in the hash function

Roman Langrehr (ETH Zurich) Malleable SNARKs and Their Applications 2025-05-08 11 / 13



Applications

Reverse firewalls (RF)
First RF for NIZKs/SNARKs

IND-RCCA secure rerandomizable PKE (adaptation of [CKLM12])
First post-quantum scheme

IND-RCCA secure updatable encryption (adaptation of [KLR19])
First scheme with full security
First post-quantum scheme

Targeted non-malleable (TNM-CCA1) homomorphic encryption (HE) (non-generic)
(adaptation of [BSW12])

Needs higher arity transformations
First unlinkable scheme
First scheme with unbounded homomorphic operations
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Needs higher arity transformations
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Summary & Open problems

Our contributions
Malleable NIZK’s from recursive SNARKS

Counter-based approach (similar to [CKLM13])
AOWF-based approach is more flexible

Many applications of malleable SNARKS
Reverse firewalls
Variants of Naor-Yung

Open problems
More AOWF candidates

Relation to time-lock puzzles/verfiable delay functions/proofs of sequential work

Good candidates for SNARKs with fast extraction
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Pictures

Alice, Bob, and other faces, Server: freepik.com
Matryoshka doll: holz-leute.de
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Transformations with arity ≥ 2

π1
π2

(Tx ,Tw )−−−−−→ π′

x1 is true

x2 is true

Counter-based approach: (ℓ1, π1)
(ℓ2, π2)

(Tx ,Tw )−−−−−→ (max{ℓ1, ℓ2}+ 1, π′)

✗ Only for constant-depth

AOWF-based approach:
✓ Unbounded depth

Needs higher arity variant of AOWFs (works for hash functions)
Statements and proofs must be input to the AOWF
Extractor must cache extracted SNARKs
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