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Background and prior work



Homomorphic encryption

𝑥 , 𝐹

Eval(      ,𝐹)𝑥

𝐹(𝑥)

• Client can outsource computation of 𝐹(𝑥) on their data 𝑥
• Server does not learn 𝑥 or 𝐹(𝑥)

𝑥 : Encryption of 𝑥

: Encryption of F(𝑥)F(𝑥)
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PIR can be achieved from HE with 
data 𝑥 encoding 𝑖 and polynomial 

𝑓!"(𝑥) encoding function 
“retrieve data at location 𝑥 ”
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The adversary is allowed to run a preprocessing phase with 
only 𝑅 and 𝑞 as input before querying the RLWE oracle
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Performance compared to [OPPW24]

[OPPW24] H. Okada, R. Player, S. Pohmann, C. Weinert. Towards Practical Doubly-Efficient Private Information Retrieval. Financial Cryptography 2024.

Storage size about the 
same while read query 

count improves
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Does there exist an ASHE scheme 
that can evaluate circuits of depth 𝑑 
with ciphertext ring size 𝑂 2# ?

Are there other relaxations of 
ASHE that are sufficient to 
construct DEPIR?

Are there other 
approaches for 
more efficient 
DEPIR?

Is {0,1}-CRT-RLWE 
concretely as hard 
as RLWE? 

Are our reduced entropy 
RLWE variants useful for 

other applications? 



rachel.player@rhul.ac.uk
https://rachelplayer.github.io

Thank you! 
Any questions?

Full version on eprint: 2024/1307
Implementation: github.com/FeanorTheElf/ashe-depir


