I ow-Bandwidth Mixed Arithmetic in VOI E-Based 7K from Low-Degree PRGs

Amit Agarwal¹ Carsten Baum² Lennart Braun³ Peter Scholl⁴

¹University of Illinois Urbana-Champaign ³Université Paris Cité, CNRS, IRIF

²Technical University of Denmark ⁴Aarhus University

I I I F INSTITUT DE RECHERCHE EN INFORMATIOUE FONDAMENTALE

May 8, 2025 @ Eurocrypt 2025

Zero-Knowledge Proofs (of Knowledge)

- Security Properties:
 - Soundness
 - Zero-Knowledge

Zero-Knowledge Proofs (of Knowledge) for Circuits

I know w s.t. $\mathcal{C}(w) = 1!$ Prover \mathcal{P}

- Security Properties:
 - Soundness
 - Zero-Knowledge
- $\bullet \ \mathcal{C}$ is a circuit
 - Boolean over $\mathbb{F}_2 = \{0,1\}$

Zero-Knowledge Proofs (of Knowledge) for Circuits

I know w s.t. $\mathcal{C}(w) = 1!$ Prover \mathcal{P}

- Security Properties:
 - Soundness
 - Zero-Knowledge
- $\bullet \ \mathcal{C}$ is a circuit
 - Boolean over $\mathbb{F}_2=\{0,1\}$
 - arithmetic over a larger ring or field

- Boolean over $\mathbb{F}_2:$ e.g., simple comparisons
- arithmetic over \mathbb{F}_p : cheap addition/multiplication
- \implies combine both into a <u>hybrid</u> circuit

- Boolean over $\mathbb{F}_2:$ e.g., simple comparisons
- arithmetic over \mathbb{F}_p : cheap addition/multiplication
- \implies combine both into a <u>hybrid</u> circuit

Conversion Gates

such that
$$x = \sum_{i=0}^{m-1} 2^i \cdot x_i$$

- Boolean over \mathbb{F}_2 : e.g., simple comparisons
- arithmetic over \mathbb{F}_p : cheap addition/multiplication
- \implies combine both into a <u>hybrid</u> circuit

Conversion Gates

such that
$$x = \sum_{i=0}^{m-1} 2^i \cdot x_i$$

- Boolean over \mathbb{F}_2 : e.g., simple comparisons
- arithmetic over \mathbb{F}_p : cheap addition/multiplication
- \implies combine both into a <u>hybrid</u> circuit

More Gadgets:

- (fixed-point) truncation: $x \mapsto \lfloor x/2^k \rfloor$
- MSB extraction: $x \mapsto x_{m-1}$
- ReLU: $x \mapsto (1 x_{m-1}) \cdot x$

Conversion Gates

such that
$$x = \sum_{i=0}^{m-1} 2^i \cdot x_i$$

1. Introduction to VOLE-based Zero-Knowledge

1. Introduction to VOLE-based Zero-Knowledge

2. Proving Conversions

- 1. Introduction to VOLE-based Zero-Knowledge
- 2. Proving Conversions
- 3. Committed Bits from Low-Degree PRGs

VOLE-based Zero-Knowledge

Vector Oblivious Linear Evaluation (VOLE)

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Commit & Prove Zero-Knowledge

Commit & Prove Zero-Knowledge

Ingredients:

- 1. linearly homomorphic commitments $[\cdot]$
 - can compute $[z] \leftarrow a \cdot [x] + [y] + b$

Commit & Prove Zero-Knowledge

Ingredients:

- 1. linearly homomorphic commitments $[\cdot]$
 - can compute $[z] \leftarrow a \cdot [x] + [y] + b$
- 2. multiplication check

- given ([a], [b], [c]), verify
$$a \cdot b \stackrel{?}{=} c$$

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = x \cdot \Delta + v_x$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \underbrace{\Delta^2}_{known \text{ by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \underbrace{\Delta}_{known \text{ by } \mathcal{P}} + \underbrace{(-v_a \cdot v_b)}_{known \text{ by } \mathcal{P}}$$

[[]DI021] Dittmer, Ishai, and Ostrovsky (2021), "Line-Point Zero Knowledge and Its Applications".

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = x \cdot \Delta + v_x$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

[[]DI021] Dittmer, Ishai, and Ostrovsky (2021), "Line-Point Zero Knowledge and Its Applications".

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = x \cdot \Delta + v_x$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \underbrace{\Delta^2}_{known by \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}}$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_2 \cdot X^2 + e_1 \cdot X + e_0$ such that

[[]DI021] Dittmer, Ishai, and Ostrovsky (2021), "Line-Point Zero Knowledge and Its Applications".

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = x \cdot \Delta + v_x$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \underbrace{\Delta^2}_{known by \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \Delta + \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}}$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_2 \cdot X^2 + e_1 \cdot X + e_0$ such that

$$-p(\Delta)=0$$
, and

[[]DIO21] Dittmer, Ishai, and Ostrovsky (2021), "Line-Point Zero Knowledge and Its Applications".

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = x \cdot \Delta + v_x$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \underbrace{\Delta^2}_{known \text{ by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \underbrace{\Delta}_{known \text{ by } \mathcal{P}} + \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}}$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_2 \cdot X^2 + e_1 \cdot X + e_0$ such that

$$-p(\Delta)=0$$
, and

$$- e_2 := c - a \cdot b \neq 0$$

[[]DIO21] Dittmer, Ishai, and Ostrovsky (2021), "Line-Point Zero Knowledge and Its Applications".

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = x \cdot \Delta + v_x$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \underbrace{\Delta^2}_{known \text{ by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \underbrace{\Delta}_{known \text{ by } \mathcal{P}} + \underbrace{(-v_a \cdot v_b)}_{\text{known by } \mathcal{P}}$$

Soundness: cheating \mathcal{P} needs to come up with $p(X) = e_2 \cdot X^2 + e_1 \cdot X + e_0$ such that

$$-p(\Delta)=0$$
, and

$$- e_2 := c - a \cdot b \neq 0$$

 \implies *p* has degree 2 \implies *p* has at most 2 roots \implies soundness error $2/|\mathbb{F}|$

[[]DI021] Dittmer, Ishai, and Ostrovsky (2021), "Line-Point Zero Knowledge and Its Applications".

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".

Goal: Given ([a], [b], [c]), verify that $a \cdot b = c$ in \mathbb{F}

QuickSilver Check: Convert the three MAC equations $q_x = x \cdot \Delta + v_x$ for $x \in \{a, b, c\}$ into a polynomial in Δ :

$$\underbrace{\Delta \cdot q_c - q_a \cdot q_b}_{\text{known by } \mathcal{V}} = \underbrace{(c - a \cdot b)}_{= 0 \text{ if } \mathcal{P} \text{ honest}} \cdot \underbrace{\Delta^2}_{known \text{ by } \mathcal{P}} + \underbrace{(v_c - a \cdot v_b - b \cdot v_a)}_{\text{known by } \mathcal{P}} \cdot \underbrace{\Delta}_{known \text{ by } \mathcal{P}} + \underbrace{(-v_a \cdot v_b)}_{known \text{ by } \mathcal{P}}$$

Generalizable to higher-degree constraints:

•
$$[a+b]^{\max(d_a+d_b)} \leftarrow [a]^{d_a} + [b]^{d_b}$$
 and $[a \cdot b]^{d_a+d_b} \leftarrow [a]^{d_a} \cdot [b]^{d_b}$

• for degree-*d* circuit \mathcal{C} : $[y]^d \leftarrow \mathcal{C}([\mathbf{x}]^1)$

$$[y]^d$$
: $q_y = \mathbf{y} \cdot \Delta^d + \sum_{k=0}^{d-1} \mathbf{p}_k \cdot \Delta^k$

 \rightsquigarrow proof size *d* field elements

[DI021] Dittmer, Ishai, and Ostrovsky (2021), "Line-Point Zero Knowledge and Its Applications".

[YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".

Conversions

Emulating \mathbb{F}_2 Arithmetic over \mathbb{F}_p

Bit decomposition

$$[x]_{\rho} = \sum_{k=0}^{m-1} 2^k \cdot [x_i]_{\rho}$$

Emulating \mathbb{F}_2 Arithmetic over \mathbb{F}_p

Bit decomposition

$$[x]_{\rho} = \sum_{k=0}^{m-1} 2^k \cdot [x_i]_{
ho} \qquad \wedge \qquad \bigwedge_{k=0}^{m-1} [x_i]_{
ho} \cdot (1 - [x_i]_{
ho}) = 0$$

Emulating \mathbb{F}_2 Arithmetic over \mathbb{F}_p

Bit decomposition

$$[x]_{\rho} = \sum_{k=0}^{m-1} 2^k \cdot [x_i]_{\rho} \qquad \wedge \qquad \bigwedge_{k=0}^{m-1} [x_i]_{\rho} \cdot (1 - [x_i]_{\rho}) = 0$$

Arithmetizing Boolean operations:
Emulating \mathbb{F}_2 Arithmetic over \mathbb{F}_p

Bit decomposition

$$[x]_{\rho} = \sum_{k=0}^{m-1} 2^k \cdot [x_i]_{
ho} \qquad \wedge \qquad \bigwedge_{k=0}^{m-1} [x_i]_{
ho} \cdot (1 - [x_i]_{
ho}) = 0$$

Arithmetizing Boolean operations:

$$x \wedge y = x \cdot y$$

 $x \oplus y = x + y - 2 \cdot x \cdot y$ for $x, y \in \{0, 1\}$

× Committing to $[x_0]_p, \ldots, [x_{m-1}]_p$ costs $m^2 = (\log p)^2$ bits of communication × XOR not \mathbb{F}_p -linear \rightsquigarrow no longer free

Given $[x]_p, [\mathbf{x}]_2$, verify $x = \sum_i 2^i \cdot x_i$ with $m := \log p$

[[]RW19] Rotaru and Wood (2019), "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security".

[[]EGKRS20] Escudero et al. (2020), "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits".

[[]BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[[]WYXKW21] Weng et al. (2021), "Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning".

Given $[x]_p, [\mathbf{x}]_2$, verify $x = \sum_i 2^i \cdot x_i$ with $m := \log p$				
Preprocessing	Creation	Usage		
$\frac{\text{daBits}}{([\mathbf{r}]_{p}, [\mathbf{r}]_{2})}$ $\mathbf{r} \in_{R} \{0, 1\}^{m}$				

[[]RW19] Rotaru and Wood (2019), "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security".

[[]EGKRS20] Escudero et al. (2020), "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits".

[[]BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[[]WYXKW21] Weng et al. (2021), "Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning".

Given $[x]_p, [\mathbf{x}]_2$, verify x	$x = \sum_{i} 2^{i} \cdot x_{i}$ with $m :=$	log p
Preprocessing	Creation	Usage
daBits [RW19]	m^2 bits $ imes$	
$([r]_{p}, [r]_{2})$	+ consistency check	
$m{r}\in_{R}\{0,1\}^{m}$		

[[]RW19] Rotaru and Wood (2019), "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security".

[[]EGKRS20] Escudero et al. (2020), "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits".

[[]BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[[]WYXKW21] Weng et al. (2021), "Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning".

Given	$[x]_{p}, [x]_{p}$] ₂ , verify	$x = \sum$	$_{i} 2^{i} \cdot x_{i}$	with	$m := \log p$
-------	--------------------	-------------------------	------------	--------------------------	------	---------------

Preprocessing	Creation	Usage
$\frac{\text{daBits}}{([\boldsymbol{r}]_{\rho}, [\boldsymbol{r}]_2)}$ $\boldsymbol{r} \in_R \{0, 1\}^m$	<i>m</i> ² bits × + consistency check	correction: $\boldsymbol{d} := \boldsymbol{x} \oplus \boldsymbol{r} \in \{0,1\}^m$ $[\boldsymbol{x}]_2 = [\boldsymbol{r}]_2 \oplus \boldsymbol{d}$ $[\boldsymbol{x}]_p = \sum_i 2^i \cdot ([r_i]_p + d_i - 2d_i[r_i]_p)$ \leftarrow linear

[[]RW19] Rotaru and Wood (2019), "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security".

[[]EGKRS20] Escudero et al. (2020), "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits".

[[]BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[[]WYXKW21] Weng et al. (2021), "Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning".

Given $[x]_p, [\mathbf{x}]_2$, verify $x = \sum_i 2^i \cdot x_i$ with $m := \log p$

Preprocessing	Creation	Usage
$ \begin{array}{l} \displaystyle \frac{\text{daBits}}{([\boldsymbol{r}]_{\rho}, [\boldsymbol{r}]_2)} \\ \boldsymbol{r} \in_R \{0, 1\}^m \end{array} $	<i>m</i> ² bits × + consistency check	correction: $\boldsymbol{d} := \boldsymbol{x} \oplus \boldsymbol{r} \in \{0, 1\}^m$ $[\boldsymbol{x}]_2 = [\boldsymbol{r}]_2 \oplus \boldsymbol{d}$ $[\boldsymbol{x}]_p = \sum_i 2^i \cdot ([r_i]_p + d_i - 2d_i[r_i]_p)$ \leftarrow linear

 $\frac{\text{edaBits}}{([r]_p, [\mathbf{r}]_2)}$ $r = \sum_i 2^i \cdot r_i \in_R \mathbb{F}_p$

[[]RW19] Rotaru and Wood (2019), "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security".

[[]EGKRS20] Escudero et al. (2020), "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits".

[[]BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[[]WYXKW21] Weng et al. (2021), "Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning".

Given $[x]_p, [\mathbf{x}]_2$, verify $x = \sum_i 2^i \cdot x_i$ with $m := \log p$

Preprocessing	Creation	Usage
$\frac{\text{daBits [RW19]}}{([\boldsymbol{r}]_{\rho}, [\boldsymbol{r}]_{2})}$ $\boldsymbol{r} \in_{R} \{0, 1\}^{m}$	<i>m</i> ² bits × + consistency check	correction: $\boldsymbol{d} := \boldsymbol{x} \oplus \boldsymbol{r} \in \{0,1\}^m$ $[\boldsymbol{x}]_2 = [\boldsymbol{r}]_2 \oplus \boldsymbol{d}$ $[\boldsymbol{x}]_n = \sum_i 2^i \cdot ([r_i]_n + d_i - 2d_i[r_i]_n)$ \leftarrow linear

edaBits [EGKRS20]	B · m bits 🗹
$([r]_{p}, [r]_{2})$	$B\in\{3,4,5\}$
$r = \sum_i 2^i \cdot r_i \in_R \mathbb{F}_p$	+ cut'n'choose
	consistency check

[[]RW19] Rotaru and Wood (2019), "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security".

[[]EGKRS20] Escudero et al. (2020), "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits".

[[]BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[[]WYXKW21] Weng et al. (2021), "Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning".

Given $[x]_p, [\mathbf{x}]_2$, verify $x = \sum_i 2^i \cdot x_i$ with $m := \log p$

Preprocessing	Creation	Usage
$\frac{\text{daBits}}{([\boldsymbol{r}]_{P}, [\boldsymbol{r}]_{2})}$ $\boldsymbol{r} \in_{R} \{0, 1\}^{m}$	m^2 bits \times + consistency check	correction: $\boldsymbol{d} := \boldsymbol{x} \oplus \boldsymbol{r} \in \{0,1\}^m$ $[\boldsymbol{x}]_2 = [\boldsymbol{r}]_2 \oplus \boldsymbol{d}$ $[\boldsymbol{x}]_p = \sum_i 2^i \cdot ([r_i]_p + d_i - 2d_i[r_i]_p) $ \leftarrow linear
$\frac{\text{edaBits}}{([r]_p, [r]_2)} [EGKRS20]$ $r = \sum_i 2^i \cdot r_i \in_R \mathbb{F}_p$	$B \cdot m$ bits $B \in \{3, 4, 5\}$ + cut'n'choose consistency check	correction: $d := x - r \in \mathbb{F}_p$ $[x]_p = [r]_p + d$ $[x]_2 = [r]_2 + d \leftarrow$ Boolean addition circuit ×
	- need large batches fo → VOLE-ZK: A2B/M	r $B = 3$ A ystique [BBMRS21]; [WYXKW21]

[RW19] Rotaru and Wood (2019), "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security".
 [EGKRS20] Escudero et al. (2020), "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits".
 [BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".
 [WYXKW21] Weng et al. (2021), "Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning".

Can we create daBits with low communication?

daBits from Low-Degree PRGs

- 1. Commit to short seed $\mathbf{x} \in \{0,1\}^{\ell}$ over both \mathbb{F}_2 and $\mathbb{F}_p \rightsquigarrow ([\mathbf{x}]_2, [\mathbf{x}]_p)$
 - commit to ℓ daBits and prove consistency
 - one-time cost

- 1. Commit to short seed $x \in \{0,1\}^{\ell}$ over both \mathbb{F}_2 and $\mathbb{F}_p \rightsquigarrow ([x]_2, [x]_p)$
 - commit to ℓ daBits and prove consistency
 - one-time cost
- 2. <u>Non-interactively</u> apply a <u>low-degree</u> PRG to obtain long $\boldsymbol{y} \in \{0,1\}^{\ell^s}$
 - use higher-degree QuickSilver
 - \rightsquigarrow get **y** committed over both fields \rightsquigarrow $([y]_2^{d_2}, [y]_p^{d_p})$

- 1. Commit to short seed $\mathbf{x} \in \{0,1\}^{\ell}$ over both \mathbb{F}_2 and $\mathbb{F}_p \rightsquigarrow ([\mathbf{x}]_2, [\mathbf{x}]_p)$
 - commit to ℓ daBits and prove consistency
 - one-time cost
- 2. <u>Non-interactively</u> apply a <u>low-degree</u> PRG to obtain long $\boldsymbol{y} \in \{0,1\}^{\ell^s}$
 - use higher-degree QuickSilver
 - \rightsquigarrow get **y** committed over both fields \rightsquigarrow $([y]_2^{d_2}, [y]_p^{d_p})$
- 3. Use daBits $([y_i]_2^{d_2}, [y_i]_p^{d_p})$ for conversions and other gadgets 🎉

- 1. Commit to short seed $x \in \{0,1\}^{\ell}$ over both \mathbb{F}_2 and $\mathbb{F}_p \rightsquigarrow ([x]_2, [x]_p)$
 - commit to ℓ daBits and prove consistency
 - one-time cost
- 2. <u>Non-interactively</u> apply a <u>low-degree</u> PRG to obtain long $\textbf{y} \in \{0,1\}^{\ell^s}$
 - use higher-degree QuickSilver
 - \rightsquigarrow get y committed over both fields $\rightsquigarrow ([y]_2^{d_2}, [y]_p^{d_p})$
- 3. Use daBits $([y_i]_2^{d_2}, [y_i]_p^{d_p})$ for conversions and other gadgets \bigotimes
- 4. Reuse ℓ bits of the output as seed for next iteration

(reduce degree)

Instantiation from Goldreich-style Random Local PRGs [Gol00]

 $k\text{-local PRG: } \{0,1\}^{\ell} \to \{0,1\}^{\ell^s} \text{ with stretch } s$ $\mathsf{PRG}(\boldsymbol{x})_i = P(x_{i_1}, \dots, x_{i_k}) \text{ for } P \colon \{0,1\}^k \to \{0,1\} \text{ and } \{i_1, \dots, i_k\} \subset_R [\ell]$

[[]Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs.

Instantiation from Goldreich-style Random Local PRGs [Gol00]

$$k\text{-local PRG} \colon \{0,1\}^{\ell} \to \{0,1\}^{\ell^s} \text{ with stretch } s$$
$$\mathsf{PRG}(\boldsymbol{x})_i = P(x_{i_1}, \dots, x_{i_k}) \text{ for } P \colon \{0,1\}^k \to \{0,1\} \text{ and } \{i_1, \dots, i_k\} \subset_R [\ell]$$

TSPA

$$P(x_1, \dots, x_5) = x_1 \oplus x_2 \oplus x_3 \oplus (x_2 \oplus x_4) \land (x_3 \oplus x_5) \qquad \begin{cases} \mathbb{F}_2\text{-degree } d_2 = 2\\ \mathbb{F}_p\text{-degree } d_p = 3 \end{cases}$$

[[]Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs.

Instantiation from Goldreich-style Random Local PRGs [Gol00]

$$k\text{-local PRG: } \{0,1\}^{\ell} \to \{0,1\}^{\ell^s} \text{ with stretch } s$$
$$\mathsf{PRG}(\mathbf{x})_i = P(x_{i_1}, \dots, x_{i_k}) \text{ for } P \colon \{0,1\}^k \to \{0,1\} \text{ and } \{i_1, \dots, i_k\} \subset_R [\ell]$$

TSPA $P(x_1, \dots, x_5) = x_1 \oplus x_2 \oplus x_3 \oplus (x_2 \oplus x_4) \land (x_3 \oplus x_5) \qquad \begin{cases} \mathbb{F}_2 \text{-degree } d_2 = 2 \\ \mathbb{F}_p \text{-degree } d_p = 3 \end{cases}$

XOR₄-Majority₇ (better stretch)

 $P(x_1, \dots, x_{11}) = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \mathsf{Majority}(x_5, \dots, x_{11}) \qquad \begin{cases} \mathbb{F}_2 \text{-degree } d_2 \leq 7 \\ \mathbb{F}_p \text{-degree } d_p \leq 11 \end{cases}$

[[]Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs.

Instantiation from Goldreich-style Random Local PRGs [Gol00]

$$k\text{-local PRG: } \{0,1\}^{\ell} \to \{0,1\}^{\ell^s} \text{ with stretch } s$$
$$\mathsf{PRG}(\mathbf{x})_i = P(x_{i_1},\ldots,x_{i_k}) \text{ for } P \colon \{0,1\}^k \to \{0,1\} \text{ and } \{i_1,\ldots,i_k\} \subset_R [\ell]$$

TSPA

$$P(x_1, \dots, x_5) = x_1 \oplus x_2 \oplus x_3 \oplus (x_2 \oplus x_4) \land (x_3 \oplus x_5) \qquad \begin{cases} \mathbb{F}_2\text{-degree } d_2 = 2 \\ \mathbb{F}_p\text{-degree } d_p = 3 \end{cases}$$

XOR₄-Majority₇ (better stretch)

$$P(x_1, \dots, x_{11}) = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus \mathsf{Majority}(x_5, \dots, x_{11}) \qquad \begin{cases} \mathbb{F}_2 \text{-degree } d_2 \leq 7 \\ \mathbb{F}_p \text{-degree } d_p \leq 11 \end{cases}$$

(_____

. . . .

$$[r_i]_2^{d_2} \leftarrow P_2([x_{i_1}]_2, \dots, [x_{i_k}]_2) \qquad [r_i]_p^{d_p} \leftarrow P_p([x_{i_1}]_p, \dots, [x_{i_k}]_p)$$

[Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs.

Performance and Summary

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/

[[]BBMR\$21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[[]BBDKORS23] Baum et al. (2023), "Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head".

Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/ Interactive VOLE-ZK with $p = 2^{61} - 1$ - Comparison with A2B [BBMRS21] (edaBits)

Improvements	LAN Time	WAN Time	Communication	#VOLEs
2 ¹⁰ conversions	2–3×	2–3×	$2 \times$	
2 ²⁰ conversions	0.3–0.5×	\approx	10 imes	
fixed-point multiplication	5×	13×	10 imes	

- amortized ≈ 0 VOLEs per conversion for XOR4-Maj_7

[[]BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[[]BBDKORS23] Baum et al. (2023), "Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head".

Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/ Interactive VOLE-ZK with $p = 2^{61} - 1$ - Comparison with A2B [BBMRS21] (edaBits)

Improvements	LAN Time	WAN Time	Communication	#VOLEs
2 ¹⁰ conversions	2–3×	2–3×	$2 \times$	
2 ²⁰ conversions	0.3–0.5×	\approx	10 imes	
fixed-point multiplication	5×	13 imes	10 imes	

- amortized ≈ 0 VOLEs per conversion for XOR4-Maj7

VOLE-in-the-Head [BBDKORS23] with $p \approx 2^{128}$

• VOLEs are more expensive \rightsquigarrow estimated 20–150 \times smaller proofs

[[]BBMRS21] Baum et al. (2021), "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k". [BBDKORS23] Baum et al. (2023), "Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head".

Summary

VOLE-based Zero-Knowledge

- lightweight, fast, linear size
- non-interactive with VOLE-in-the-Head

Summary

VOLE-based Zero-Knowledge

- lightweight, fast, linear size
- non-interactive with VOLE-in-the-Head

Low-Bandwidth Conversions from Low-Degree PRGs

- $\bullet~$ Up to 10 $\times~$ less communication, a bit more computation
- Vastly fewer VOLEs needed \rightsquigarrow great for VOLE-in-the-Head
- Instantiations from Goldreich PRGs and sparse LPN
- More: Fixed-point arithmetic, comparisons, bit extraction, ReLU

Summary

VOLE-based Zero-Knowledge

- lightweight, fast, linear size
- non-interactive with VOLE-in-the-Head

Low-Bandwidth Conversions from Low-Degree PRGs

- $\bullet~$ Up to 10 $\times~$ less communication, a bit more computation
- Vastly fewer VOLEs needed \rightsquigarrow great for VOLE-in-the-Head
- Instantiations from Goldreich PRGs and sparse LPN
- More: Fixed-point arithmetic, comparisons, bit extraction, ReLU

Open Question

• How to efficiently commit to even fewer bits over a large field?

Thank you!

References i

[BBDKORS23]

- C. Baum, <u>Lennart Braun</u>, C. Delpech de Saint Guilhem, M. Klooß, E. Orsini, L. Roy, and P. Scholl. **"Publicly Verifiable Zero-Knowledge** and Post-Quantum Signatures from VOLE-in-the-Head". In: CRYPTO 2023, Part V. Aug. 2023.
- [BBMRS21] C. Baum, Lennart Braun, A. Munch-Hansen, B. Razet, and P. Scholl. "Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k". In: ACM CCS 2021. Nov. 2021.
- [BBMORRRS24] C. Baum, W. Beullens, S. Mukherjee, E. Orsini, S. Ramacher, C. Rechberger, L. Roy, and P. Scholl. "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures". In: ASIACRYPT 2024, Part I. Dec. 2024.

[BDOZ11]

R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. **"Semi-homomorphic Encryption and Multiparty Computation".** In: <u>EUROCRYPT 2011</u>. May 2011.

References ii

[CF13]	D. Catalano and D. Fiore. "Practical Homomorphic MACs for Arithmetic Circuits". In: EUROCRYPT 2013. May 2013.
[DIO21]	S. Dittmer, Y. Ishai, and R. Ostrovsky. "Line-Point Zero Knowledge and Its Applications". In: <u>ITC 2021</u> . July 2021.
[EGKRS20]	D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits". In: <u>CRYPTO 2020, Part II</u> . Aug. 2020.
[Gol00]	O. Goldreich. Candidate One-Way Functions Based on Expander Graphs. Cryptology ePrint Archive, Report 2000/063. 2000. URL: https://eprint.iacr.org/2000/063.
[RW19]	D. Rotaru and T. Wood. "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security". In: INDOCRYPT 2019. Dec. 2019.

- [WYXKW21] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang. "Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning". In: <u>USENIX Security 2021</u>. Aug. 2021.
- [YSWW21] K. Yang, P. Sarkar, C. Weng, and X. Wang. "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". In: ACM CCS 2021. Nov. 2021.

Emoji graphics licensed under CC-BY 4.0: https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other contributors

Predicate	(d_2, d_p)	l	5	ℓ^{s}
TSPA	(2,3)	4096	1.19	19893
XOR ₄ -MAJ ₇	(4, 11)	1024	2	2 ²⁰

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints

[YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". [BBMORRRS24] Baum et al. (2024), "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures".

Recall: QuickSilver [YSWW21] can be used to prove degree-*d* constraints **Another view** [BBMORRRS24]:

- View [a] as degree-1 commitment: $[a]^1$: $q_a = a \cdot \Delta + v_a$

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". [BBMORRRS24] Baum et al. (2024), "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures".

Recall: QuickSilver [YSWW21] can be used to prove degree-*d* constraints **Another view** [BBMORRRS24]:

- View [a] as degree-1 commitment: $[a]^1$: $q_a = a \cdot \Delta + v_a$
- Multiplying $[a]^1$ and $[b]^1$ results in a degree-2 commitment

$$[a \cdot b]^2: \quad q_a \cdot q_b = a \cdot b \cdot \Delta^2 + (a \cdot v_b + b \cdot v_a) \cdot \Delta + (v_a \cdot v_b)$$

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". [BBMORRRS24] Baum et al. (2024), "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures".

Recall: QuickSilver [YSWW21] can be used to prove degree-*d* constraints **Another view** [BBMORRRS24]:

- View [a] as degree-1 commitment: $[a]^1$: $q_a = a \cdot \Delta + v_a$
- Multiplying $[a]^1$ and $[b]^1$ results in a degree-2 commitment

$$[a \cdot b]^2: \quad \mathbf{q}_a \cdot \mathbf{q}_b = [a \cdot b] \cdot \mathbf{\Delta}^2 + (a \cdot v_b + b \cdot v_a) \cdot \mathbf{\Delta} + (v_a \cdot v_b)$$

– ... adding $[c]^1$ needs shift by Δ :

$$[a \cdot b + c]^2: \quad q_a \cdot q_b + \Delta \cdot q_c = (a \cdot b) + c) \cdot \Delta^2 + ((a \cdot v_b + b \cdot v_a) + v_c) \cdot \Delta + (v_a \cdot v_b)$$

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". [BBMORRR\$24] Baum et al. (2024), "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures".

Recall: QuickSilver [YSWW21] can be used to prove degree-*d* constraints **Another view** [BBMORRRS24]:

- View [a] as degree-1 commitment: $[a]^1$: $q_a = a \cdot \Delta + v_a$
- Multiplying $[a]^1$ and $[b]^1$ results in a degree-2 commitment

$$[a \cdot b]^2: \quad \mathbf{q}_a \cdot \mathbf{q}_b = [a \cdot b] \cdot \mathbf{\Delta}^2 + (a \cdot v_b + b \cdot v_a) \cdot \mathbf{\Delta} + (v_a \cdot v_b)$$

- ... adding
$$[c]^1$$
 needs shift by Δ :

$$[a \cdot b + c]^2: \quad q_a \cdot q_b + \Delta \cdot q_c = (a \cdot b) + c) \cdot \Delta^2 + ((a \cdot v_b + b \cdot v_a) + v_c) \cdot \Delta + (v_a \cdot v_b)$$

 \implies In general:

[[]YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". [BBMORRRS24] Baum et al. (2024), "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures".

Recall: QuickSilver [YSWW21] can be used to prove degree-*d* constraints **Another view** [BBMORRRS24]:

- View [a] as degree-1 commitment: $[a]^1$: $q_a = a \cdot \Delta + v_a$
- Multiplying $[a]^1$ and $[b]^1$ results in a degree-2 commitment

$$[a \cdot b]^2: \quad q_a \cdot q_b = a \cdot b \cdot \Delta^2 + (a \cdot v_b + b \cdot v_a) \cdot \Delta + (v_a \cdot v_b)$$

– ... adding $[c]^1$ needs shift by Δ :

$$[a \cdot b + c]^2: \quad q_a \cdot q_b + \Delta \cdot q_c = (a \cdot b) + c) \cdot \Delta^2 + ((a \cdot v_b + b \cdot v_a) + v_c) \cdot \Delta + (v_a \cdot v_b)$$

\implies In general:

- $\ [a+b]^{\max(d_a+d_b)} \leftarrow [a]^{d_a} + [b]^{d_b} \text{ and } [a \cdot b]^{d_a+d_b} \leftarrow [a]^{d_a} \cdot [b]^{d_b}$
- for degree-*d* circuit C: $[y]^d \leftarrow C([x]^1)$

$$[y]^{d}: \quad q_{y} = \underbrace{y} \cdot \underline{\Delta}^{d} + \sum_{k=0}^{d-1} \underbrace{p_{k}} \cdot \underline{\Delta}^{k} \qquad \rightsquigarrow \qquad \text{proof size } d \text{ field elements} \\ \text{soundness error } d/|\mathbb{F}|$$

[YSWW21] Yang et al. (2021), "QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field". [BBMORRR\$24] Baum et al. (2024), "One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures". We do not are about \mathbb{F}_2 ! Generate committed bits over \mathbb{F}_p only:

- Commit to seed $[\mathbf{x}]_p$ and prove all $x_i \in \{0, 1\}$
- Generate committed bits $[r_i]_p^{d_p} \leftarrow P_p([x_{i_1}]_p, \dots, [x_{i_k}]_p)$
We do not are about \mathbb{F}_2 ! Generate committed bits over \mathbb{F}_p only:

- Commit to seed $[\mathbf{x}]_p$ and prove all $x_i \in \{0, 1\}$
- Generate committed bits $[r_i]_p^{d_p} \leftarrow P_p([x_{i_1}]_p, \dots, [x_{i_k}]_p)$

Fixed-point Multiplication: Given $([a]_p, [b]_p, [c]_p)$ prove $c = \lfloor (a \cdot b)/2^f \rfloor$:

• Use the $[r_i]_p^{d_p}$ to commit to bit decomposition of $c' := a \cdot b$:

$$([c'_0]^{d_p}_{p},\ldots,[c'_{m-1}]^{d_p}_{p})$$

• Prove

$$\left([a \cdot b]_{p}^{2} = \sum_{k=0}^{m-1} 2^{k} \cdot [c_{k}']_{p}^{d_{p}} \right) \quad \bigwedge \quad \left([c]_{p} = \sum_{k=f}^{m-1} 2^{k-f} \cdot [c_{k}']_{p}^{d_{p}} \right)$$