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Zero-Knowledge Proofs (of Knowledge)

Prover P Verifier V
| believe you.
e Security Properties:

e Soundness
e Zero-Knowledge
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Zero-Knowledge Proofs (of Knowledge) for Circuits

Prover P

e Security Properties:

e Soundness
e Zero-Knowledge

e C is a circuit

e Boolean over F> = {0,1}
e arithmetic over a larger ring or field

Wout



Hybrid Circuits and Mixed Arithmetic

Boolean and arithmetic circuits have different strengths:
e Boolean over IF,: e.g., simple comparisons
e arithmetic over IF,,: cheap addition/multiplication

= combine both into a hybrid circuit
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Hybrid Circuits and Mixed Arithmetic

Conversion Gates
Boolean and arithmetic circuits have different strengths:
. ) x €F, Xo X1 -+ Xm—1€ [
e Boolean over IF,: e.g., simple comparisons l K

e arithmetic over IF,,: cheap addition/multiplication

= combine both into a hybrid circuit @

More Gadgets:

e (fixed-point) truncation: x — |x/2%] Xo X1 -+ Xm-1 €F, x €F,
e MSB extraction: x — X1

m—1
o ReLU: x> (1 = xm-1) - x such that x = Zzi‘xi

i=0
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1. Introduction to VOLE-based Zero-Knowledge
2. Proving Conversions

3. Committed Bits from Low-Degree PRGs



VOLE-based Zero-Knowledge
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Space of Zero-Knowledge Proofs

Proof size

MPC-in-the-Head . .
linear-size w/ factor ~ 1
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Space of Zero-Knowledge Proofs

MPC-in-the-Head . .
linear-size w/ factor ~ 1

~~ publicly-verifiable via VOLE-in-the-Head

Proof size

Ligero
STARK

Groth16

Prover runtime



Vector Oblivious Linear Evaluation (VOLE)

Prover P Verifier V

(VOLE Sender) (VOLE Receiver)
w e " AeF
veR

FVOLE  |q=w-A+v

[CF13] Catalano and Fiore (2013), “Practical Homomorphic MACs for Arithmetic Circuits’.

[BDOZ11] Bendlin et al. (2011), “Semi-homomorphic Encryption and Multiparty Computation”.

p(X)=w X+ v

Y



Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Prover P Verifier V
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A
w e " AerF
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q
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Vector Oblivious Linear Evaluation (VOLE) as Homo

orphic Commitments

Prover P Verifier V
(VOLE Sender) (VOLE Receiver)
w eg F” AerT
vegE”

FVOLE  |q=w-A+v

(random)

Linearly Homomorphic Commitments (cf. [CF13]; [BDOZ11]) v

use g; = w; - A + v; as information-theoretic MAC on w;

e hiding since 'v; is random

e breaking binding = guessing A = prob. 1/|F|

[CF13] Catalano and Fiore (2013), “Practical Homomorphic MACs for Arithmetic Circuits’.

[BDOZ11] Bendlin et al. (2011), “Semi-homomorphic Encryption and Multiparty Computation”.

p(X)=w X+ v

p(X)=w - X+

Y




Commit & Prove Zero-Knowledge
w1 Wy -+ Wp

Prover P
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Commit & Prove Zero-Knowledge

Prover P

Ingredients:

1. linearly homomorphic commitments [ -]

— can compute [z] +— a-[x] +[y] + b

[Wout]
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Commit & Prove Zero-Knowledge

Prover P

Ingredients:
1. linearly homomorphic commitments [ -]
— can compute [z] < a-[x] +[y] + b

2. multiplication check

— given ([a], [b], [c]), verify a- b L

[Wout]
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Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

QuickSilver Check: Convert the three MAC equations gx = x - A + v for x € {a, b, c}
into a polynomial in A:

A-go—q,-qp = (c—a-b) - A% + (ve—a-vp—b-vy) - A + (—v5-w)

—_——
known by V =0 if P honest known by P known by P
[ Generalizable to higher-degree constraints: )
o [a+ b|max(detds) ¢ [3]% 4 [b]% and [a- b]%te <« [a]% - [b]%D
e for degree-d circuit C: [y]? «+ C([x]!)
d—1
yl9: q, =y - A + Z px - Ak ~~ proof size d field elements
k=0
. J

[D1O21] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications’.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. 9



Conversions




Emulating F, Arithmetic over F,

Bit decomposition

oo = 3 2 [xl,
k=0
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Emulating F, Arithmetic over F,

Bit decomposition
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k=0 k=0
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Emulating F, Arithmetic over F,

Bit decomposition

o= 32 Il A Al (L ) =0
k=0 k=0

Arithmetizing Boolean operations:

XANy=x-y
for x,y € {0,1}
X@y=x+y—2-x-y

X Committing to [xop, - - - , [Xm—1], costs m* = (log p)? bits of communication

X XOR not F,-linear ~» no longer free

11



Conversions Based on (Extended) Doubly Authenticated Bits

Given [x]p, [x]2, verify x =Y, 2" - x; with m := log p

[RW19] Rotaru and Wood (2019), “MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security”.
[EGKRS20] Escudero et al. (2020), “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits’.
[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k”.

12

ITWYXKW21]1 Weng et al. (2021) “Mvstiaue: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning’ .
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Preprocessing Creation Usage
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([r]ps [r]2) + consistency check X =[rl. & d

reg{0,1}" ; < linear
[Xlp = 222" ([rilp + di — 2di[ri],)

edaBits [EGKRS20] B - m bits correction: d :=x —r € F,

([r]p, [r]2) B € {3,4,5} [x]p =[], + d

r=>%,2"-rerF, + cut'n’choose

: [x]2 = [r]2 + d < Boolean addition circuit X
consistency check

- need large batches for B =3 1
~» VOLE-ZK: A2B/Mystique [BBMRS21]; [WYXKW21]
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Can we create daBits with low communication?
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e commit to ¢ daBits and prove consistency
e one-time cost
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Creating daBits with Low Communication — Our Approach

1. Commit to short seed x € {0,1}¢ over both F» and F, ~ ([x]2, [x],)

e commit to ¢ daBits and prove consistency

e one-time cost
2. Non-interactively apply a low-degree PRG to obtain long y € {0,1}*

e use higher-degree QuickSilver

~~ get y committed over both fields ~ ([y]%, [y]g")
3. Use daBits ([y/]%, [y,-]g”) for conversions and other gadgets #: (reduce degree)

4. Reuse ¢ bits of the output as seed for next iteration

14



Mixed Low-Degree PRGs

Instantiation from Goldreich-style Random Local PRGs [Gol00]

k-local PRG: {0,1} — {0,1}" with stretch s
PRG(x); = P(Xj, -, x;,) for P: {0,1}% — {0,1} and {i1,..., ik} Cr [{]

[Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs. 15
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Mixed Low-Degree PRGs

Instantiation from Goldreich-style Random Local PRGs [Gol00]

k-local PRG: {0,1} — {0,1}" with stretch s
PRG(x); = P(Xj, -, x;,) for P: {0,1}% — {0,1} and {i1,..., ik} Cr [{]

TSPA Fod y 5
-degree d» =
P(x1,...,x5) =x1 B x2 D x3D (x2 D x4) A (X3 D x5) S 2
F,-degree d, =3

XOR4-Majority, (better stretch)
Fo-degree do < 7

P(x1,...,x11) = x1 ® x2 & x3 D x4 & Majority(xs, . .., x11)
Fp-degree d, < 11

[ri1$2 + Pa([Xil2s- - - s [xi]2) 117 < Po([xilps - - - [Xi o)

[Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs. 15
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Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/

[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".
[BBDKORS23] Baum et al. (2023), “Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head". 17


https://github.com/AarhusCrypto/vole-zk-conversions/

Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/

Interactive VOLE-ZK with p = 261 — 1 — Comparison with A2B [BBMRS21] (edaBits)

LAN Time WAN Time Communication #VOLEs

Improvements

210 conversions 2-3x 2-3x 2%
220 conversions 0.3-0.5x & 10x
fixed-point multiplication 5x 13x 10x

e amortized ~ 0 VOLEs per conversion for XORs-Maj;

[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".
17

[BBDKORS23] Baum et al. (2023), “Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head".
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Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/

Interactive VOLE-ZK with p = 261 — 1 — Comparison with A2B [BBMRS21] (edaBits)

Improvements LAN Time WAN Time Communication #VOLEs
210 conversions 2-3x 2-3x 2%
220 conversions 0.3-0.5x ~ 10x
fixed-point multiplication 5x 13x 10x

e amortized ~ 0 VOLEs per conversion for XORs-Maj;

VOLE-in-the-Head [BBDKORS23] with p ~ 2128

e VOLEs are more expensive ~ estimated 20-150x smaller proofs

[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[BBDKORS23] Baum et al. (2023), “Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head". 17
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VOLE-based Zero-Knowledge
o lightweight, fast, linear size
e non-interactive with VOLE-in-the-Head
Low-Bandwidth Conversions from Low-Degree PRGs
e Up to 10x less communication, a bit more computation
e Vastly fewer VOLEs needed ~~ great for VOLE-in-the-Head
e Instantiations from Goldreich PRGs and sparse LPN
e More: Fixed-point arithmetic, comparisons, bit extraction, RelLU

Open Question

e How to efficiently commit to even fewer bits over a large field?

Thank yo

<
c
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PRG Parameters

Predicate (do, dp) L s Il

TSPA (2,3) 4096 1.19 19893
XOR4-MAJ; (4,11) 1024 2 220
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High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints
Another view [BBMORRRS24]:

— View [a] as degree-1 commitment: [a]': g, = a - A + v,
— Multiplying [a]* and [b]* results in a degree-2 commitment

[a-b]*>: qa-gp =la-b- A%+ (a-vp+b-vy) - A + (Va-wp)
— ...adding [c]! needs shift by A:
[a-b+c]®: Ga-qp+A-g = (a-b)+c) A2+ ((a-vp+b-va)+ve) A+ (va-vp)

—> In general:
_ [a+ b]max(da+db) i [a]da + [b]db and [a . b]da+db — [a]da ) [b]db
— for degree-d circuit C: [y]? + C([x]")

[y]*: _ X dif Ak proof size d field elements
VT G- = P soundness error d/|F| .

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.
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Fixed-Point Arithmetic Even Cheaper

We do not are about F»! Generate committed bits over IF,, only:

e Commit to seed [x], and prove all x; € {0,1}

e Generate committed bits [r,-]z” — Po([xilps - - -5 [Xi]p)
Fixed-point Multiplication: Given ([a],, [b],, [c],) prove c = |(a- b)/2f |:
e Use the [r,-]g" to commit to bit decomposition of ¢’ := a- b:
dy dy
([l - s [em-1]s")

e Prove

([a-b]f,:sz-[cL]z") A ([c]pzzzk-f-[cu:i‘)

k=0 k=f
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