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Zero-Knowledge Proofs (of Knowledge)

Prover P Verifier V

I know w s.t. C(w) = 1!

I believe you.

• Security Properties:
• Soundness
• Zero-Knowledge

• C is a circuit
• Boolean over F2 = {0, 1}

• arithmetic over a larger ring or field



2

Zero-Knowledge Proofs (of Knowledge) for Circuits

Prover P

Verifier V

I know w s.t. C(w) = 1!

I believe you.

w1 w2 · · · wn

wout

⊕

∧C
• Security Properties:

• Soundness
• Zero-Knowledge

• C is a circuit
• Boolean over F2 = {0, 1}

• arithmetic over a larger ring or field
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Zero-Knowledge Proofs (of Knowledge) for Circuits

Prover P

Verifier V

I know w s.t. C(w) = 1!

I believe you.

w1 w2 · · · wn

wout

+

×C
• Security Properties:

• Soundness
• Zero-Knowledge

• C is a circuit
• Boolean over F2 = {0, 1}
• arithmetic over a larger ring or field
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Hybrid Circuits and Mixed Arithmetic

Boolean and arithmetic circuits have different strengths:

• Boolean over F2: e.g., simple comparisons

• arithmetic over Fp: cheap addition/multiplication

=⇒ combine both into a hybrid circuit

More Gadgets:

• (fixed-point) truncation: x 7→ ⌊x/2k⌋
• MSB extraction: x 7→ xm−1

• ReLU: x 7→ (1− xm−1) · x

Conversion Gates

A → B

B → A

x ∈ Fp

x0 x1 · · · xm−1 ∈ F2

x ∈ Fp

x0 x1 · · · xm−1∈ F2

such that x =
m−1∑
i=0

2i · xi
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This Talk

1. Introduction to VOLE-based Zero-Knowledge

2. Proving Conversions

3. Committed Bits from Low-Degree PRGs
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VOLE-based Zero-Knowledge
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Space of Zero-Knowledge Proofs

Proof size

Prover runtime

Ligero

STARK

Groth16

MPC-in-the-Head

VOLE-ZK

linear-size w/ factor ≈ 1
designated verifier

⇝ publicly-verifiable via VOLE-in-the-Head
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Vector Oblivious Linear Evaluation (VOLE)

as Homomorphic Commitments

FVOLE

Prover P
(VOLE Sender)

Verifier V
(VOLE Receiver)

w ∈ Fn

v ∈ Fn

∆ ∈ F

q = w ·∆+ v

Linearly Homomorphic Commitments (cf. [CF13]; [BDOZ11])
use qi = wi · ∆ + vi as information-theoretic MAC on wi

• hiding since vi is random

• breaking binding =⇒ guessing ∆ =⇒ prob. 1/|F|

[CF13] Catalano and Fiore (2013), “Practical Homomorphic MACs for Arithmetic Circuits”.

[BDOZ11] Bendlin et al. (2011), “Semi-homomorphic Encryption and Multiparty Computation”.

p(X ) = w · X + v

q

v

∆

v ′

p′(X ) = w ′ · X + v ′
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Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments
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(random)

Prover P
(VOLE Sender)

Verifier V
(VOLE Receiver)

w ∈R Fn

v ∈R Fn

∆ ∈R F

q = w ·∆+ v

Linearly Homomorphic Commitments (cf. [CF13]; [BDOZ11])
use qi = wi · ∆ + vi as information-theoretic MAC on wi

• hiding since vi is random

• breaking binding =⇒ guessing ∆ =⇒ prob. 1/|F|

[CF13] Catalano and Fiore (2013), “Practical Homomorphic MACs for Arithmetic Circuits”.

[BDOZ11] Bendlin et al. (2011), “Semi-homomorphic Encryption and Multiparty Computation”.

p(X ) = w · X + v

q

v

∆

v ′

p′(X ) = w ′ · X + v ′



8

Commit & Prove Zero-Knowledge

Prover P

I know w s. t. C(w) = 1!

w1 w2 · · · wn

wout

+

×C
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Commit & Prove Zero-Knowledge

Prover P

I know w s. t. C(w) = 1!

[w1] [w2] · · · [wn]

[wout]

+

×C

[wi ]

[wj ]

Ingredients:

1. linearly homomorphic commitments [ · ]

– can compute [z]← a · [x ] + [y ] + b

2. multiplication check

– given ([a], [b], [c]), verify a · b ?
= c
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Verifying Multiplications – LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a], [b], [c]), verify that a · b = c in F

QuickSilver Check: Convert the three MAC equations qx = x · ∆ + vx for x ∈ {a, b, c}
into a polynomial in ∆:

∆ · qc − qa · qb︸ ︷︷ ︸
known by V

= (c − a · b)︸ ︷︷ ︸
= 0 if P honest

· ∆2 + (vc − a · vb − b · va)︸ ︷︷ ︸
known by P

· ∆ + (−va · vb)︸ ︷︷ ︸
known by P

Soundness: cheating P needs to come up with p(X ) = e2 · X 2 + e1 · X + e0 such that

– p ( ∆ ) = 0, and

– e2 := c − a · b ̸= 0

=⇒ p has degree 2 =⇒ p has at most 2 roots =⇒ soundness error 2/|F|

use a random linear combination to
verify many multiplications

Generalizable to higher-degree constraints:

• [a+ b]max(da+db) ← [a]da + [b]db and [a · b]da+db ← [a]da · [b]db

• for degree-d circuit C: [y ]d ← C([x ]1)

[y ]d : qy = y · ∆d +
d−1∑
k=0

pk · ∆k ⇝ proof size d field elements

[DIO21] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications”.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.
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Conversions
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Emulating F2 Arithmetic over Fp

Bit decomposition

[x ]p =
m−1∑
k=0

2k · [xi ]p

∧
m−1∧
k=0

[xi ]p · (1− [xi ]p) = 0

Arithmetizing Boolean operations:

x ∧ y = x · y
x ⊕ y = x + y − 2 · x · y

for x , y ∈ {0, 1}

Committing to [x0]p, . . . , [xm−1]p costs m2 = (log p)2 bits of communication

XOR not Fp-linear ⇝ no longer free
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Conversions Based on (Extended) Doubly Authenticated Bits

Given [x ]p, [x ]2, verify x =
∑

i 2
i · xi with m := log p

Preprocessing Creation Usage

daBits [RW19]

([r ]p, [r ]2)
r ∈R {0, 1}m

m2 bits
+ consistency check

correction: d := x ⊕ r ∈ {0, 1}m

[x ]2 = [r ]2 ⊕ d
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Can we create daBits with low communication?
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daBits from Low-Degree PRGs

7→
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Creating daBits with Low Communication – Our Approach

1. Commit to short seed x ∈ {0, 1}ℓ over both F2 and Fp ⇝ ([x ]2, [x ]p)
• commit to ℓ daBits and prove consistency
• one-time cost

2. Non-interactively apply a low-degree PRG to obtain long y ∈ {0, 1}ℓs

• use higher-degree QuickSilver
⇝ get y committed over both fields ⇝ ([y ]d22 , [y ]dpp )

3. Use daBits ([yi ]
d2
2 , [yi ]

dp
p ) for conversions and other gadgets

4. Reuse ℓ bits of the output as seed for next iteration

(reduce degree)
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Mixed Low-Degree PRGs

Instantiation from Goldreich-style Random Local PRGs [Gol00]

k-local PRG: {0, 1}ℓ → {0, 1}ℓ
s

with stretch s

PRG(x)i = P(xi1 , . . . , xik ) for P : {0, 1}k → {0, 1} and {i1, . . . , ik} ⊂R [ℓ]

TSPA

P(x1, . . . , x5) = x1 ⊕ x2 ⊕ x3 ⊕ (x2 ⊕ x4) ∧ (x3 ⊕ x5)

{
F2-degree d2 = 2

Fp-degree dp = 3

XOR4-Majority7 (better stretch)

P(x1, . . . , x11) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕Majority(x5, . . . , x11)

{
F2-degree d2 ≤ 7

Fp-degree dp ≤ 11

[ri ]
d2
2 ← P2([xi1 ]2, . . . , [xik ]2) [ri ]

dp
p ← Pp([xi1 ]p, . . . , [xik ]p)

[Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs.
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Performance and Summary
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Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/

Interactive VOLE-ZK with p = 261 − 1 – Comparison with A2B [BBMRS21] (edaBits)

Improvements LAN Time WAN Time Communication #VOLEs

210 conversions 2–3× 2–3× 2×
220 conversions 0.3–0.5× ≈ 10×
fixed-point multiplication 5× 13× 10×

• amortized ≈ 0 VOLEs per conversion for XOR4-Maj7

VOLE-in-the-Head [BBDKORS23] with p ≈ 2128

• VOLEs are more expensive ⇝ estimated 20–150× smaller proofs

[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k”.

[BBDKORS23] Baum et al. (2023), “Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head”.

https://github.com/AarhusCrypto/vole-zk-conversions/
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Summary

VOLE-based Zero-Knowledge

• lightweight, fast, linear size

• non-interactive with VOLE-in-the-Head

Low-Bandwidth Conversions from Low-Degree PRGs

• Up to 10× less communication, a bit more computation

• Vastly fewer VOLEs needed ⇝ great for VOLE-in-the-Head

• Instantiations from Goldreich PRGs and sparse LPN

• More: Fixed-point arithmetic, comparisons, bit extraction, ReLU

Open Question

• How to efficiently commit to even fewer bits over a large field?

Thank you!
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1

PRG Parameters

Predicate (d2, dp) ℓ s ℓs

TSPA (2, 3) 4096 1.19 19 893
XOR4-MAJ7 (4, 11) 1024 2 220



2

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints

Another view [BBMORRRS24]:

– View [a] as degree-1 commitment: [a]1 : qa = a · ∆ + va
– Multiplying [a]1 and [b]1 results in a degree-2 commitment

[a · b]2 : qa · qb = a · b · ∆2 + (a · vb + b · va) · ∆ + (va · vb)

– . . . adding [c]1 needs shift by ∆:

[a·b+c]2 : qa · qb +∆ · qc = (a · b) + c) · ∆2 + ((a · vb + b · va) + vc) · ∆ + (va · vb)

=⇒ In general:
– [a+ b]max(da+db) ← [a]da + [b]db and [a · b]da+db ← [a]da · [b]db
– for degree-d circuit C: [y ]d ← C([x ]1)

[y ]d : qy = y · ∆d +
d−1∑
k=0

pk · ∆k ⇝
proof size d field elements
soundness error d/|F|

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.

[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures”.



2

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints

Another view [BBMORRRS24]:

– View [a] as degree-1 commitment: [a]1 : qa = a · ∆ + va

– Multiplying [a]1 and [b]1 results in a degree-2 commitment

[a · b]2 : qa · qb = a · b · ∆2 + (a · vb + b · va) · ∆ + (va · vb)

– . . . adding [c]1 needs shift by ∆:

[a·b+c]2 : qa · qb +∆ · qc = (a · b) + c) · ∆2 + ((a · vb + b · va) + vc) · ∆ + (va · vb)

=⇒ In general:
– [a+ b]max(da+db) ← [a]da + [b]db and [a · b]da+db ← [a]da · [b]db
– for degree-d circuit C: [y ]d ← C([x ]1)

[y ]d : qy = y · ∆d +
d−1∑
k=0

pk · ∆k ⇝
proof size d field elements
soundness error d/|F|

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.

[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures”.



2

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints

Another view [BBMORRRS24]:

– View [a] as degree-1 commitment: [a]1 : qa = a · ∆ + va
– Multiplying [a]1 and [b]1 results in a degree-2 commitment

[a · b]2 : qa · qb = a · b · ∆2 + (a · vb + b · va) · ∆ + (va · vb)

– . . . adding [c]1 needs shift by ∆:

[a·b+c]2 : qa · qb +∆ · qc = (a · b) + c) · ∆2 + ((a · vb + b · va) + vc) · ∆ + (va · vb)

=⇒ In general:
– [a+ b]max(da+db) ← [a]da + [b]db and [a · b]da+db ← [a]da · [b]db
– for degree-d circuit C: [y ]d ← C([x ]1)

[y ]d : qy = y · ∆d +
d−1∑
k=0

pk · ∆k ⇝
proof size d field elements
soundness error d/|F|

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.

[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures”.



2

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints

Another view [BBMORRRS24]:

– View [a] as degree-1 commitment: [a]1 : qa = a · ∆ + va
– Multiplying [a]1 and [b]1 results in a degree-2 commitment

[a · b]2 : qa · qb = a · b · ∆2 + (a · vb + b · va) · ∆ + (va · vb)

– . . . adding [c]1 needs shift by ∆:

[a·b+c]2 : qa · qb +∆ · qc = (a · b) + c) · ∆2 + ((a · vb + b · va) + vc) · ∆ + (va · vb)

=⇒ In general:
– [a+ b]max(da+db) ← [a]da + [b]db and [a · b]da+db ← [a]da · [b]db
– for degree-d circuit C: [y ]d ← C([x ]1)

[y ]d : qy = y · ∆d +
d−1∑
k=0

pk · ∆k ⇝
proof size d field elements
soundness error d/|F|

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.

[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures”.



2

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints

Another view [BBMORRRS24]:

– View [a] as degree-1 commitment: [a]1 : qa = a · ∆ + va
– Multiplying [a]1 and [b]1 results in a degree-2 commitment

[a · b]2 : qa · qb = a · b · ∆2 + (a · vb + b · va) · ∆ + (va · vb)

– . . . adding [c]1 needs shift by ∆:

[a·b+c]2 : qa · qb +∆ · qc = (a · b) + c) · ∆2 + ((a · vb + b · va) + vc) · ∆ + (va · vb)

=⇒ In general:
– [a+ b]max(da+db) ← [a]da + [b]db and [a · b]da+db ← [a]da · [b]db

– for degree-d circuit C: [y ]d ← C([x ]1)

[y ]d : qy = y · ∆d +
d−1∑
k=0

pk · ∆k ⇝
proof size d field elements
soundness error d/|F|

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.

[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures”.



2

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints

Another view [BBMORRRS24]:

– View [a] as degree-1 commitment: [a]1 : qa = a · ∆ + va
– Multiplying [a]1 and [b]1 results in a degree-2 commitment

[a · b]2 : qa · qb = a · b · ∆2 + (a · vb + b · va) · ∆ + (va · vb)

– . . . adding [c]1 needs shift by ∆:

[a·b+c]2 : qa · qb +∆ · qc = (a · b) + c) · ∆2 + ((a · vb + b · va) + vc) · ∆ + (va · vb)

=⇒ In general:
– [a+ b]max(da+db) ← [a]da + [b]db and [a · b]da+db ← [a]da · [b]db
– for degree-d circuit C: [y ]d ← C([x ]1)

[y ]d : qy = y · ∆d +
d−1∑
k=0

pk · ∆k ⇝
proof size d field elements
soundness error d/|F|

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.

[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures”.



3

Fixed-Point Arithmetic Even Cheaper

We do not are about F2! Generate committed bits over Fp only:

• Commit to seed [x ]p and prove all xi ∈ {0, 1}
• Generate committed bits [ri ]

dp
p ← Pp([xi1 ]p, . . . , [xik ]p)

Fixed-point Multiplication: Given ([a]p, [b]p, [c]p) prove c = ⌊(a · b)/2f ⌋:

• Use the [ri ]
dp
p to commit to bit decomposition of c ′ := a · b:

([c ′0]
dp
p , . . . , [c ′m−1]

dp
p )

• Prove (
[a · b]2p =

m−1∑
k=0

2k · [c ′k ]
dp
p

) ∧ (
[c]p =

m−1∑
k=f

2k−f · [c ′k ]
dp
p

)
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