Low-Bandwidth Mixed Arithmetic in VOLE-Based ZK
from Low-Degree PRGs

. L] °
Amit Agarwal® Carsten Baum? Lennart Braun® Peter Scholl* l l I |'
INSTITUT
1 University of lllinois Urbana-Champaign 2Technical University of Denmark DE RECHERCHE
3Université Paris Cité, CNRS, IRIF 4Aarhus Universit ENINIORNMATIOUE
. : Y FONDAMENTALE

May 8, 2025 @ Eurocrypt 2025 /

AARHUS UNIVERSITY

Zero-Knowledge Proofs (of Knowledge)

Prover P Verifier V
| believe you.
e Security Properties:

e Soundness
e Zero-Knowledge

Zero-Knowledge Proofs (of Knowledge) for Circuits

Prover P

e Security Properties:

e Soundness
e Zero-Knowledge

e C is a circuit

e Boolean over F> = {0,1}

Wout

Zero-Knowledge Proofs (of Knowledge) for Circuits

Prover P

e Security Properties:

e Soundness
e Zero-Knowledge

e C is a circuit

e Boolean over F> = {0,1}
e arithmetic over a larger ring or field

Wout

Hybrid Circuits and Mixed Arithmetic

Boolean and arithmetic circuits have different strengths:
e Boolean over IF,: e.g., simple comparisons
e arithmetic over IF,,: cheap addition/multiplication

= combine both into a hybrid circuit

Hybrid Circuits and Mixed Arithmetic

Conversion Gates
Boolean and arithmetic circuits have different strengths: .
X €
e Boolean over IF,: e.g., simple comparisons P

e arithmetic over IF,,: cheap addition/multiplication

= combine both into a hybrid circuit @

Xo X1 -+ Xm—1 € [Fp
m—1
such that x = Z 2" x;
i=0

Hybrid Circuits and Mixed Arithmetic

Conversion Gates
Boolean and arithmetic circuits have different strengths:
.) x €F, Xo X1 -+ Xm—1€ [
e Boolean over IF,: e.g., simple comparisons l K

e arithmetic over IF,,: cheap addition/multiplication

= combine both into a hybrid circuit @

Xo X1 -+ Xm-1 €T, x e,
m—1
such that x = Z 2" x;
i=0

Hybrid Circuits and Mixed Arithmetic

Conversion Gates
Boolean and arithmetic circuits have different strengths:
.) x €F, Xo X1 -+ Xm—1€ [
e Boolean over IF,: e.g., simple comparisons l K

e arithmetic over IF,,: cheap addition/multiplication

= combine both into a hybrid circuit @

More Gadgets:

e (fixed-point) truncation: x — |x/2%] Xo X1 -+ Xm-1 €F, x €F,
e MSB extraction: x — X1

m—1
o ReLU: x> (1 = xm-1) - x such that x = Zzi‘xi

i=0

This Talk

1. Introduction to VOLE-based Zero-Knowledge

This Talk

1. Introduction to VOLE-based Zero-Knowledge

2. Proving Conversions

This Talk

1. Introduction to VOLE-based Zero-Knowledge
2. Proving Conversions

3. Committed Bits from Low-Degree PRGs

VOLE-based Zero-Knowledge

Space of Zero-Knowledge Proofs

Proof size

Prover runtime

Space of Zero-Knowledge Proofs

Proof size

Ligero
STARK

Groth16

Prover runtime

Space of Zero-Knowledge Proofs

MPC-in-the-Head
- VOLE-ZK

Proof size

Ligero
STARK

Groth16

Prover runtime

Space of Zero-Knowledge Proofs

Proof size

MPC-in-the-Head . .
linear-size w/ factor ~ 1

Ligero
STARK

Groth16

Prover runtime

Space of Zero-Knowledge Proofs

MPC-in-the-Head . .
linear-size w/ factor ~ 1

~~ publicly-verifiable via VOLE-in-the-Head

Proof size

Ligero
STARK

Groth16

Prover runtime

Vector Oblivious Linear Evaluation (VOLE)

Prover P Verifier V

(VOLE Sender) (VOLE Receiver)
w e " AeF
veR

FVOLE |q=w-A+v

[CF13] Catalano and Fiore (2013), “Practical Homomorphic MACs for Arithmetic Circuits’.

[BDOZ11] Bendlin et al. (2011), “Semi-homomorphic Encryption and Multiparty Computation”.

p(X)=w X+ v

Y

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Prover P Verifier V
(VOLE Sender) (VOLE Receiver)
A
w e " AerF
verF” p(X)=w- X +v

FVOLE |q=w-A+v

q
Linearly Homomorphic Commitments (cf. [CF13]; [BDOZ11]) v }
use g; = w; - A + v as information-theoretic MAC on w; l
e hiding since 'v; is random :

e breaking binding = guessing A = prob. 1/|F| 1 >
A

[CF13] Catalano and Fiore (2013), “Practical Homomorphic MACs for Arithmetic Circuits’.

[BDOZ11] Bendlin et al. (2011), “Semi-homomorphic Encryption and Multiparty Computation”.

Vector Oblivious Linear Evaluation (VOLE) as Homomorphic Commitments

Prover P Verifier V
(VOLE Sender) (VOLE Receiver)
A
w e " AerF
verF” p(X)=w- X +v

FVOLE |q=w-A+v

q
Linearly Homomorphic Commitments (cf. [CF13]; [BDOZ11]) v LX) =w X+
use g; = w; - A + v as information-theoretic MAC on w; l
e hiding since 'v; is random :
e breaking binding = guessing A = prob. 1/|F| 1 >
A

[CF13] Catalano and Fiore (2013), “Practical Homomorphic MACs for Arithmetic Circuits’.

[BDOZ11] Bendlin et al. (2011), “Semi-homomorphic Encryption and Multiparty Computation”.

Vector Oblivious Linear Evaluation (VOLE) as Homo

orphic Commitments

Prover P Verifier V
(VOLE Sender) (VOLE Receiver)
w eg F” AerT
vegE”

FVOLE |q=w-A+v

(random)

Linearly Homomorphic Commitments (cf. [CF13]; [BDOZ11]) v

use g; = w; - A + v; as information-theoretic MAC on w;

e hiding since 'v; is random

e breaking binding = guessing A = prob. 1/|F|

[CF13] Catalano and Fiore (2013), “Practical Homomorphic MACs for Arithmetic Circuits’.

[BDOZ11] Bendlin et al. (2011), “Semi-homomorphic Encryption and Multiparty Computation”.

p(X)=w X+ v

p(X)=w - X+

Y

Commit & Prove Zero-Knowledge
w1 Wy -+ Wp

Prover P

Wout

Commit & Prove Zero-Knowledge

Prover P

Ingredients:

1. linearly homomorphic commitments [-]

— can compute [z] +— a-[x] +[y] + b

[Wout]

8

Commit & Prove Zero-Knowledge

Prover P

Ingredients:
1. linearly homomorphic commitments [-]
— can compute [z] < a-[x] +[y] + b

2. multiplication check

— given ([a], [b], [c]), verify a- b L

[Wout]

8

Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

QuickSilver Check: Convert the three MAC equations g, = x - A + v, for x € {a,b,c}
into a polynomial in A:

A-go—qa-qp = (c—a-b) A% + (ve—a-vp—b-vs) - A + (—vs-w)

—_——
known by V =0 if P honest known by P known by P

[D1021] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications’.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. 9

Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

QuickSilver Check: Convert the three MAC equations g, = x - A + v, for x € {a,b,c}
into a polynomial in A:

A-go—qa-qp = (c—a-b) A% + (ve—a-vp—b-vs) - A + (—vs-w)

———
known by P known by P

known by V =0 if P honest

use a random linear combination to
verify many multiplications

[D1021] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications’.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. 9

Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

QuickSilver Check: Convert the three MAC equations g, = x - A + v, for x € {a,b,c}
into a polynomial in A:

A-go—qa-qp = (c—a-b) A% + (ve—a-vp—b-vs) - A + (—vs-w)

—_——
known by V =0 if P honest known by P known by P

Soundness: cheating P needs to come up with p(X) = e - X2+ e - X + g such that

[D1021] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications’.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. 9

Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

QuickSilver Check: Convert the three MAC equations g, = x - A + v, for x € {a,b,c}
into a polynomial in A:

A-go—qa-qp = (c—a-b) A% + (ve—a-vp—b-vs) - A + (—vs-w)

—_——
known by V =0 if P honest known by P known by P

Soundness: cheating P needs to come up with p(X) = e - X2+ e - X + g such that

- p(A)=0,and

[D1021] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications’.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. 9

Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

QuickSilver Check: Convert the three MAC equations g, = x - A + v, for x € {a,b,c}
into a polynomial in A:

A-go—qa-qp = (c—a-b) A% + (ve—a-vp—b-vs) - A + (—vs-w)

—_——
known by V =0 if P honest known by P known by P

Soundness: cheating P needs to come up with p(X) = e - X2+ e - X + g such that

- p(A)=0,and
- eo:=c—a-b #0

[D1021] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications’.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. 9

Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

QuickSilver Check: Convert the three MAC equations g, = x - A + v, for x € {a,b,c}
into a polynomial in A:

A-go—qa-qp = (c—a-b) A% + (ve—a-vp—b-vs) - A + (—vs-w)

—_——
known by V =0 if P honest known by P known by P

Soundness: cheating P needs to come up with p(X) = e - X2+ e - X + g such that
- p(A)=0,and
- e:=c—a-b #0

— p has degree 2 = p has at most 2 roots = soundness error 2/|F|

[D1O21] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications’.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. 9

Verifying Multiplications — LPZK [DIO21], QuickSilver [YSWW21]

Goal: Given ([a],[b],[c]), verify that a-b=cin F

QuickSilver Check: Convert the three MAC equations gx = x - A + v for x € {a, b, c}
into a polynomial in A:

A-go—q,-qp = (c—a-b) - A% + (ve—a-vp—b-vy) - A + (—v5-w)

—_——
known by V =0 if P honest known by P known by P
[Generalizable to higher-degree constraints:)
o [a+ b|max(detds) ¢ [3]% 4 [b]% and [a- b]%te <« [a]% - [b]%D
e for degree-d circuit C: [y]? «+ C([x]!)
d—1
yl9: q, =y - A + Z px - Ak ~~ proof size d field elements
k=0
. J

[D1O21] Dittmer, Ishai, and Ostrovsky (2021), “Line-Point Zero Knowledge and Its Applications’.

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”. 9

Conversions

Emulating F, Arithmetic over F,

Bit decomposition

oo = 3 2 [xl,
k=0

11

Emulating F, Arithmetic over F,

Bit decomposition

o= 32 Il A Al (L) =0
k=0 k=0

11

Emulating F, Arithmetic over F,

Bit decomposition

o= 32 Il A Al (L) =0
k=0 k=0

Arithmetizing Boolean operations:

XNy =x-
Y Y for x,y € {0,1}
X@y=x+y—2-x-y

11

Emulating F, Arithmetic over F,

Bit decomposition

o= 32 Il A Al (L) =0
k=0 k=0

Arithmetizing Boolean operations:

XANy=x-y
for x,y € {0,1}
X@y=x+y—2-x-y

X Committing to [xop, - - - , [Xm—1], costs m* = (log p)? bits of communication

X XOR not F,-linear ~» no longer free

11

Conversions Based on (Extended) Doubly Authenticated Bits

Given [x]p, [x]2, verify x =Y, 2" - x; with m := log p

[RW19] Rotaru and Wood (2019), “MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security”.
[EGKRS20] Escudero et al. (2020), “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits’.
[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k”.

12

ITWYXKW21]1 Weng et al. (2021) “Mvstiaue: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning’ .

Conversions Based on (Extended) Doubly Authenticated Bits

Given [x]p, [x]2, verify x =Y, 2" - x; with m := log p

Preprocessing Creation Usage

daBits [Rw19]

(Irlp: [r]2)
r €r {0, l}m

[RW19] Rotaru and Wood (2019), “MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security”.
[EGKRS20] Escudero et al. (2020), “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits’.
[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k”.

12

ITWYXKW21]1 Weng et al. (2021) “Mvstiaue: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning’ .

Conversions Based on (Extended) Doubly Authenticated Bits

Given [x]p, [x]2, verify x =Y, 2" - x; with m := log p

Preprocessing Creation Usage
daBits [Rw19] m? bits X

([r]ps [r]2) + consistency check

r cgp {0, l}m

[RW19] Rotaru and Wood (2019), “MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security”.
[EGKRS20] Escudero et al. (2020), “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits’.
[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k”.

12

ITWYXKW21]1 Weng et al. (2021) “Mvstiaue: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning’ .

Conversions Based on (Extended) Doubly Authenticated Bits

Given [x]p, [x]2, verify x =Y, 2" - x; with m := log p

Preprocessing Creation Usage

daBits [RW19] m? bits X correction: d .= x® r € {0,1}"

([r]ps [r]2) + consistency check X =[rl. & d

reg{0,1}" < linear

[x]p = 322" ([l + di — 2dj[ri],)

[RW19] Rotaru and Wood (2019), “MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security”.
[EGKRS20] Escudero et al. (2020), “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits’.
[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k”.

12

ITWYXKW21]1 Weng et al. (2021) “Mvstiaue: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning’ .

Conversions Based on (Extended) Doubly Authenticated Bits

Given [x]p, [x]2, verify x =Y, 2" - x; with m := log p

Preprocessing Creation Usage
daBits [RW19] m? bits X correction: d .= x® r € {0,1}"
([r]ps [r]2) + consistency check

. Xl =[rl.©d < linear @
rcr{0,1} [xlp =327 ([rilp + di — 2di[ri]p)

edaBits [EGKRS20]

(5. rl2)
r:ZiZ’-r,- ERFP

[RW19] Rotaru and Wood (2019), “MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security”.
[EGKRS20] Escudero et al. (2020), “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits’.
[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k”.

12

ITWYXKW21]1 Weng et al. (2021) “Mvstiaue: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning’ .

Conversions Based on (Extended) Doubly Authenticated Bits

Given [x]p, [x]2, verify x =Y, 2" - x; with m := log p

Preprocessing Creation Usage

daBits [RW19] m? bits X correction: d .= x® r € {0,1}"

([r]ps [r]2) + consistency check X =[rl. & d

reg{0,1}") < linear
[Xlp = 222" ([rilp + di — 2di[ri],)

edaBits [EGKRS20] B - m bits

([l [rl2) B € {3,4,5}

r=>%,2"-rerF, + cut'n’choose
consistency check

[RW19] Rotaru and Wood (2019), “MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security”.
[EGKRS20] Escudero et al. (2020), “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits’.
[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k”.

12

ITWYXKW21]1 Weng et al. (2021) “Mvstiaue: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning’ .

Conversions Based on (Extended) Doubly Authenticated Bits

Given [x]p, [x]2, verify x =Y, 2" - x; with m := log p

Preprocessing Creation Usage

daBits [RW19] m? bits X correction: d .= x® r € {0,1}"

([r]ps [r]2) + consistency check X =[rl. & d

reg{0,1}" ; < linear
[Xlp = 222" ([rilp + di — 2di[ri],)

edaBits [EGKRS20] B - m bits correction: d :=x —r € F,

([r]p, [r]2) B € {3,4,5} [x]p =[], + d

r=>%,2"-rerF, + cut'n’choose

: [x]2 = [r]2 + d < Boolean addition circuit X
consistency check

- need large batches for B =3 1
~» VOLE-ZK: A2B/Mystique [BBMRS21]; [WYXKW21]

[RW19] Rotaru and Wood (2019), “MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security”.

[EGKRS20] Escudero et al. (2020), “Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits’.

[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

12

ITWYXKW21]1 Weng et al. (2021) “Mvstiaue: Efficient Conversions for Zero-Knowledge Proofs with Applications to Machine Learning’ .

Can we create daBits with low communication?

Sl J6I6] |

< b bttt T
PPNl - luglag
! P
aSlop sl 1 |
TP - luglugt <

daBits from Low-Degree PRGs

Creating daBits with Low Communication — Our Approach

1. Commit to short seed x € {0,1}¢ over both F» and F, ~ ([x]2, [x],)

e commit to ¢ daBits and prove consistency
e one-time cost

14

Creating daBits with Low Communication — Our Approach

1. Commit to short seed x € {0,1}¢ over both F» and F, ~ ([x]2, [x],)

e commit to ¢ daBits and prove consistency

e one-time cost
2. Non-interactively apply a low-degree PRG to obtain long y € {0,1}*

e use higher-degree QuickSilver
~~ get y committed over both fields ~ ([y]%, [y]g")

14

Creating daBits with Low Communication — Our Approach

1. Commit to short seed x € {0,1}¢ over both F» and F, ~ ([x]2, [x],)

e commit to ¢ daBits and prove consistency

e one-time cost
2. Non-interactively apply a low-degree PRG to obtain long y € {0,1}*

e use higher-degree QuickSilver
~~ get y committed over both fields ~ ([y]%, [y]g")

3. Use daBits ([y/]%, [y,-]g”) for conversions and other gadgets #:

14

Creating daBits with Low Communication — Our Approach

1. Commit to short seed x € {0,1}¢ over both F» and F, ~ ([x]2, [x],)

e commit to ¢ daBits and prove consistency

e one-time cost
2. Non-interactively apply a low-degree PRG to obtain long y € {0,1}*

e use higher-degree QuickSilver

~~ get y committed over both fields ~ ([y]%, [y]g")
3. Use daBits ([y/]%, [y,-]g”) for conversions and other gadgets #: (reduce degree)

4. Reuse ¢ bits of the output as seed for next iteration

14

Mixed Low-Degree PRGs

Instantiation from Goldreich-style Random Local PRGs [Gol00]

k-local PRG: {0,1} — {0,1}" with stretch s
PRG(x); = P(Xj, -, x;,) for P: {0,1}% — {0,1} and {i1,..., ik} Cr [{]

[Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs. 15

Mixed Low-Degree PRGs

Instantiation from Goldreich-style Random Local PRGs [Gol00]

k-local PRG: {0,1} — {0,1}" with stretch s
PRG(x); = P(Xj, -, x;,) for P: {0,1}% — {0,1} and {i1,..., ik} Cr [{]

TSPA Fod y 5
-degree d» =
P(x1,...,x5) =x1 B x2 D x3D (x2 D x4) A (X3 D x5) S 2
F,-degree d, =3

[Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs. 15

Mixed Low-Degree PRGs

Instantiation from Goldreich-style Random Local PRGs [Gol00]

k-local PRG: {0,1} — {0,1}" with stretch s
PRG(x); = P(Xj, -, x;,) for P: {0,1}% — {0,1} and {i1,..., ik} Cr [{]

TSPA Fod y 5
-degree d» =
P(x1,...,x5) =x1 B x2 D x3D (x2 D x4) A (X3 D x5) S 2
F,-degree d, =3

XOR4-Majority, (better stretch)
Fo-degree do < 7

P(x1,...,x11) = x1 ® x2 & x3 D x4 & Majority(xs, . .., x11)
Fp-degree d, < 11

[Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs. 15

Mixed Low-Degree PRGs

Instantiation from Goldreich-style Random Local PRGs [Gol00]

k-local PRG: {0,1} — {0,1}" with stretch s
PRG(x); = P(Xj, -, x;,) for P: {0,1}% — {0,1} and {i1,..., ik} Cr [{]

TSPA Fod y 5
-degree d» =
P(x1,...,x5) =x1 B x2 D x3D (x2 D x4) A (X3 D x5) S 2
F,-degree d, =3

XOR4-Majority, (better stretch)
Fo-degree do < 7

P(x1,...,x11) = x1 ® x2 & x3 D x4 & Majority(xs, . .., x11)
Fp-degree d, < 11

[ri1$2 + Pa([Xil2s- - - s [xi]2) 117 < Po([xilps - - - [Xi o)

[Gol00] Goldreich (2000), Candidate One-Way Functions Based on Expander Graphs. 15

Performance and Summary

16

Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/

[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".
[BBDKORS23] Baum et al. (2023), “Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head". 17

https://github.com/AarhusCrypto/vole-zk-conversions/

Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/

Interactive VOLE-ZK with p = 261 — 1 — Comparison with A2B [BBMRS21] (edaBits)

LAN Time WAN Time Communication #VOLEs

Improvements

210 conversions 2-3x 2-3x 2%
220 conversions 0.3-0.5x & 10x
fixed-point multiplication 5x 13x 10x

e amortized ~ 0 VOLEs per conversion for XORs-Maj;

[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".
17

[BBDKORS23] Baum et al. (2023), “Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head".

https://github.com/AarhusCrypto/vole-zk-conversions/

Performance

Rust Implementation: https://github.com/AarhusCrypto/vole-zk-conversions/

Interactive VOLE-ZK with p = 261 — 1 — Comparison with A2B [BBMRS21] (edaBits)

Improvements LAN Time WAN Time Communication #VOLEs
210 conversions 2-3x 2-3x 2%
220 conversions 0.3-0.5x ~ 10x
fixed-point multiplication 5x 13x 10x

e amortized ~ 0 VOLEs per conversion for XORs-Maj;

VOLE-in-the-Head [BBDKORS23] with p ~ 2128

e VOLEs are more expensive ~ estimated 20-150x smaller proofs

[BBMRS21] Baum et al. (2021), “Appenzeller to Brie: Efficient Zero-Knowledge Proofs for Mixed-Mode Arithmetic and Z2k".

[BBDKORS23] Baum et al. (2023), “Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures from VOLE-in-the-Head". 17

https://github.com/AarhusCrypto/vole-zk-conversions/

VOLE-based Zero-Knowledge
o lightweight, fast, linear size

e non-interactive with VOLE-in-the-Head

18

VOLE-based Zero-Knowledge
o lightweight, fast, linear size
e non-interactive with VOLE-in-the-Head
Low-Bandwidth Conversions from Low-Degree PRGs
e Up to 10x less communication, a bit more computation
e Vastly fewer VOLEs needed ~~ great for VOLE-in-the-Head
e Instantiations from Goldreich PRGs and sparse LPN

e More: Fixed-point arithmetic, comparisons, bit extraction, RelLU

18

VOLE-based Zero-Knowledge
o lightweight, fast, linear size
e non-interactive with VOLE-in-the-Head
Low-Bandwidth Conversions from Low-Degree PRGs
e Up to 10x less communication, a bit more computation
e Vastly fewer VOLEs needed ~~ great for VOLE-in-the-Head
e Instantiations from Goldreich PRGs and sparse LPN
e More: Fixed-point arithmetic, comparisons, bit extraction, RelLU

Open Question

e How to efficiently commit to even fewer bits over a large field?

Thank yo

<
c

18

References i

[BBDKORS23]

[BBMRS21]

[BBMORRRS24]

[BDOZ11]

C. Baum, Lennart Braun, C. Delpech de Saint Guilhem, M. KlooB,

E. Orsini, L. Roy, and P. Scholl. “Publicly Verifiable Zero-Knowledge
and Post-Quantum Signatures from VOLE-in-the-Head". In:
CRYPTO 2023, Part V. Aug. 2023.

C. Baum, Lennart Braun, A. Munch-Hansen, B. Razet, and P. Scholl.
“Appenzeller to Brie: Efficient Zero-Knowledge Proofs for
Mixed-Mode Arithmetic and Z2k”. In: ACM CCS 2021. Nov. 2021.

C. Baum, W. Beullens, S. Mukherjee, E. Orsini, S. Ramacher,

C. Rechberger, L. Roy, and P. Scholl. “One Tree to Rule Them All:
Optimizing GGM Trees and OWFs for Post-Quantum Signatures”. In:
ASIACRYPT 2024, Part |. Dec. 2024.

R. Bendlin, I. Damgard, C. Orlandi, and S. Zakarias. “Semi-homomorphic
Encryption and Multiparty Computation”. In: EUROCRYPT 2011. May
2011.

19

References i

[CF13]

[DIO21]

[EGKRS20]

[Gol00]

[RW19]

D. Catalano and D. Fiore. “Practical Homomorphic MACs for
Arithmetic Circuits”. In: EUROCRYPT 2013. May 2013.

S. Dittmer, Y. Ishai, and R. Ostrovsky. “Line-Point Zero Knowledge and
Its Applications”. In: ITC 2021. July 2021.

D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. “Ilmproved
Primitives for MPC over Mixed Arithmetic-Binary Circuits”. In:
CRYPTO 2020, Part Il. Aug. 2020.

0. Goldreich.

Candidate One-Way Functions Based on Expander Graphs. Cryptology
ePrint Archive, Report 2000/063. 2000. URL:
https://eprint.iacr.org/2000/063.

D. Rotaru and T. Wood. “MArBled Circuits: Mixing Arithmetic and
Boolean Circuits with Active Security”. In: INDOCRYPT 2019. Dec. 2019.

20

https://eprint.iacr.org/2000/063

References iii

[WYXKW?21] C. Weng, K. Yang, X. Xie, J. Katz, and X. Wang. “Mystique: Efficient
Conversions for Zero-Knowledge Proofs with Applications to
Machine Learning”. In: USENIX Security 2021. Aug. 2021.

[YSWW21] K. Yang, P. Sarkar, C. Weng, and X. Wang. “QuickSilver: Efficient and
Affordable Zero-Knowledge Proofs for Circuits and Polynomials over
Any Field”. In: ACM CCS 2021. Nov. 2021.

Emoji graphics licensed under CC-BY 4.0:
https://creativecommons.org/licenses/by/4.0/ Copyright 2020 Twitter, Inc and other
contributors

21

https://creativecommons.org/licenses/by/4.0/

PRG Parameters

Predicate (do, dp) L s Il

TSPA (2,3) 4096 1.19 19893
XOR4-MAJ; (4,11) 1024 2 220

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints

[YSWW21] Yang et al. (2021), QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.
[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures’.

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints
Another view [BBMORRRS24]:

— View [a] as degree-1 commitment: [a]': g, = a - A + v,

[YSWW21] Yang et al. (2021), QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.
[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures’.

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints
Another view [BBMORRRS24]:

— View [a] as degree-1 commitment: [a]': g, = a - A + v,
— Multiplying [a]* and [b]* results in a degree-2 commitment

[a-b]*>: qa-gp =la-b- A%+ (a-vp+b-vy) - A + (Va-wp)

[YSWW21] Yang et al. (2021), QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".
[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures’.

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints
Another view [BBMORRRS24]:

— View [a] as degree-1 commitment: [a]': g, = a - A + v,
— Multiplying [a]* and [b]* results in a degree-2 commitment

[a-b]*>: qa-gp =la-b- A%+ (a-vp+b-vy) - A + (Va-wp)
— ...adding [c]! needs shift by A:

[a-b+c]®: Ga-qp+A-g = (a-b)+c) A2+ ((a-vp+b-va)+ve) A+ (va-vp)

[YSWW21] Yang et al. (2021), QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".
[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures’.

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints
Another view [BBMORRRS24]:

— View [a] as degree-1 commitment: [a]': g, = a - A + v,
— Multiplying [a]* and [b]* results in a degree-2 commitment

[a-b]*>: qa-gp =la-b- A%+ (a-vp+b-vy) - A + (Va-wp)
— ...adding [c]! needs shift by A:
[a-b+c]®: Ga-qp+A-g = (a-b)+c) A2+ ((a-vp+b-va)+ve) A+ (va-vp)

—> In general:
_ [a+ b]max(da+db) i [a]da + [b]db and [a . b]da+db — [a]da) [b]db

[YSWW21] Yang et al. (2021), QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field".
[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures’.

High(er)-Degree QuickSilver

Recall: QuickSilver [YSWW21] can be used to prove degree-d constraints
Another view [BBMORRRS24]:

— View [a] as degree-1 commitment: [a]': g, = a - A + v,
— Multiplying [a]* and [b]* results in a degree-2 commitment

[a-b]*>: qa-gp =la-b- A%+ (a-vp+b-vy) - A + (Va-wp)
— ...adding [c]! needs shift by A:
[a-b+c]®: Ga-qp+A-g = (a-b)+c) A2+ ((a-vp+b-va)+ve) A+ (va-vp)

—> In general:
_ [a+ b]max(da+db) i [a]da + [b]db and [a . b]da+db — [a]da) [b]db
— for degree-d circuit C: [y]? + C([x]")

[y]*: _ X dif Ak proof size d field elements
VT G- = P soundness error d/|F| .

[YSWW21] Yang et al. (2021), “QuickSilver: Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials over Any Field”.
[BBMORRRS24] Baum et al. (2024), “One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures’.

Fixed-Point Arithmetic Even Cheaper

We do not are about F»! Generate committed bits over IF,, only:

e Commit to seed [x], and prove all x; € {0,1}

e Generate committed bits [r,-]z” — Po([xilps - - -5 [Xi]p)

Fixed-Point Arithmetic Even Cheaper

We do not are about F»! Generate committed bits over IF,, only:

e Commit to seed [x], and prove all x; € {0,1}

e Generate committed bits [r,-]z” — Po([xilps - - -5 [Xi]p)
Fixed-point Multiplication: Given ([a],, [b],, [c],) prove c = |(a- b)/2f |:
e Use the [r,-]g" to commit to bit decomposition of ¢’ := a- b:
dy dy
([l - s [em-1]s")

e Prove

([a-b]f,:sz-[cL]z") A ([c]pzzzk-f-[cu:i‘)

k=0 k=f

	Introduction
	VOLE-based Zero-Knowledge
	Conversions
	daBits from Low-Degree PRGs
	Performance and Summary
	Appendix

