Towards Optimally Secure Deterministic Authenticated Encryption Schemes

soft merge with

Making GCM Great Again: Toward Full Security and Longer Nonces

Ashwin Jha

RUB

Byeonghak Lee

Samsung SDS

Eurocrypt 2025

6 May, 2025

Towards Optimally Secure Deterministic Authenticated Encryption Schemes

Yu Long Chen Avijit Dutta
KU Leuven TCG CREST

Ashwin Jha

Mridul Nandi

Eurocrypt 2025

6 May, 2025

Authenticated Encryption with Associated Data

- AEAD encrypts the message M + authenticates the metadata & message (A, M)
- Widely deployed (TLS, IPsec, wireless standards)

GCM CCM ChaCha20-Poly1305 Ascon

Nonce is supposed to be unique in encryption

Authenticated Encryption with Associated Data

- ullet AEAD encrypts the message M + authenticates the metadata & message (A,M)
- Widely deployed (TLS, IPsec, wireless standards)

GCM CCM ChaCha20-Poly1305 Ascon

Nonce is supposed to be unique in encryption

Deterministic AEAD [RS: EC '06]

- AEAD without a nonce [can be absorbed in the associated data]
- Encryption at rest (iCloud, AWS) and tokenization (PCI-compliant systems)

Why Use a Nonce?

Uniqueness of nonce in encryption ensures security and efficiency

- Security:
 - DAEAD leaks equality when message + metadata repeat.
 - Nonce ensures fresh randomness per encryption query
- Efficiency:
 - DAEAD are inherently two-pass (rate¹ is capped at 0.5)
 - Nonce allows for single-pass schemes

^{&#}x27;The ratio of number of n-bit blocks in the input to the number of primitive calls.

Why Use a Nonce?

Uniqueness of nonce in encryption ensures security and efficiency

- Security:
 - DAEAD leaks equality when message + metadata repeat.
 - Nonce ensures fresh randomness per encryption query
- Efficiency:
 - DAEAD are inherently two-pass (rate¹ is capped at 0.5)
 - Nonce allows for single-pass schemes

 $^{^{1}}$ The ratio of number of *n*-bit blocks in the input to the number of primitive calls.

Why Use a Nonce?

Uniqueness of nonce in encryption ensures security and efficiency

- Security:
 - DAEAD leaks equality when message + metadata repeat.
 - Nonce ensures fresh randomness per encryption guery
- Efficiency:
 - DAEAD are inherently two-pass (rate¹ is capped at 0.5)
 - Nonce allows for single-pass schemes

Nonce-reuse is strictly prohibited!

 $^{^{1}}$ The ratio of number of *n*-bit blocks in the input to the number of primitive calls.

- GCM, CCM, and OCB † are limited to birthday bound security AES-{GCM,CCM,OCB † } is secure up to 2^{64} queries
- 64-bit security might be insufficient
 - exabyte-scale $(\simeq 2^{60})$ in use, zetabyte-scale $(\simeq 2^{70})$ expected
 - Limited generic multi-user security
- Standardise a bigger block cipher [an effective long term solution(?)]
 - Replacing AES-128 might not be viable
 - Noticeable setup time expected
- BBB secure (nonce-based) AEAD modes
 - CHM: full n-bit security
 - SCM: graceful degradation (limited to n/2-bit security for arbitrary misuse)
 - SIV_r: BBB nonce-misuse security (highly inefficient)

- GCM, CCM, and OCB † are limited to birthday bound security AES-{GCM,CCM,OCB † } is secure up to 2^{64} queries
- 64-bit security might be insufficient
 - exabyte-scale $(\simeq 2^{60})$ in use, zetabyte-scale $(\simeq 2^{70})$ expected
 - Limited generic multi-user security
- Standardise a bigger block cipher [an effective long term solution(?)]
 - Replacing AES-128 might not be viable
 - Noticeable setup time expected [hardware support, general confidence]
- BBB secure (nonce-based) AEAD modes
 - CHM: full n-bit security
 - SCM: graceful degradation (limited to n/2-bit security for arbitrary misuse)
 - SIV_r: BBB nonce-misuse security (highly inefficient)

- GCM, CCM, and OCB † are limited to birthday bound security AES-{GCM,CCM,OCB † } is secure up to 2^{64} queries
- 64-bit security might be insufficient
 - exabyte-scale $(\simeq 2^{60})$ in use, zetabyte-scale $(\simeq 2^{70})$ expected
 - Limited generic multi-user security
- Standardise a bigger block cipher [an effective long term solution(?)]
 - Replacing AES-128 might not be viable
 - Noticeable setup time expected
- BBB secure (nonce-based) AEAD modes [CHM, SCM, SIV, GCM-SIV, Θ CB, Romulus, LightOCB]
 - CHM: full *n*-bit security
 - SCM: graceful degradation (limited to n/2-bit security for arbitrary misuse)
 - SIV_r: BBB nonce-misuse security (highly inefficient)

- GCM, CCM, and OCB † are *limited* to birthday bound security AES-{GCM,CCM,OCB † } is secure up to 2^{64} queries
- 64-bit security might be insufficient
 - exabyte-scale $(\simeq 2^{60})$ in use, zetabyte-scale $(\simeq 2^{70})$ expected
 - Limited generic multi-user security
- Standardise a bigger block cipher [an effective long term solution(?)]
 - Replacing AES-128 might not be viable
 - Noticeable setup time expected
- BBB secure (nonce-based) AEAD modes
 - CHM: full n-bit security (insecure with a single misuse)
 - SCM: graceful degradation (limited to n/2-bit security for arbitrary misuse)
 - SIV_r: BBB nonce-misuse security (highly inefficient)

The Goal

To solve two problems:

- Unique nonce requirement
- Limited security (birthday bound)

The Goal

To solve two problems:

- Unique nonce requirement
- Limited security (birthday bound)

Design a block cipher-based efficient, misuse-resistant BBB-secure AEAD mode

The Distinguishing Game

Real World (RW) Ideal World (IW)
$$\mathcal{A} \xrightarrow{X_i} \mathcal{O}_{re} \qquad \qquad \mathcal{A} \xrightarrow{Y_i} \mathcal{O}_{id}$$

$$\mathbf{Adv}^{\mathsf{game}}_{\mathcal{O}_{\mathsf{re}}}(\mathcal{A}) \coloneqq \left| \Pr\left(\mathcal{A} \; \mathsf{returns} \; 1 \; \mathsf{in} \; \mathsf{RW} \right) - \Pr\left(\mathcal{A} \; \mathsf{returns} \; 1 \; \mathsf{in} \; \mathsf{IW} \right) \right|$$

- Adversary's resources: q (query), ℓ (max. length), σ (total data) etc.
- Game: ideal world functionality + adversary's power

Pseudorandom Function (PRF)

- Ideal world: a uniform random function \$
- A makes *chosen* plaintext queries
- $\mathbf{Adv}^{\mathsf{prf}}_{\mathsf{F}}(\mathcal{A})$: the PRF advantage of \mathcal{A} against F

Random IV-based PRF (\$-PRF)

- Ideal world: a uniform random function \$
- A makes random plaintext queries
- $\mathbf{Adv}_{\mathsf{F}}^{\$-\mathsf{prf}}(\mathcal{A})$: the $\$-\mathsf{PRF}$ advantage of $\mathcal A$ against $\mathsf F$

Misuse-resistant AE (MRAE)

- ullet Ideal world: a uniform random function \$ and the *reject* oracle \bot
- \mathcal{A} 's queries must satisfy $(N'_j, A'_j, C'_j, T'_j) \neq (N_i, A_i, C_i, T_i)$
- $\bullet \ \mathbf{Adv_{\Pi}^{mrae}}(\mathcal{A}) \text{:} \ \text{the MRAE} \ \text{advantage of} \ \mathcal{A} \ \text{against} \ \Pi$
- DAEADs achieve MRAE security naturally!

Misuse-resistant AE (MRAE)

- ullet Ideal world: a uniform random function \$ and the *reject* oracle \bot
- \mathcal{A} 's queries must satisfy $(N'_j, A'_j, C'_j, T'_j) \neq (N_i, A_i, C_i, T_i)$
- $\mathbf{Adv}^{\mathsf{mrae}}_{\Pi}(\mathcal{A})$: the MRAE advantage of \mathcal{A} against Π
- DAEADs achieve MRAE security naturally!

Synthetic IV [RS: EC '06]

- Two main components:
 - F: a PRF
 - G: a random IV-based PRF
- Inverse-free
- Parallelizable
- Composition Bound [RS: EC '06, IM: TOSC '16]:

$$\mathbf{Adv}^{\mathsf{mrae}}_{\mathsf{SIV}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathsf{prf}}_{\mathsf{F}}(\mathcal{B}) + \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{G}}(\mathcal{C}) + \frac{q}{2^{\tau}}$$

Synthetic IV [RS: EC '06]

- Two main components:
 - F: a PRF
 - G: a random IV-based PRF
- Inverse-free
- Parallelizable
- Composition Bound [RS: EC '06, IM: TOSC '16]:

$$\mathbf{Adv}^{\mathsf{mrae}}_{\mathsf{SIV}}(\mathcal{A}) \leq \mathbf{Adv}^{\mathsf{prf}}_{\mathsf{F}}(\mathcal{B}) + \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{G}}(\mathcal{C}) + \frac{q}{2^{\tau}}$$

TODOs:

- 1. A BBB secure PRF component with $\tau > n$ bits of output
- 2. A BBB secure random IV-based PRF component

Revisiting HtmB-p2 [CJN: AC '20]

- Hashing solves two purposes:
 - Handling arbitrary length inputs
 - Inputs to $\pi_{\{1,2\}}$ have controlled collisions
 - \implies Optimal Security for HtmB
- HtmB-p2 PRF Bound [CJN: AC '20, CDNPS EC '23]:

$$\mathbf{Adv}^{\mathsf{prf}}_{\mathsf{HtmB-p2}}(\mathcal{A}) = \mathsf{O}\left(rac{oldsymbol{q}}{2^{\mathsf{n}}} + oldsymbol{q}^2 \epsilon_{\mathsf{coll}}
ight)$$

• Limitation: only *n*-bit outputs

Revisiting HtmB-p2 [CJN: AC '20]

- Hashing solves two purposes:
 - Handling arbitrary length inputs
 - Inputs to $\pi_{\{1,2\}}$ have controlled collisions
 - \implies Optimal Security for HtmB
- HtmB-p2 PRF Bound [CJN: AC '20, CDNPS EC '23]:

$$\mathbf{Adv}^{\mathsf{prf}}_{\mathsf{HtmB-p2}}(\mathcal{A}) = \mathsf{O}\left(rac{oldsymbol{q}}{2^{\mathsf{n}}} + oldsymbol{q}^2 \epsilon_{\mathsf{coll}}
ight)$$

• Limitation: only *n*-bit outputs

F*: A BBB secure PRF with 2*n*-bit outputs

- HtmB-p2*:
 - Duplicates the HtmB-p2 finalization
 - Additional n bits at the cost of two calls
- F*: HtmB-p2* with a PMAC+ like hash

 F^* is $\mathsf{optimally}$ secure [for lengths up to $\sqrt{2^n}$]

$$\mathbf{Adv}^{\mathsf{prf}}_{\mathsf{F}^*}(\mathcal{A}) = \mathsf{O}\left(\frac{\sigma}{2^n}\right)$$

F*: A BBB secure PRF with 2*n*-bit outputs

- HtmB-p2*:
 - Duplicates the HtmB-p2 finalization
 - Additional n bits at the cost of two calls
- F*: HtmB-p2* with a PMAC+ like hash

 F^* is optimally secure [for lengths up to $\sqrt{2^n}$]

$$\mathbf{Adv}^{\mathsf{prf}}_{\mathsf{F}^*}(\mathcal{A}) = \mathsf{O}\left(rac{\sigma}{2^{\mathsf{n}}}
ight)$$

Revisiting CENC [Iwata: FSE '06]

The *i*-th chunk of keystream (r=3)

- Keystream is generated in chunks of *r* blocks
- Fully parallelizable
- Rate $\approx \left(\frac{r}{r+1}\right)$
- Optimally secure if IVs are unique [IMV: ePrint '16]
- Limitations:
 - |N| < n (we require $\approx 2n$)
 - Only birthday-bound \$-PRF secure

Revisiting CENC [Iwata: FSE '06]

The *i*-th chunk of keystream (r=3)

- Keystream is generated in chunks of *r* blocks
- Fully parallelizable
- Rate $\approx \left(\frac{r}{r+1}\right)$
- Optimally secure if IVs are unique [IMV: ePrint '16]
- Limitations:
 - |N| < n (we require $\approx 2n$)
 - Only birthday-bound \$-PRF secure

GiantStar: A BBB secure random IV-based PRF

The *i*-th chunk of keystream (r=3)

- CTR-based encoding → lightweight hash
 - Use the random IV as key
- Inherits all the the efficiency traits of CENC
- Secure if hash is 2-wise independent

GiantStar is BBB secure [for moderately large \ell]

$$\mathbf{Adv}^{\$-\mathsf{prf}}_{\mathsf{GiantStar}}(\mathcal{A}) = O\left(\frac{r\sigma}{2^n} + \frac{r\sigma^2\ell}{2^{2n}}\right)$$

GiantStar: A BBB secure random IV-based PRF

The *i*-th chunk of keystream (r=3)

- CTR-based encoding → lightweight hash
 - Use the random IV as key
- Inherits all the the efficiency traits of CENC
- Secure if hash is 2-wise independent

GiantStar is BBB secure [for moderately large ℓ]

$$\mathbf{Adv}^{\$ ext{-prf}}_{\mathsf{GiantStar}}(\mathcal{A}) = \mathbf{O}\left(rac{\mathbf{r}\sigma}{2^{\mathbf{n}}} + rac{\mathbf{r}\sigma^2\ell}{2^{2\mathbf{n}}}
ight)$$

GiantStar: A BBB secure random IV-based PRF

The *i*-th chunk of keystream (r=3)

- CTR-based encoding → lightweight hash
 - Use the random IV as key
- Inherits all the the efficiency traits of CENC
- Secure if hash is 2-wise independent

GiantStar is BBB secure [for moderately large ℓ]

$$\mathbf{Adv}^{\$\text{-prf}}_{\mathsf{GiantStar}}(\mathcal{A}) = \mathbf{O}\left(\frac{\mathbf{r}\sigma}{2^n} + \frac{\mathbf{r}\sigma^2\boldsymbol{\ell}}{2^{2n}}\right)$$

Star: A fixed-length BBB secure random IV-based PRF

- Star ≡ GiantStar with
 - Fixed chunk index i
 - Restricted to ≤ *r*-block outputs

Star is optimally secure

$$\mathbf{Adv}^{\$ ext{-prf}}_{\mathsf{Star}}(\mathcal{A}) = \mathbf{O}\left(rac{\mathit{rq}}{2^n}
ight)$$

Snowflake: A length-independent BBB secure random IV-based PRF

The *i*-th chunk of keystream

• Fresh 2*n*-bit randomness per chunk

$$Adv^{\$\text{-prf}}_{\mathsf{Snowflake}}(\mathcal{A}) \leq Adv^{\$\text{-prf}}_{\mathsf{Star}}(\mathcal{B}) + Adv^{\$\text{-prf}}_{\mathsf{G}^*}(\mathcal{C})$$

- G* must have length-independent bound!
- G* can be relatively heavier
 - in the paper: 6 calls per chunk

Snowflake is optimally secure

$$\mathbf{Adv}^{\$\text{-prf}}_{\mathsf{Snowflake}}(\mathcal{A}) = O\left(\frac{r\sigma}{2^n}\right)$$

The Random-IV PRF Component (Option 2)

Snowflake: A length-independent BBB secure random IV-based PRF

The *i*-th chunk of keystream

• Fresh 2*n*-bit randomness per chunk

$$\mathbf{Adv}^{\$\text{-prf}}_{\mathsf{Snowflake}}(\mathcal{A}) \leq \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{Star}}(\mathcal{B}) + \mathbf{Adv}^{\$\text{-prf}}_{\mathsf{G}^*}(\mathcal{C})$$

- G* must have length-independent bound!
- G* can be relatively heavier
 - in the paper: 6 calls per chunk

Snowflake is optimally secure

$$\mathbf{Adv}^{\$ ext{-prf}}_{\mathsf{Snowflake}}(\mathcal{A}) = \mathsf{O}\left(rac{r\sigma}{2^n}
ight)$$

Our Contributions

Two misuse-resistant BBB-secure AEAD modes

Our Contributions

Two misuse-resistant BBB-secure AEAD modes

DENC1

- Highly parallelizable
- Tag size $\tau = 2n$ -bit
- Max. input length $\ell \leq \sqrt{2^n}$ -block
- Rate $\geq \left(\frac{r}{2r+0.5}\right)$ (≈ 0.498 for r=64)
- BBB secure for moderate message lengths

$$\mathbf{Adv}_{\mathsf{DENC1}}^{\mathsf{mrae}}(\mathcal{A}) = \mathsf{O}\left(\frac{r\sigma^2\ell}{2^{2n}}\right)$$

Our Contributions

Two misuse-resistant BBB-secure AEAD modes

DENC2

- Highly parallelizable
- Tag size $\tau = 2n$ -bit
- Max. input length $\ell \leq \sqrt{2^n}$ -block
- Rate $\geq \left(\frac{r}{2r+3.5}\right)$ (≈ 0.486 for r=64)
- Length-independent optimal security

$$\mathbf{Adv}_{\mathsf{DENC1}}^{\mathsf{mrae}}(\mathcal{A}) = O\left(\frac{r\sigma}{2^n}\right)$$

Making GCM Great Again: Toward Full Security and Longer Nonces

Woohyuk Chung¹ Seongha Hwang¹ Seongkwang Kim² **Byeonghak Lee²** Jooyoung Lee¹

¹KAIST, Korea ²Sai

²Samsung SDS, Korea

Eurocrypt 2025

2025. 05. 06.

Same Motivation, Different Goal

Recall: We require BBB-secure AEAD with low nonce misusing risk.

- 1. Design a misuse-resistant AE
 - AES-GCM-SIV, DENC1, DENC2, ...
 - Best for security, but inherently two pass
- Design a nonce-based AE with extended nonces
 - DNDK-GCM: requires carefully generated nonces and BC with 2n-bit key

Same Motivation, Different Goal

Recall: We require BBB-secure AEAD with low nonce misusing risk.

- 1. Design a misuse-resistant AE
 - AES-GCM-SIV, DENC1, DENC2, ...
 - Best for security, but inherently two pass
- 2. Design a nonce-based AE with extended nonces
 - DNDK-GCM: requires carefully generated nonces and BC with 2n-bit key

Same Motivation, Different Goal

Recall: We require BBB-secure AEAD with low nonce misusing risk.

- 1. Design a misuse-resistant AE
 - AES-GCM-SIV, DENC1, DENC2, ...
 - Best for security, but inherently two pass
- 2. Design a nonce-based AE with extended nonces
 - DNDK-GCM: requires carefully generated nonces and BC with 2n-bit key

Our Goal:

- Block cipher based AE with full security
 - + Provably secure under standard PRP assumption
- Efficiency is comparable to GCM
- Support extended nonces or provide nonce misuse resistance
- Support arbitrary length message

Starting Point: CENC

Cipher-based ENCryption (CENC)

CTR-type encryption mode with full security

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{CENC}[E,r]}(q,oldsymbol{\sigma},l) \leq \mathsf{O}\left(rac{oldsymbol{\sigma}}{2^{\mathsf{n}}}
ight)$$

limitation: |nonce| + |counter| ≤ n
 ⇒ still have nonce misusing risk and short length limitation

Figure: The first 4 keystream blocks from CENC[E_K , w](N, ·) with w = 3.

Building Blocks - eCTR

enhanced CTR (eCTR) (\simeq GiantStar!)

almost fully secure variable output length PRF (VOL-PRF) with 2n-bit random IV

$$\mathbf{Adv}^{ ext{\$-prf}}_{\mathsf{eCTR}[\mathsf{E},\mathsf{r}]}(\mathcal{A}) \leq \mathsf{O}\left(rac{\mathsf{r}oldsymbol{\sigma}}{2^{\mathsf{n}}} + rac{\mathsf{r}oldsymbol{\sigma}^2 l}{2^{2n}}
ight)$$

limitation: requires random IV
 ⇒ enough for iv-based AE, but we want nonce-based

Figure: The first 4 blocks from $eCTR[E_K, w](A, B)$ with w = 3.

Building Blocks - HteC

Hash-then-eCTR (HteC)

almost fully secure variable input/output length PRF (VIL-VOL-PRF)

$$\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{HteC}[H,\mathsf{E},w]}(\mathcal{A}) \leq \mathsf{O}\left(rac{w\sigma}{2^n} + rac{w\sigma^2 l}{2^{2n}}
ight)$$

where H is δ -universal hash (UH)

• UH-then-PRP outputs (= A, B) are not fully random but enough for eCTR input

Figure: The HteC VIL-VOL pseudorandom function.

Our Contribution

eGCM/eGCM-SIV: enhanced variant of GCM/GCM-SIV

Figure: The eGCM and eGCM-SIV AE schemes. A nonce, an associated data, and a message are denoted N, A and M, respectively

Our Contribution

eGCM

- Replace CTR to HteC
- Support extended nonces
- Support encrypting arbitrary length messages
- BBB secure for moderate message lengths

$$\mathsf{Adv}^{\mathsf{nae}}_{\mathsf{eGCM}}(\mathcal{A}) = O\left(rac{\mathsf{r}\sigma^2\ell}{2^{2\mathsf{n}}}
ight)$$

Our Contribution

eGCM-SIV

- Use HteC as PRF and replace CTR to eCTR
- Support encrypting arbitrary length messages
- BBB secure for moderate message lengths

$$\mathsf{Adv}^{\mathsf{dae}}_{\mathsf{eGCM-SIV}}(\mathcal{A}) = \mathsf{O}\left(rac{\mathsf{r}\sigma^2\ell}{2^{2\mathsf{n}}}
ight)$$

Comparison

AFAD	Rate -	Security		
AEAD		NR	NM	
OCB3	1	n/2	-	
GCM	1/2	n/2	-	
CIP, CHM, mGCM, eGCM	$\lesssim 1/2^{\dagger}$	n	-	
AES-GCM-SIV	1/2	n	n/2	
SCM	1/2	n	n/2	
CWC+	$\lesssim 1/2^{\dagger}$	3n/4	n/2 (auth only)	
eGCM-SIV,DENC1, DENC2	$\lesssim 1/2^{\dagger}$	n	n	

[‡] Depends on the parameter w, while we write $\lesssim 1/2$ since the rate approaches 1/2 as w increases and w can be set to a large enough value.

Table: Comparion of eGCM, eGCM-SIV, DENC1 and DENC2 and other block cipher based AE schemes. The maximum message length (=l) is assumed to be a small constant. Note that DENC2 has length-independent security.

Benchmark

AEAD	Message			
	1KB	4KB	64KB	
OCB3	0.52	0.47	0.45	
GCM	1.65	1.02	0.83	
eGCM	0.93	0.89	0.88	
AES-GCM-SIV	1.33	1.07	0.99	
SCM	1.19	1.11	1.07	
eGCM-SIV	1.33	1.15	1.12	
DENC1	1.31	1.20	1.18	
DENC2	1.42	1.38	1.32	

Table: Benchmark of eGCM, eGCM-SIV, DAE1 and DAE2 and other block cipher based AE schemes. Throughput is measured in cycles per byte, for empty associated data.

HteC vs **SnowFlake**

- Use arbitrary length nonces
- Simpler compressing function
- Length-dependent security

- Use random IVs (enough for SIV)
- Length-independent security
- G* is heavy!

Combining Two Papers: **HteC** + **SnowFlake**

- G* is replaced by Hash-then-PRPs ⇒ faster and support nonce!
- VIL-VOL-PRF with (output) length-independent security
- Can be used to construct fully secure NAE and DAE

Conclusion

Towards Optimally Secure DAEs

- DENC1: almost fully secure DAE
- DENC2: fully secure DAE (length-independent security)

Making GCM Great Again

- HteC: almost fully secure VIL-VOL-PRF
- eGCM: almost fully secure NAE with extended nonces
- eGCM-SIV: almost fully secure DAE

Our results can also be applied to:

- Accordion ciphers: Hash-CTR-Hash ⇒ Hash-(eCTR/SnowFlake)-Hash
- Nonce-key derivation: HteC and HteC+SnowFlake are PRF

Thank you for your attention!