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Side Information in Lattice-Based Schemes

How to deal with side information in lattice-based schemes?

Primal attack:
E.g., [DDGR20; DGHK23; MN23]
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Attacks: often noisy information on Hamming weights.
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Belief Propagation and Greedy Solvers

Context: Inequalities in ML-KEM’s secret key arising from information on the noise term.

Solving 〈v, x〉 ≤ b for x.

BP Solver [HPP21]

Update probabilities xj = x′j using partial
sum

∑
i6=j vixi:

P(xj = x′j) =
∑
a

δa+vjx′j≤b · P(
∑
i6=j

vixi = a)

Greedy Solver [RPJ+24]

Update guess x′ by x′j + c using scores:

sj(c) = max(
∑
i

vixi + vjc − b, 0)

Attack actually learns HW of noise term.

Relation? Greedy requires less information? No information loss?
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Distribution Hints

Various proposals to define and deal with side information.

Previous hint definitions [DDGR20; DGHK23]:
For known v, l, k:
• 〈v, x〉 = l
• 〈v, x〉 = l mod k
• 〈v, x〉 = l+N
• 〈v, x〉 ≤ l
• short v ∈ Λ

→
Distribution hints:
For known v, distribution D:

〈v, x〉 ∼ D

Information from [RPJ+24] without loss!

HW(〈v, x〉) ∼ D
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Solving Distribution Hints

Two different solvers: BP and Greedy

; hint: 〈v, x〉 ∼ D

x0 x1 x2 x3 x4

Check 0 Check 1

Represent unknown key coefficients

(v,D)

Update for xj = x′j :

P(xj = x′j) =
∑

a∈supp D
PD(a)P(

∑
i6=j

vixi = a−vjx′j)

Greedy: x′ and change xj + c.

Change scores for coefficients j:

sj(c) =
∑

a∈supp D
PD(a)|〈v, x′〉+ vjc − a|,

and perform k best updates on guess x′.

P(
∑

i6=j vixi = a− vjx′j) → |v>x′ + vjc − a|
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Solving Process
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Comparison of Solvers

Greedy may be seen as “collapsed” BP.

({−1 : 0.2, 0 : 0.1, 1 : 0.7}, {−1 : 0.3, 0 : 0.7}), . . . , ) → (1, 0, . . . , )

update probabilities for values of coefficients → scores for changes of coefficients

P(
∑

i6=j vixi = a− vjx′j) → |v>x′ + vjc − a|

Loses information but gains performance.
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Relation to Previous Solvers

Several previous solvers are (almost) special cases of ours.

Some instantiations give previous solvers:
• Inequalities (BP): [HPP21].
• Inequalities (GR): close to [RPJ+24].
• Targeting ML-DSA: [BAE+24] with
different computation (FFT).

Additionally:
• Improves attack of [RPJ+24].
• Covers most hints of [DDGR20].
• Applies to information on linear
intermediates.

• Combined with lattice reduction by
adapting [HMS+23].

Explains conceptual relations;

used for second-order attacks [HNP25].
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Conclusion

Our framework:
• Generic and efficient.
• Generalizes previous solvers.
• Explains relation greedy↔ BP.
• Complements lattice-based frameworks.
• Also applies to other types of schemes.

Open source:

Easy to use!

bp = PyBP(vs, distributions)
greedy = PyGreedy(vs, distributions)
greedy.set_nthreads(4)
bp.set_nthreads(4)

greedy.solve(k)
guess = greedy.get_guess()
bp.propagate()
dists = bp.get_results()

Thank you for your attention!
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Results for Noise-Term Leakage

Results for leakage on ML-KEM’s noise term
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Follow-up work: Targeting y in masked ML-DSA using our solver [HNP25].
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