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Multiparty Computation
Setting

• 𝑛 parties

• 𝑡 corrupted parties

• Honest majority: 𝑛 = 2𝑡 + 1

• Synchronous network
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Communication Complexity

|𝐶|: circuit size, 𝑛: number of parties, counted by field elements
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Reference Communication Corruption threshold Security

[DN07, GIP+14, CGH+14…] 𝑂(|𝐶| ⋅ 𝑛) 𝑡 = (𝑛 − 1)/2 Information-theoretic

[GPS21] 𝑂(|𝐶|) 𝑡 = 0.5 − 𝜖 ⋅ 𝑛 Information-theoretic



Communication Complexity
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communication of 𝑂(𝐶) field elements?

|𝐶|: circuit size, 𝑛: number of parties, counted by field elements

3

Reference Communication Corruption threshold Security

[DN07, GIP+14, CGH+14…] 𝑂(|𝐶| ⋅ 𝑛) 𝑡 = (𝑛 − 1)/2 Information-theoretic

[GPS21] 𝑂(|𝐶|) 𝑡 = 0.5 − 𝜖 ⋅ 𝑛 Information-theoretic



Negative Evidence from [DLN19]

4

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Theorem [DLN19]. Let 𝑛 = 2𝑡 + 1. Any statistically 𝑡-

private and statistically correct protocol for 𝐼𝑃𝑛,𝐼 

communicates at least 
𝐼𝑛 𝑡−1

2
− 𝑛𝑒𝑔𝑙 elements.
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2
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This does NOT rule out the case of 

MPC protocols with communication 

𝛺(𝐼𝐶 ⋅ 𝑛) but 𝑜( 𝐶 ⋅ 𝑛). 



Communication Complexity

What assumptions suffice to build an MPC protocol in honest majority 

setting with 𝑡 = (𝑛 − 1)/2 achieving communication of 𝑂(𝐶) field 

elements?

|𝐶|: circuit size, 𝑛: number of parties, counted by field elements
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Reference Communication Corruption threshold Security
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Communication Complexity
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𝑠, 𝑢 𝑡, 𝑣

𝑠 ⋅ 𝑡 = 𝑢 + 𝑣

Oblivious linear evaluation (OLE)

Honest majority 

MPC

Reference Communication Corruption threshold Security

[DN07, GIP+14, CGH+14…] 𝑂(|𝐶| ⋅ 𝑛) 𝑡 = (𝑛 − 1)/2 Information-theoretic

[GPS21] 𝑂(|𝐶|) 𝑡 = 0.5 − 𝜖 ⋅ 𝑛 Information-theoretic

Efficient 

communication and 

small data size? 



Reference Communication Corruption threshold Security

[DN07, GIP+14, CGH+14…] 𝑂(|𝐶| ⋅ 𝑛) 𝑡 = (𝑛 − 1)/2 Information-theoretic

[GPS21] 𝑂(|𝐶|) 𝑡 = 0.5 − 𝜖 ⋅ 𝑛 Information-theoretic

Our result 𝑂 |𝐶| + 𝑂 |𝐶|  OLEs 𝑡 = (𝑛 − 1)/2 Information-theoretic

Our Results – positive result

Theorem 1 (Informal).

Let 𝑛 denote the number of parties and 𝑡 =
𝑛−1

2
 denote the number of corrupted parties. There 

exists an information-theoretic MPC protocol in OLE-hybrid model which computes an arithmetic 

circuit 𝐶 with malicious security and at the cost of 𝑂 |𝐶| + 𝐷 ⋅ 𝑛 + 𝑝𝑜𝑙𝑦 𝑛  field elements of 

communication plus 𝑂(|𝐶| + 𝐷 ⋅ 𝑛 + 𝑝𝑜𝑙𝑦(𝑛)) invocations of OLE-hybrid functionalities, where 𝐷 

is the circuit depth.
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Our Results – negative result
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Theorem 2.

Let 𝑛 = 2𝑡 + 1. There does NOT exist any statistically 

𝑡-private and statistically correct protocol preparing 𝑁 

random OLE correlations following any pattern with 

communication of o(𝑁 ⋅ 𝑛) elements.

𝑃𝑖

𝑃𝑗

𝑐𝑖,𝑗 OLEs

𝑠, 𝑢 𝑡, 𝑣

𝑠 ⋅ 𝑡 = 𝑢 + 𝑣

Oblivious linear evaluation (OLE)



Our Results – positive result

Theorem 3.

Let 𝑛 denote the number of parties and 𝑡 =
𝑛−1

2
 denote the number of corrupted parties. Let 𝜅 be 

the security parameter and 𝔽 be a finite field of size 𝔽 ≥ 2𝜅 with each element of ℓ bits length. 

For an arithmetic circuit 𝐶, there exists an MPC protocol in the random oracle model which 

computes 𝐶 with malicious security and communicates 𝑂( |𝐶| + 𝐷 ⋅ 𝑛 + 𝑝𝑜𝑙𝑦 𝑛 ⋅ ℓ + 𝜅 + 𝑛 ⋅

𝜅2) field elements, where 𝐷 is the circuit depth.
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Reference Communication Corruption threshold Security

[DN07, GIP+14, CGH+14…] 𝑂(|𝐶| ⋅ 𝑛) 𝑡 = (𝑛 − 1)/2 Information-theoretic

[GPS21] 𝑂(|𝐶|) 𝑡 = 0.5 − 𝜖 ⋅ 𝑛 Information-theoretic

Our result
𝑂 |𝐶| + 𝑂 |𝐶|  OLEs

𝑡 = (𝑛 − 1)/2
Information-theoretic

෨𝑂(|𝐶|) ROM



Outline
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• Honest majority MPC with information-theoretic security in OLE-hybrid 

model 

• Negative results

• communication lower bound for OLE preparation in information-theoretic setting

• Preparing OLE correlations in Minicrypt



Starting point – preprocessing data of [GPS22]

Theorem [GPS22]. For an arithmetic circuit 𝐶 over a finite field 𝔽 of size 𝔽 ≥

𝐶 + 𝑛, and for all constant 𝜖 ≥ 0 and 𝑡 = 1 − 𝜖 ⋅ 𝑛, there is a semi-honest 

information-theoretic MPC which computes 𝐶 with 𝑂(|𝐶|) elements of both 

preprocessing data and communication complexity.

11

IT MPC with 𝑂(𝐶) 

communication

[GPS22]
ℱ𝑝𝑟𝑒𝑝

For each group of 𝑘 multiplication gates,

 Sample a random packed Beaver triple 

( 𝒂 𝑛−𝑘 , 𝒃 𝑛−𝑘 , 𝒄 𝑛−𝑘).

𝑘 = 𝑂(𝑛)
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IT MPC with 𝑂(𝐶) 

communication

Honest majority is a 

special case.

[GPS22] Packed Beaver triples with 

𝑂(𝑛) communication per 

packed triple.

ℱ𝑝𝑟𝑒𝑝

For each group of 𝑘 multiplication gates,

 Sample a random packed Beaver triple 

( 𝒂 𝑛−𝑘 , 𝒃 𝑛−𝑘 , 𝒄 𝑛−𝑘).

𝑘 = 𝑂(𝑛)



Packed triple generation – packed triple extraction 
[CP17, GLS24]
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Triple distribution

• 𝑁 = 2ℓ + 1 

packed triples

• 𝑇 = 𝛾 ⋅ 𝑁 of them 

are known by 

corrupted parties

Packed Triple extraction

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅
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Packed Triple extraction

𝑂(ℓ ⋅ 𝑛) elements

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅 𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝑇 = 𝑡

𝑁 = 2𝑡 + 1

𝑡 + 1 − 𝑡 = 1
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Packed triple generation – virtual parties [Bra87]

ℱ𝑂𝐿𝐸

𝒂𝟎, 𝒙𝟎

𝒃𝟎, 𝒚𝟎

𝒃𝟏, 𝒙𝟏

𝒂𝟏, 𝒚𝟏

𝒂𝟎 ∗ 𝒃𝟏 = 𝒙𝟎 + 𝒙𝟏

𝒂𝟏 ∗ 𝒃𝟎 = 𝒚𝟎 + 𝒚𝟏

16

A committee containing an honest 

party acts as an honest virtual party.
𝑃0 𝑃1

∗ - element-wise multiplication
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𝑃0

𝑃0

𝑃1

𝑃1

Additive shares
∗ - element-wise multiplication
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A committee containing an honest 

party acts as an honest virtual party.
𝑃0 𝑃1

𝒂𝟎 𝑡+𝑘−1 𝒃𝟎 𝑡+𝑘−1 𝒘𝟎 𝑡+𝑘−1 ≔

𝒂𝟎 ∗ 𝒃𝟎 + 𝒙𝟎 + 𝒚𝟎 𝑡+𝑘−1

𝒂𝟏 𝑡+𝑘−1 𝒃𝟏 𝑡+𝑘−1 𝒘𝟏 𝑡+𝑘−1 ≔

𝒂𝟏 ∗ 𝒃𝟏 + 𝒙𝟏 + 𝒚𝟏 𝑡+𝑘−1

Privacy: the secrets are 

unknown to the adversary.

𝒂 𝒕+𝒌−𝟏 𝒃 𝒕+𝒌−𝟏 𝒂 ∗ 𝒃 𝒕+𝒌−𝟏
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ℱ𝑂𝐿𝐸
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𝒃𝟏, 𝒙𝟏
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A committee containing an honest 

party acts as an honest virtual party.
𝑃0 𝑃1

𝒂𝟎 𝑡+𝑘−1 𝒃𝟎 𝑡+𝑘−1 𝒘𝟎 𝑡+𝑘−1 ≔
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𝒂𝟏 ∗ 𝒃𝟏 + 𝒙𝟏 + 𝒚𝟏 𝑡+𝑘−1

𝒂 𝒕+𝒌−𝟏 𝒃 𝒕+𝒌−𝟏 𝒂 ∗ 𝒃 𝒕+𝒌−𝟏

Cost: 2𝑘 invocations of 

ℱ𝑂𝐿𝐸 + 𝑂(𝑛) elements per 

packed triple



Packed triple generation – packed triple extraction 
[CP17, GLS24]

19

We have strong honest 

majority, i.e., 𝛾 <
1

2

Triple distribution

Output random triples

• N = 2ℓ + 1 

packed triples

• 𝑇 = 𝛾 ⋅ 𝑁 of them 

are known by 

corrupted parties

ℓ + 1 − 𝑇 random packed 
triples

Packed Triple extraction

𝑂(ℓ ⋅ 𝑛) elements

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅 𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

1

2
− 𝛾 ⋅ 𝑁



Packed triple generation – packed triple extraction 
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We have strong honest 

majority, i.e., 𝛾 <
1

2

𝑂(𝑛) elements 

plus 𝑂(𝑛) OLEs 

per packed triple

Triple distribution
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• N = 2ℓ + 1 

packed triples
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Packed triple generation – packed triple extraction 
[CP17, GLS24]

19

We have strong honest 

majority, i.e., 𝛾 <
1

2

𝑂(𝑛) elements 

plus 𝑂(𝑛) OLEs 

per packed triple

Switch to malicious 

setting?

Triple distribution

Output random triples

• N = 2ℓ + 1 

packed triples

• 𝑇 = 𝛾 ⋅ 𝑁 of them 

are known by 

corrupted parties

ℓ + 1 − 𝑇 random packed 
triples

Packed Triple extraction

𝑂(ℓ ⋅ 𝑛) elements

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅 𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

1

2
− 𝛾 ⋅ 𝑁



Packed triple generation – malicious security 
[BY24]

20

Triple distribution

Output random triples

• N = 2ℓ + 1 

packed triples

• 𝑇 = 𝛾 ⋅ 𝑁 of them 

are known by 

corrupted parties

ℓ + 1 − 𝑇 random packed 
triples

Packed Triple extraction

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅 𝒂′ 𝒅 𝒃′ 𝒅 𝒄′ 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅



Packed triple generation – malicious security 
[BY24]

20

Triple distribution

Output random triples

• N = 2ℓ + 1 

packed triples

• 𝑇 = 𝛾 ⋅ 𝑁 of them 

are known by 

corrupted parties

ℓ + 1 − 𝑇 random packed 
triples

Packed Triple extraction

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅 𝒂′ 𝒅 𝒃′ 𝒅 𝒄′ 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂′ ∗ 𝒃′ ≠ 𝒄′



Packed triple generation – malicious security 
[BY24]

20

Triple verification to 
ensure: 𝒂 ∗ 𝒃 = 𝒄

Triple distribution

Output random triples

• N = 2ℓ + 1 

packed triples

• 𝑇 = 𝛾 ⋅ 𝑁 of them 

are known by 

corrupted parties

ℓ + 1 − 𝑇 random packed 
triples

Packed Triple extraction

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅 𝒂′ 𝒅 𝒃′ 𝒅 𝒄′ 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂 𝒅 𝒃 𝒅 𝒄 𝒅

𝒂′ ∗ 𝒃′ ≠ 𝒄′



Packed triple generation – malicious security 
[GPS22, BY24]

21

ℱ𝑝𝑟𝑒𝑝

For each group of 𝑘 multiplication gates,

 Sample a random packed Beaver triple 

( 𝒂 𝑛−𝑘 , 𝒃 𝑛−𝑘 , 𝒄 𝑛−𝑘).
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ℱ𝑝𝑟𝑒𝑝−𝑚𝑎𝑙

For each group of 𝑘 multiplication gates,

 Sample an authenticated random packed Beaver triple 
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𝜸 ∈ 𝔽𝑘 - MAC key
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21

ℱ𝑝𝑟𝑒𝑝

For each group of 𝑘 multiplication gates,

 Sample a random packed Beaver triple 

( 𝒂 𝑛−𝑘 , 𝒃 𝑛−𝑘 , 𝒄 𝑛−𝑘).

ℱ𝑝𝑟𝑒𝑝−𝑚𝑎𝑙
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𝜸 ∈ 𝔽𝑘 - MAC key
𝑂 1  Packed Beaver triples

Verification by sacrificing



Outline

22

• Honest majority MPC with information-theoretic security in OLE-hybrid 

model 

• Negative results

• communication lower bound for OLE preparation in information-theoretic setting

• Preparing OLE correlations in Minicrypt



Communication lower bound in [DLN19]

23

𝑥1,1 ∈ 𝔽𝐼

𝑏1,1 ∈ {0,1}
𝑦1,1 ∈ 𝔽

𝑥1,2, 𝑏1,2 𝑦1,2

𝑥2,1, 𝑏2,1𝑦2,1

𝑥2,2, 𝑏2,2𝑦2,2

𝑦3𝑏3

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Theorem [DLN19] Let 𝑛 = 2𝑡 + 1. Any statistically 𝑡-

private and statistically correct protocol for 𝐼𝑃𝑛,𝐼 

communicates at least 
𝐼𝑛 𝑡−1

2
− 𝑛𝑒𝑔𝑙 elements.
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Input size: 𝐼𝐶 = 𝑂(𝐼 ⋅ 𝑛)
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2
− 𝑛𝑒𝑔𝑙 elements.
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Theorem [DLN19] Let 𝑛 = 2𝑡 + 1. Any statistically 𝑡-

private and statistically correct protocol for 𝐼𝑃𝑛,𝐼 

communicates at least 
𝐼𝑛 𝑡−1

2
− 𝑛𝑒𝑔𝑙 elements.𝛺( 𝐶 ⋅ 𝑛)



Lower bounds for preparing OLEs

24

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

Cost: 𝑂(|𝐶|) elements



Lower bounds for preparing OLEs

24

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

Cost: 𝑂(|𝐶|) elements

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements



Lower bounds for preparing OLEs

24

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

Cost: 𝑂(|𝐶|) elements

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements

IT-MPCs for 𝐼𝑃𝑛,𝐼 with 𝑂(|𝐶|) elements



Lower bounds for preparing OLEs

25

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

Cost: 𝑂(|𝐶|) elements

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements

IT-MPCs for 𝐼𝑃𝑛,𝐼 with 𝑂(|𝐶|) elements

Impossibility result in [DLN19]

There is NO



Lower bounds for preparing OLEs

25

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

Cost: 𝑂(|𝐶|) elements

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements

IT-MPCs for 𝐼𝑃𝑛,𝐼 with 𝑂(|𝐶|) elements

Impossibility result in [DLN19]

There is NO

There is NO



Lower bounds for preparing OLEs

26

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements

There is NO

Cost: 𝑂(|𝐶|) elements



Lower bounds for preparing OLEs

26

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements

There is NO

Follow a specific 

(non-uniform) 

pattern.

a specific pattern

Cost: 𝑂(|𝐶|) elements



Lower bounds for preparing OLEs

26

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements

There is NO

Follow a specific 

(non-uniform) 

pattern.

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

a specific pattern

Cost: 𝑂(|𝐶|) elements



Lower bounds for preparing OLEs

26

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements

There is NO

Follow a specific 

(non-uniform) 

pattern.

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

a specific pattern

Cost: 𝑂(|𝐶|) elements

Packed 

triples

OLEs with a 

uniform pattern
MPC



Lower bounds for preparing OLEs

26

𝐼𝑃𝑛,𝐼

1. 𝑦 ← 𝐼𝑃 𝑥1,1 𝑥1,2 … 𝑥1,𝑡, 𝑥2,1 𝑥2,2 … 𝑥2,𝑡

2. 𝑦𝑗,𝑖 ← 𝑏𝑗,𝑖 ⋅ 𝑦

Π𝐼𝑃 + 𝑂(|𝐶|) OLEs

IT-MPCs preparing 𝑂(|𝐶|) OLEs with 

𝑂(|𝐶|) elements

There is NO

Follow a specific 

(non-uniform) 

pattern.

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

a specific pattern

Cost: 𝑂(|𝐶|) elements

Packed 

triples

OLEs with a 

uniform pattern

An arbitrary 

pattern?

MPC



Lower bounds for preparing OLEs

27

IT-MPCs preparing 𝑂(𝐶) OLEs following 

the specific pattern with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs for any 

pair of parties with 𝑂(𝐶) elements

a specific pattern

for any pair of parties



Lower bounds for preparing OLEs

28

IT-MPCs preparing 𝑂(𝐶) OLEs following 

the specific pattern with 𝑂(𝐶) elements

There is NO

IT-MPCs preparing 𝑂(𝐶) OLEs for any 

pair of parties with 𝑂(𝐶) elements

a specific pattern

for any pair of parties



Lower bounds for preparing OLEs

28

IT-MPCs preparing 𝑂(𝐶) OLEs following 

the specific pattern with 𝑂(𝐶) elements

There is NO

IT-MPCs preparing 𝑂(𝐶) OLEs for any 

pair of parties with 𝑂(𝐶) elements

There is NO

a specific pattern

for any pair of parties



Lower bounds for preparing OLEs [CP17]

29

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with a 

uniform pattern with 𝑂(𝐶) elements

a specific pattern

for any pair of parties

a uniform pattern



Lower bounds for preparing OLEs [CP17]

29

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with a 

uniform pattern with 𝑂(𝐶) elements
𝐶 OLEs with a uniform pattern

a specific pattern

for any pair of parties

a uniform pattern



Lower bounds for preparing OLEs [CP17]

29

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with a 

uniform pattern with 𝑂(𝐶) elements

Adversary only knows 

𝜸 =
𝟏

𝟒
<

𝟏

𝟐
 fraction of 

OLEs.

𝐶 OLEs with a uniform pattern

a specific pattern

for any pair of parties

a uniform pattern



Lower bounds for preparing OLEs [CP17]

29

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with a 

uniform pattern with 𝑂(𝐶) elements

Adversary only knows 

𝜸 =
𝟏

𝟒
<

𝟏

𝟐
 fraction of 

OLEs.

𝐶 OLEs with a uniform pattern

OLE extraction

1

2
− 𝛾 ⋅ 𝐶 random OLEs btw 

(𝑃0, 𝑃1)

a specific pattern

for any pair of parties

a uniform pattern



Lower bounds for preparing OLEs [CP17]

30

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with a 

uniform pattern with 𝑂(𝐶) elements

Adversary only knows 

𝜸 =
𝟏

𝟒
<

𝟏

𝟐
 fraction of 

OLEs.

𝐶 OLEs with a uniform pattern

OLE extraction

1

2
− 𝛾 ⋅ 𝐶 random OLEs btw 

(𝑃0, 𝑃1)

a specific pattern

for any pair of parties

a uniform pattern

There is NO



Lower bounds for preparing OLEs [CP17]

30

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with a 

uniform pattern with 𝑂(𝐶) elements

Adversary only knows 

𝜸 =
𝟏

𝟒
<

𝟏

𝟐
 fraction of 

OLEs.

𝐶 OLEs with a uniform pattern

OLE extraction

1

2
− 𝛾 ⋅ 𝐶 random OLEs btw 

(𝑃0, 𝑃1)

a specific pattern

for any pair of parties

a uniform pattern

There is NO

There is NO



Lower bounds for preparing OLEs

31

a specific pattern

for any pair of parties

a uniform pattern

an arbitrary pattern

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements



Lower bounds for preparing OLEs

32

a specific pattern

for any pair of parties

a uniform pattern

an arbitrary pattern

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟐, 𝑷𝟑)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

OLE pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements



Lower bounds for preparing OLEs

32

a specific pattern

for any pair of parties

a uniform pattern

an arbitrary pattern

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟐, 𝑷𝟑)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Apply a perm

OLE pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements



Lower bounds for preparing OLEs

32

a specific pattern

for any pair of parties

a uniform pattern

an arbitrary pattern

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟐, 𝑷𝟑)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Apply a perm

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟐, 𝑷𝟑)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

OLE pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

OLE pattern



Lower bounds for preparing OLEs

33

a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4



Lower bounds for preparing OLEs

33

a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

Fix the set of corrupted 

parties

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4



Lower bounds for preparing OLEs

33

a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

Fix the set of corrupted 

parties

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Select a random perm



Lower bounds for preparing OLEs

33

a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

Fix the set of corrupted 

parties

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Select a random perm

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Adversary only knows 𝜸 =
𝟏

𝟒
<

𝟏

𝟐
 

fraction of OLEs in expectation.



Lower bounds for preparing OLEs

33

a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

Fix the set of corrupted 

parties

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Select a random perm

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Adversary only knows 𝜸 =
𝟏

𝟒
<

𝟏

𝟐
 

fraction of OLEs in expectation.

𝑂(𝑛 + 𝜅) times + 
Chernoff’s bd + 

union bd



Lower bounds for preparing OLEs

34

a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

For any set of corrupted 

parties

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Select a random perm

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Adversary only knows 𝜸 =
𝟑

𝟖
<

𝟏

𝟐
 

fraction of OLEs w.h.p.

𝑂(𝑛 + 𝜅) times + 
Chernoff’s bd + 

union bd



Lower bounds for preparing OLEs

34

a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

For any set of corrupted 

parties

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Select a random perm

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

OLE extraction

Adversary only knows 𝜸 =
𝟑

𝟖
<

𝟏

𝟐
 

fraction of OLEs w.h.p.

𝑂(𝑛 + 𝜅) times + 
Chernoff’s bd + 

union bd



Lower bounds for preparing OLEs

35

a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

For any set of corrupted 

parties

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Select a random perm

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

OLE extraction

Adversary only knows 𝜸 =
𝟑

𝟖
<

𝟏

𝟐
 

fraction of OLEs w.h.p.
There is NO

𝑂(𝑛 + 𝜅) times + 
Chernoff’s bd + 

union bd
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a specific pattern

for any pair of parties

IT-MPCs preparing 𝑂(𝐶) OLEs for 

(𝑷𝟎, 𝑷𝟏) with 𝑂(𝐶) elements

a uniform pattern

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

an arbitrary pattern

For any set of corrupted 

parties

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

Select a random perm

Pair of parties (𝑷𝟏, 𝑷𝟐) (𝑷𝟏, 𝑷𝟑) … (𝑷𝟑, 𝑷𝟒)

# of OLEs 𝑐1,2 𝑐1,3 … 𝑐3,4

OLE extraction

Adversary only knows 𝜸 =
𝟑

𝟖
<

𝟏

𝟐
 

fraction of OLEs w.h.p.
There is NO

There is NO

𝑂(𝑛 + 𝜅) times + 
Chernoff’s bd + 

union bd



Outline
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• Honest majority MPC with information-theoretic security in OLE-hybrid 

model 

• Negative results

• communication lower bound for OLE preparation in information-theoretic setting

• Preparing OLE correlations in Minicrypt
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𝑏
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Length: ℓ
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𝑚1 𝑚𝑏

𝑏

⋮𝜅 OTs

𝜅 bits 𝑚𝑏 = 𝑚0 + 𝑏 ⋅ (𝑚1 − 𝑚0)
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𝑏
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DN protocol with 

malicious security [GS20]

𝑚𝑏 = 𝑚0 + 𝑏 ⋅ (𝑚1 − 𝑚0)
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Preparing OLE correlation – OT extension 
[IKNP03, KOS15]
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𝑏
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OT extension with 
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[KOS15] Random 
Oracle

𝑂(𝑴 ⋅ ℓ ⋅ 𝜅) bits
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𝑚1 𝑚𝑏

𝑏

𝑚0

𝑚1 𝑚𝑏

𝑏
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𝜅 bits

OT extension with 
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Oracle

𝑚0

𝑚1 𝑚𝑏

𝑏

𝑚0

𝑚1 𝑚𝑏

𝑏

⋮
𝑂(𝑴 ⋅ ℓ) OTs

ℓ bits

⋮

𝑂(𝑴 ⋅ ℓ ⋅ 𝜅) bits



Preparing OLE correlation – OT to OLE [KOS16]
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⋮
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Sec par: 𝜅
Length: ℓ

ℱ𝑂𝑇(𝜅, 𝜅) ℱ𝑅𝑂𝑇(ℓ, 𝑂 𝑴 ⋅ ℓ ) ℱ𝑂𝐿𝐸(𝑴)

𝑚0

𝑚1 𝑚𝑏

𝑏

𝑚0

𝑚1 𝑚𝑏

𝑏

⋮

ℓ bits

⋮
𝑂(𝑴 ⋅ ℓ) OTs

𝑢 𝑣

𝑠 𝑡 = 𝑢 ⋅ 𝑣 + 𝑠

⋮

⋮
𝑢 𝑣

𝑠 𝑡

Field elements

𝑴 OLEs

Use OTs to compute 

OLEs with malicious 

security [KOS16]

𝑂(𝑴 ⋅ ℓ2) bits



Preparing OLE correlation – OT to OLE [KOS16]
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=
𝑂(𝑴 ⋅ ℓ2 + 𝑴 ⋅ ℓ ⋅ 𝜅 + 𝜅2 ⋅ 𝑛 + 𝑛2 ⋅ 𝜅) bits 

for 𝑀 OLEs
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Sec par: 𝜅
Length: ℓ

ℱ𝑂𝑇(𝜅, 𝜅) ℱ𝑅𝑂𝑇(ℓ, 𝑂 𝑴 ⋅ ℓ ) ℱ𝑂𝐿𝐸(𝑴)

𝑂(𝜅2 ⋅ 𝑛 + 𝑛2 ⋅ 𝜅) bits 𝑂(𝑴 ⋅ ℓ ⋅ 𝜅) bits 𝑂(𝑴 ⋅ ℓ2) bits+ +

=
𝑂(𝑴 ⋅ ℓ2 + 𝑴 ⋅ ℓ ⋅ 𝜅 + 𝜅2 ⋅ 𝑛 + 𝑛2 ⋅ 𝜅) bits 

for 𝑀 OLEs

𝑂(ℓ + 𝜅) elements per OLE
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OLE preparation

𝑂(1) 

IT-MPCs preparing 𝑂(𝐶) OLEs with an 

arbitrary pattern with 𝑂(𝐶) elements

There is NO

Impossibility result in [DLN19]
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OT extension
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Thank you!

Credit:
Icons: https://www.flaticon.com/ 
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