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Remote Cloud Storage

* Your goal: Perform computation that requires lots of storage.

* Problem: You don’t have enough storage yourself (even to
store the input data!)

 Examples: file storage, experiment with lots of data,
analytics, ...

 Common solution: Run computation using remote cloud as
storage.
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Trust Concerns

* Privacy #1: The server may see your data!
Solution: Secret-key encryption (or secret sharing)
* Privacy #2: The server can see where you're accessing!
Solution: Oblivious RAM (ORAM) (Goidreich, Ostrovsky ‘89, °90, '96]
* Integrity: An active, malicious server may modify your data!
|ldeally: Verify that the server is behaving honestly

e (Privacy + Integrity: All simultaneously!)
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Integrity: Verifying Honest Server Behavior

* Can we prevent adversary from...
e ...modifying data? No!
e ...Undetectably modifying data? Yes!

* Name for this: memory checker



Memory Checking

A memory checker (MC) is a protocol that prevents
adversaries from undetectably modifying cloud data.

[FOCS ’91, Blum, Evans, Gemmell, Kannan, Naor]
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“Read-Only Reads”

“Logical queries” g
ogical queries “Physical queries” Assumption:
\ No read query ever
User dwrit J invokes a write query .
read/write :
query rea/d/irlte
B query
—_—
e
——
response —
—

4

Abort

A

« Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives
correct response.

 Soundness: For any PPT malicious server and any sequence of user queries, the probability
that the MC gives an incorrect response without aborting is at most p, where p is negligible.
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Related Applications

e Secure hardware (enclaves)
 Provable data possession and retrievabllity systems
» Offline memory checking

e \erifiable computation (SNARKS) [Setty20, BCHO22, AST23, STW?23, ...]

 Accumulation schemes [BC24, ...]
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Two main complexity measures:

1. Local Space: Amount of private space the MC can store locally.

e For storing n entries, space n is trivial (can store the full RAM itself).

» For the rest of the talk, assume space at most n1=¢ for some € > 0.
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2. Query complexity/overhead: Number of physical queries made to the
server per logical query. Ideally as small as possible!
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Limitations of the Computational Lower Bounds

[Dwork-Naor-Rothblum-

Vaikuntanathan ’09] [Boyle-Komargodski-V. "24]

e | ower bound app”es On|y to * Olnly-rUIGS out memory_ checkers
deterministic and non-adaptive with inverse polynomial
memory checkers. Big restriction: soundness error, roughly

p~l/n.

* [For every logical user query to

i € [n], physical query locations . Doesn’fc rule out super-efficient
must be fixed; depend only on i MCs with larger soundness error.
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COvert Secu nty [Aumann-Lindell *07]

In many settings (e.g., commercial, political, social), malicious adversaries don’t
want to get caught.

Negligible soundness overkill!

€2(1) soundness error is sufficient. Detecting adversaries with 90% probability,
instead of (100 - negl)%, is enough of a disincentive.

This relaxation has enabled asymptotic efficiency gains in terms of computational
overhead and communication. (e.g, [Aumann-Lindell '07, Goyal-Mohassel-Smith *08, Hazay-Lindell *10])

Naturally fits into memory checking setting: file storage cloud server doesn’t want
to harm thelr reputation!
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Can MCs, relaxed to covert security

(soundness €2(1)), have query
complexity g < logn/loglogn? O(1)?

Concrete Example: Is there a MC
with 5% soundness error and g = 2?
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Main Result

We show:

Theorem: Every memory checker*, even with €2(1)

soundness error, must have g = 2(log n/log log n).

Tight up to constant factors. [Papamanthou-Tamassia 11]
Unconditional. Holds regardless of any computational assumptions.
Handles randomized and adaptive memory checkers.

An Interpretation: Unlike many other MPC functionalities, covert security

does not enable efficiency gains for memory checking.
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Our Approach

* Just like [Boyle-Komargodski-V.’24]|, we can use a MC that’s too efficient
to compress random bits.

* Will use following style of compression lemma:

e Transmitting uniformly random § C [n] from Alice to Bob where

| S| = k requires log (Z

) bits, even with shared indep. randomness.
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Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

F hieS: Foreach i € [n]:
or each i st .
write(i, 1) read(i)
#
—
DBI Great!
r=1 < 1€8§

by soundness of MC.




Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

Foreachi € §: Foreach i € [n]:
st gooo
write(i, 1) read(i)
.
7% w r; € {0, 1}
—
DBI Great!
r=1 << 1€$

by soundness of MC.

Abort: r; = L

Can’t conclude anything...
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Key [BKV. ’24] Idea: Partition the Server’s Memory

» Analyze the query distribution of read(i) (where i « [n]):
 Heavy set /{: Small set, all have high probability mass.
. set /. “Total” guarantee of low mass.

e Light set L.: “Point-wise” guarantee of low mass.
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Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto 0oono

Foreach i € [n]:
st,580804 H, DB, |,

Foreachi € §:

write(i, 1) read(i) DB, ‘H +
> 4_'
% — M() w r. € {0, 1} DBy, v,

DB,

Hnl=1H
B
Lnl=1

st,

Abort: r; = L

Now, will usually
prevent this!
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Issue: Computing the Partition

 The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

o [BKV. 24| approach: Randomly guess whether each query is heavy.

* Problem: Incurs 24 security loss.

 Can we avoid this guessing?
« /1 could depend on private, internal randomness of the MC.

« [ could adaptively change as queries are sent to the MC.
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Our Idea in a Nutshell

The adversary can efficiently learn an approximation

of /7 by making many dummy read(i) queries.

» By “read-only reads” property, making read(i) queries doesn’t
change /.

» Making poly(n) queries is sufficient to learn a sufficiently good

approximation of /7.
* Analysis follows from multiplicative and additive Chernoff bounds.
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Summary

* Memory Checkers (MCs) remove need for trusting
Integrity when using remote cloud storage.

* We prove tight, unconditional lower bounds for MCs,
showing that Merkle-style constructions are optimal even

when relaxing to covert security.

* Previously known only for deterministic and non-
adaptive MCs or for MCs with inverse-polynomial
soundness.
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