The Complexity of Memory **Checking with Covert Security Neekon Vafa** (MIT)

Based on joint work with:

Eurocrypt 2025

May 5, 2025

Elette Boyle Reichman University & NTT Research

Ilan Komargodski **Hebrew University** & NTT Research

Your goal: Perform computation that requires lots of storage.

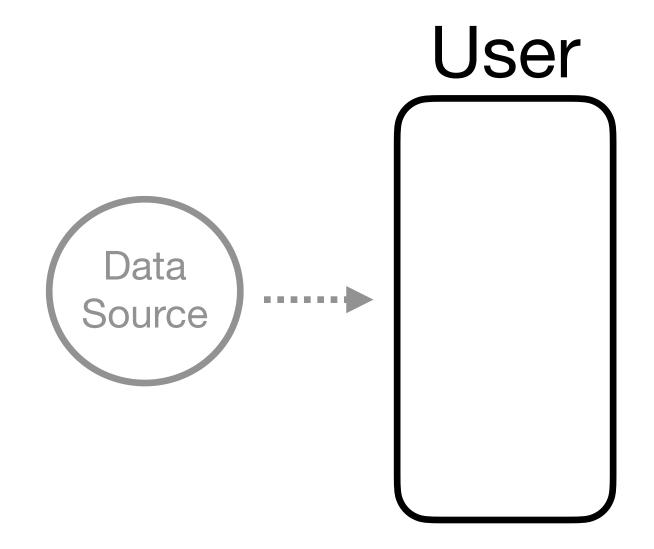
- Your goal: Perform computation that requires lots of storage.
- Problem: You don't have enough storage yourself (even to store the input data!)

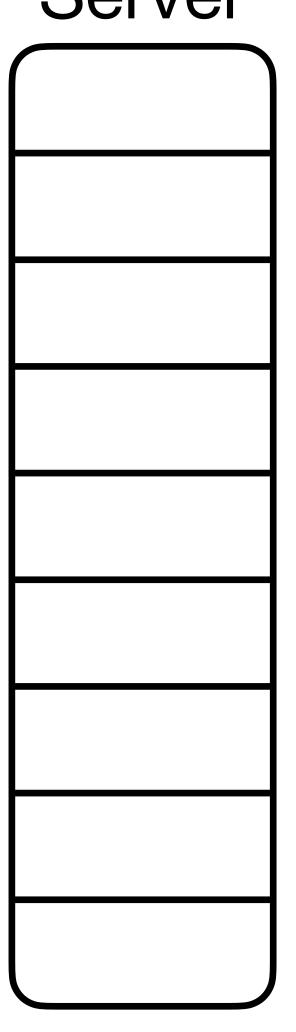
- Your goal: Perform computation that requires lots of storage.
- Problem: You don't have enough storage yourself (even to store the input data!)
 - Examples: file storage, experiment with lots of data, analytics, …

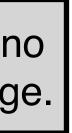
- Your goal: Perform computation that requires lots of storage.
- Problem: You don't have enough storage yourself (even to store the input data!)
 - Examples: file storage, experiment with lots of data, analytics, ...
- Common solution: Run computation using remote cloud as storage.

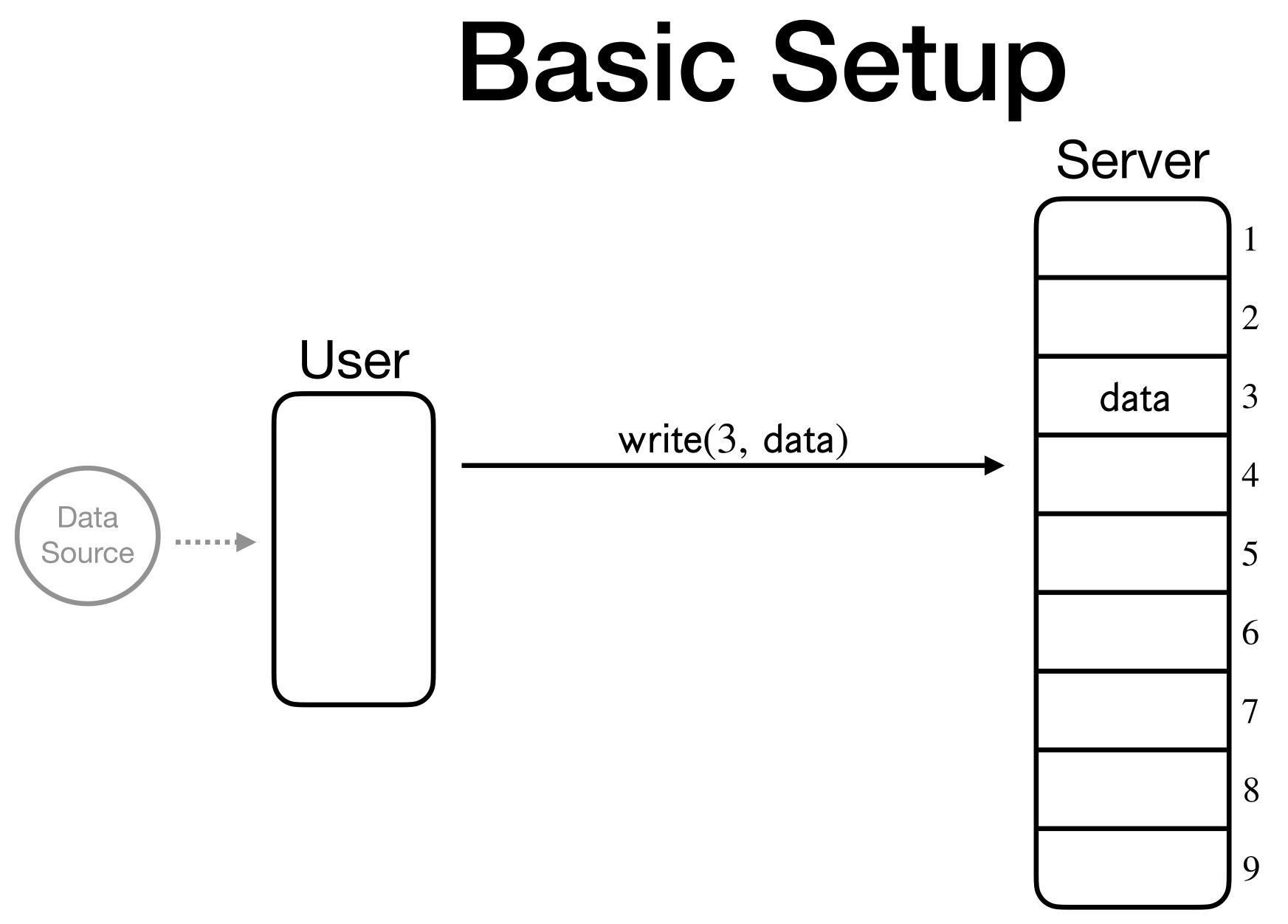
Basic Setup

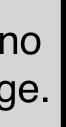
Basic Setup Server

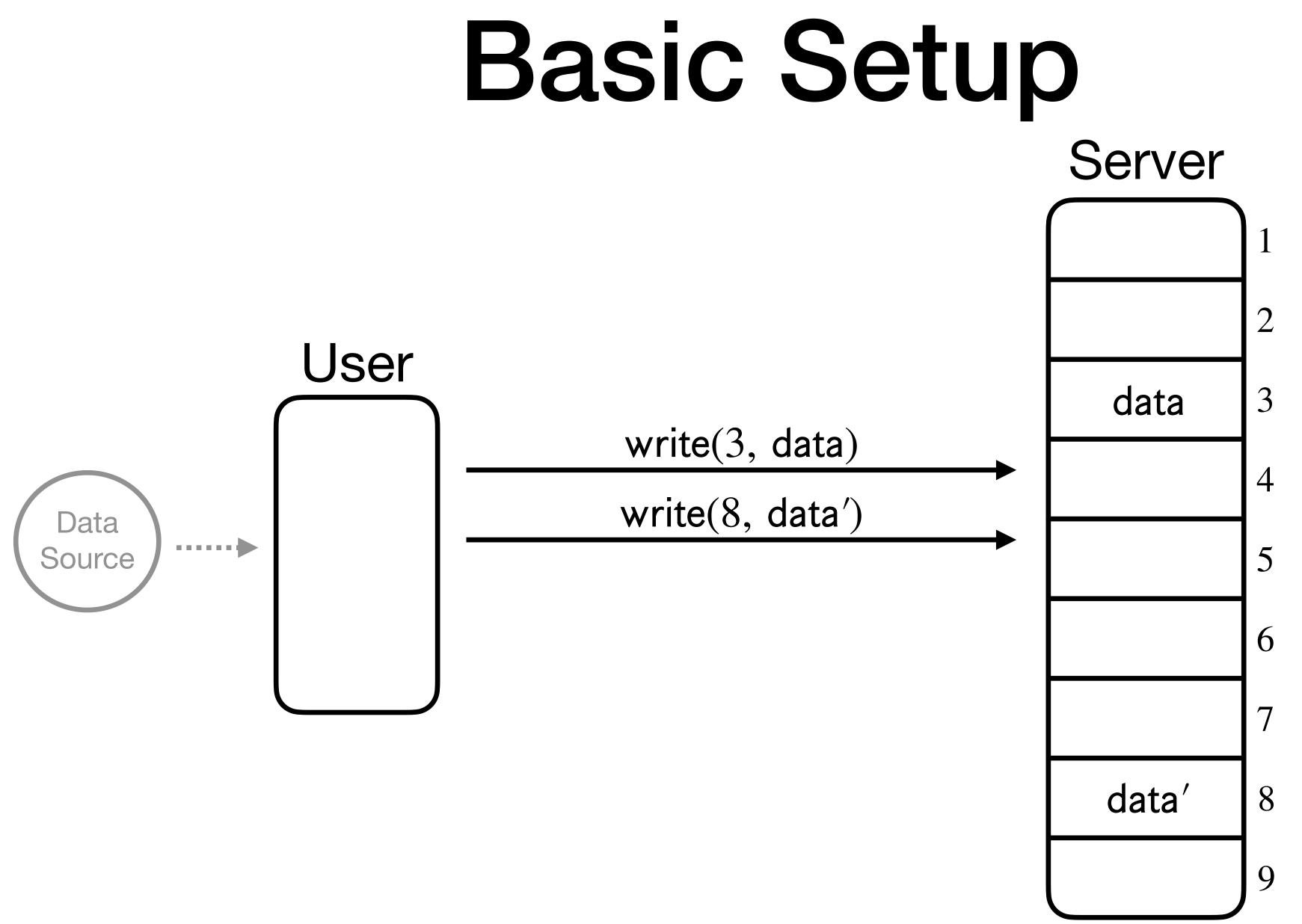


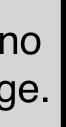


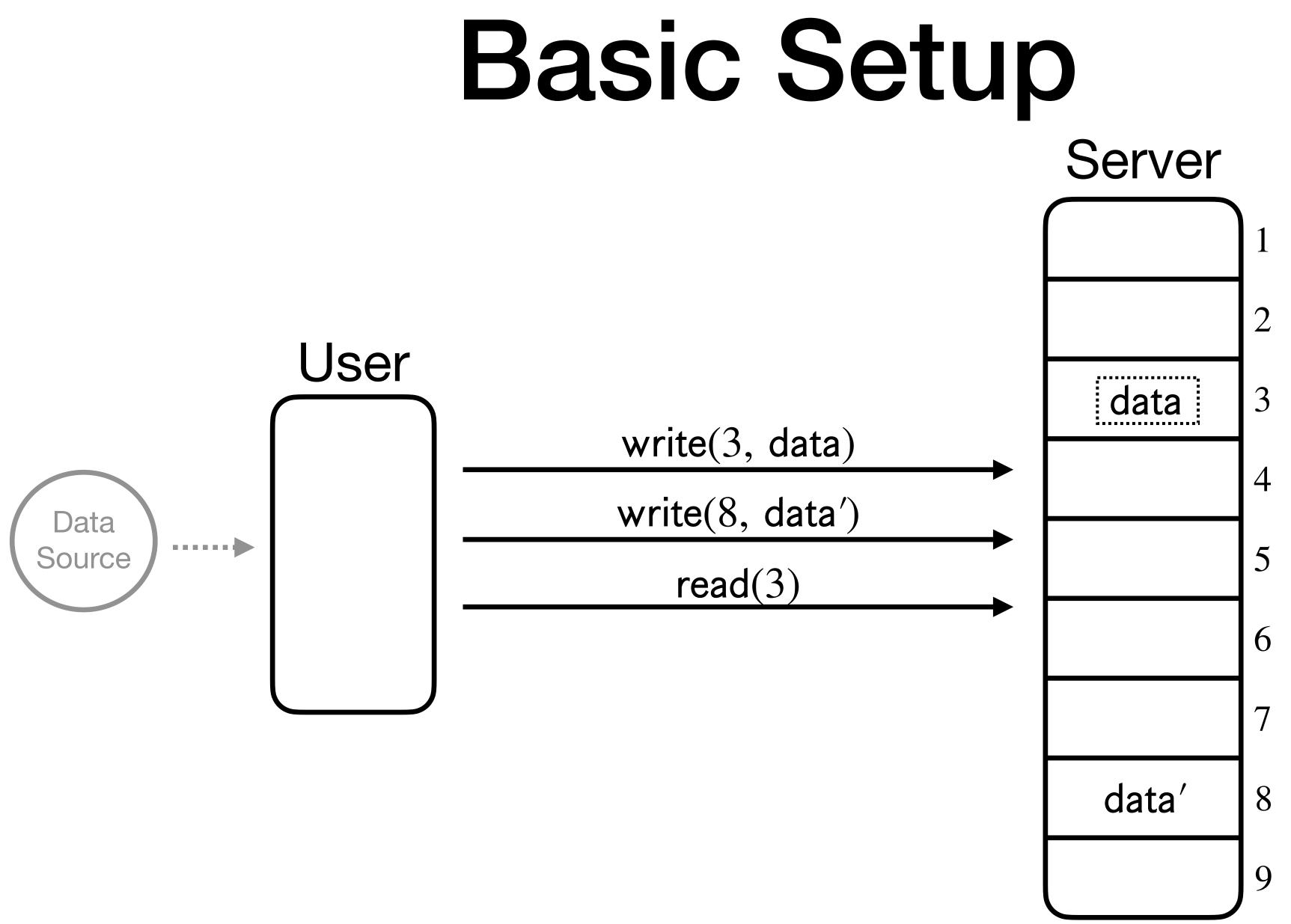


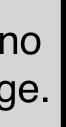


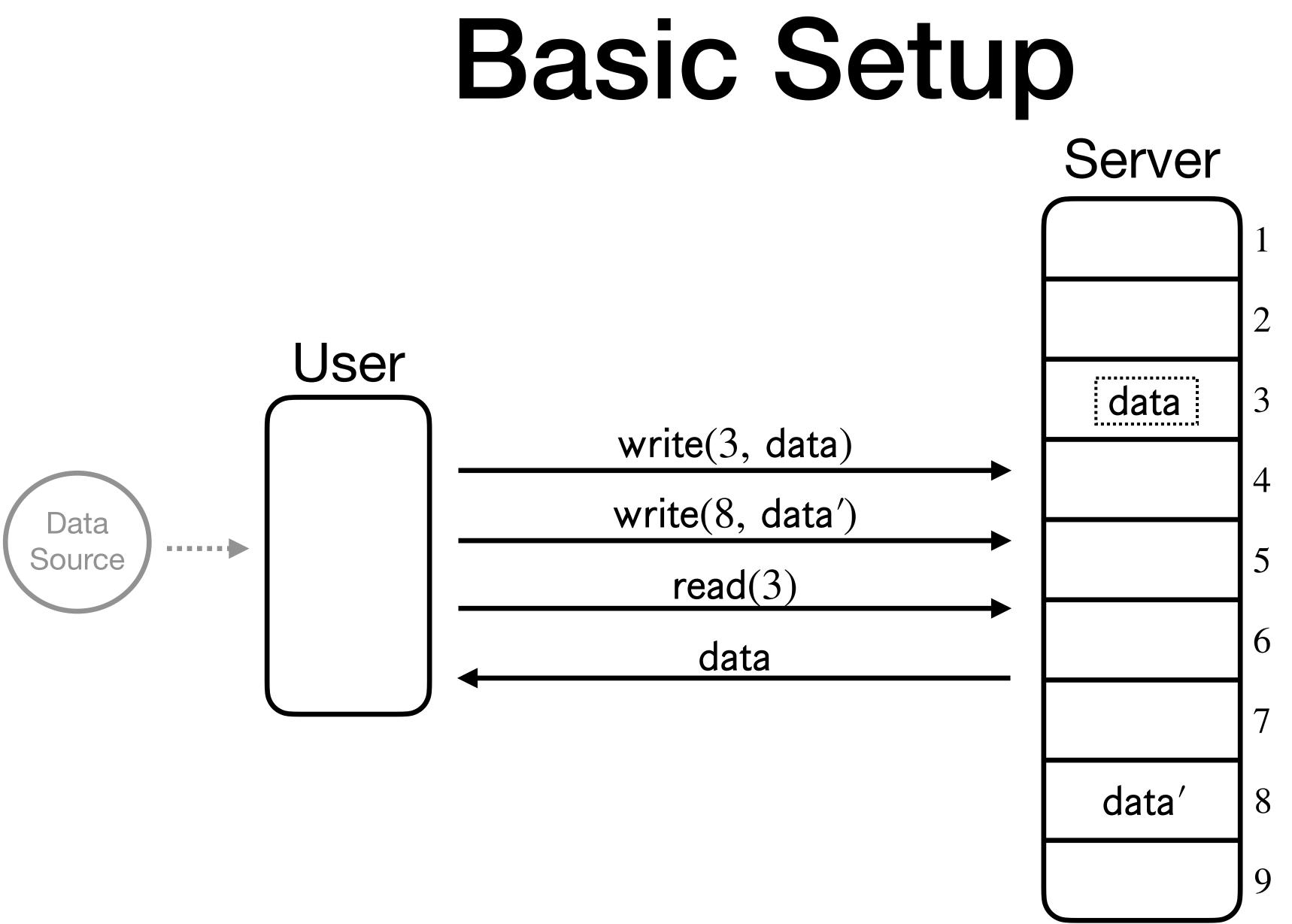


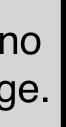


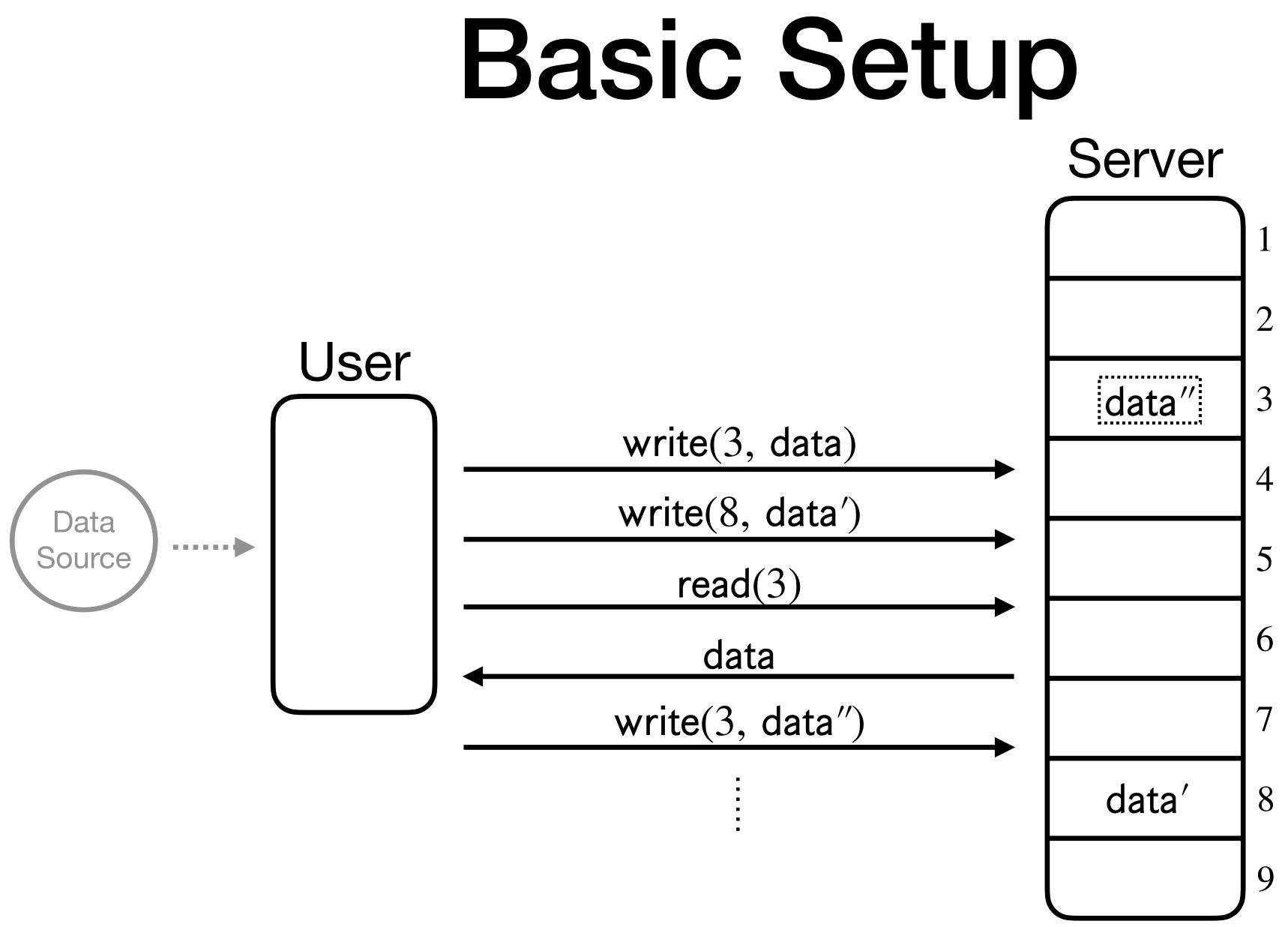


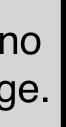




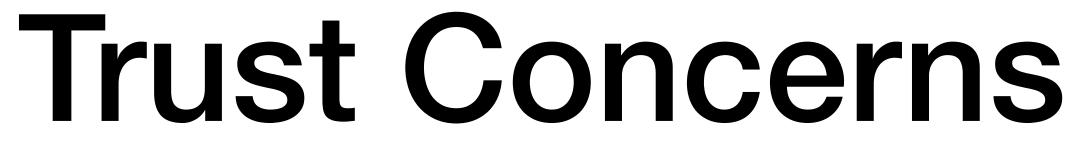








• Privacy #1: The server may see your data!



• Privacy #1: The server may see your data!

- Solution: Secret-key encryption (or secret sharing)

• Privacy #1: The server may see your data!

- Privacy #2: The server can see where you're accessing!
- Solution: Secret-key encryption (or secret sharing)

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you're accessing!

Solution: Oblivious RAM (ORAM)

Solution: Secret-key encryption (or secret sharing)

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you're accessing!

Integrity: An active, malicious server may modify your data!

Solution: Secret-key encryption (or secret sharing)

Solution: Oblivious RAM (ORAM)

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you're accessing!

Integrity: An active, malicious server may modify your data!

Ideally: Verify that the server is behaving honestly

Solution: Secret-key encryption (or secret sharing)

Solution: Oblivious RAM (ORAM)

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you're accessing!

Integrity: An active, malicious server may modify your data!

Ideally: Verify that the server is behaving honestly

• (Privacy + Integrity: All simultaneously!)

Solution: Secret-key encryption (or secret sharing)

Solution: Oblivious RAM (ORAM)

Can we prevent adversary from...

- Can we prevent adversary from...
 - ...modifying data?

- Can we prevent adversary from...
 - ...modifying data? No!

- Can we prevent adversary from...
 - ...modifying data? No!
 - ... undetectably modifying data?

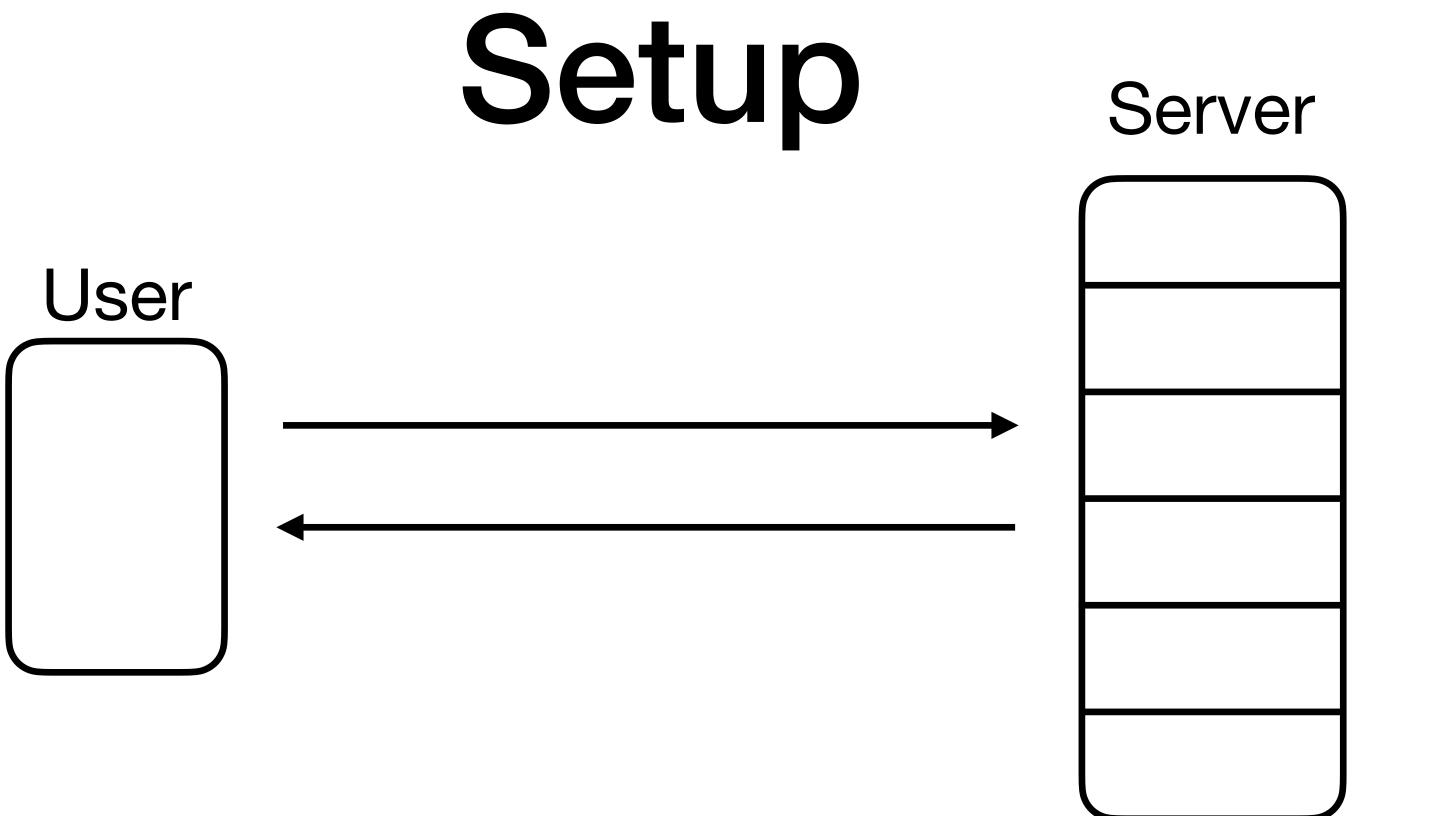
- Can we prevent adversary from...
 - ...modifying data? No!
 - ... undetectably modifying data? Yes!

- Can we prevent adversary from...
 - ...modifying data? No!
 - ...undetectably modifying data? Yes!
- Name for this: memory checker

Memory Checking

A **memory checker** (MC) is a protocol that prevents adversaries from **undetectably** modifying cloud data.

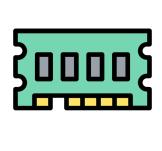
[FOCS '91, Blum, Evans, Gemmell, Kannan, Naor]



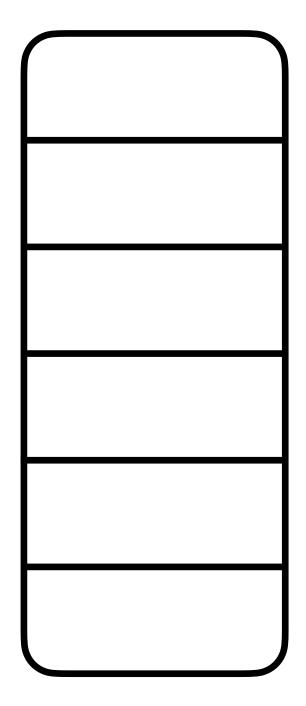
User

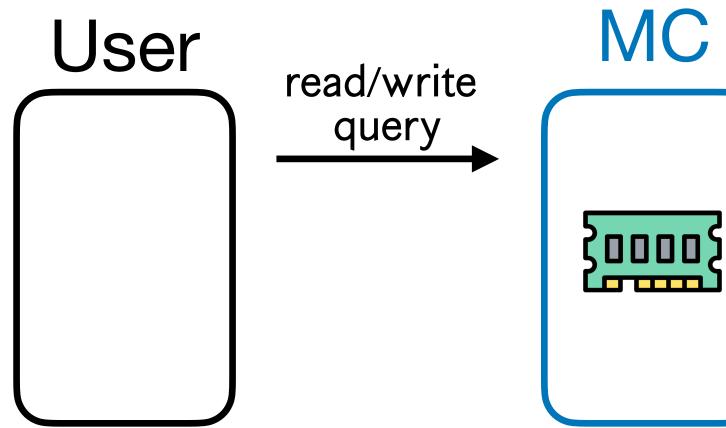
Setup

MC



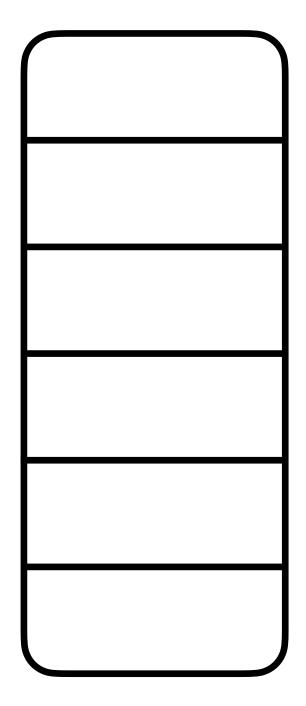
Server

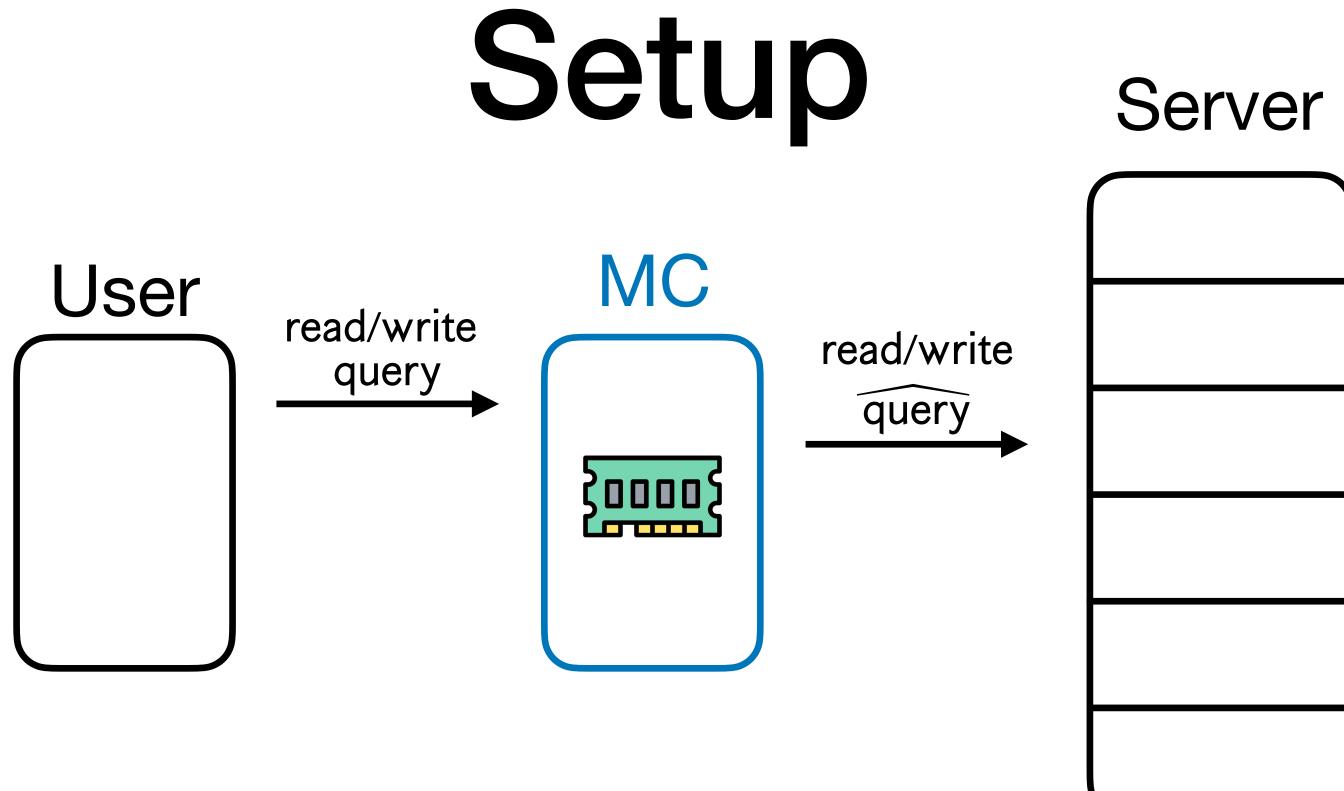


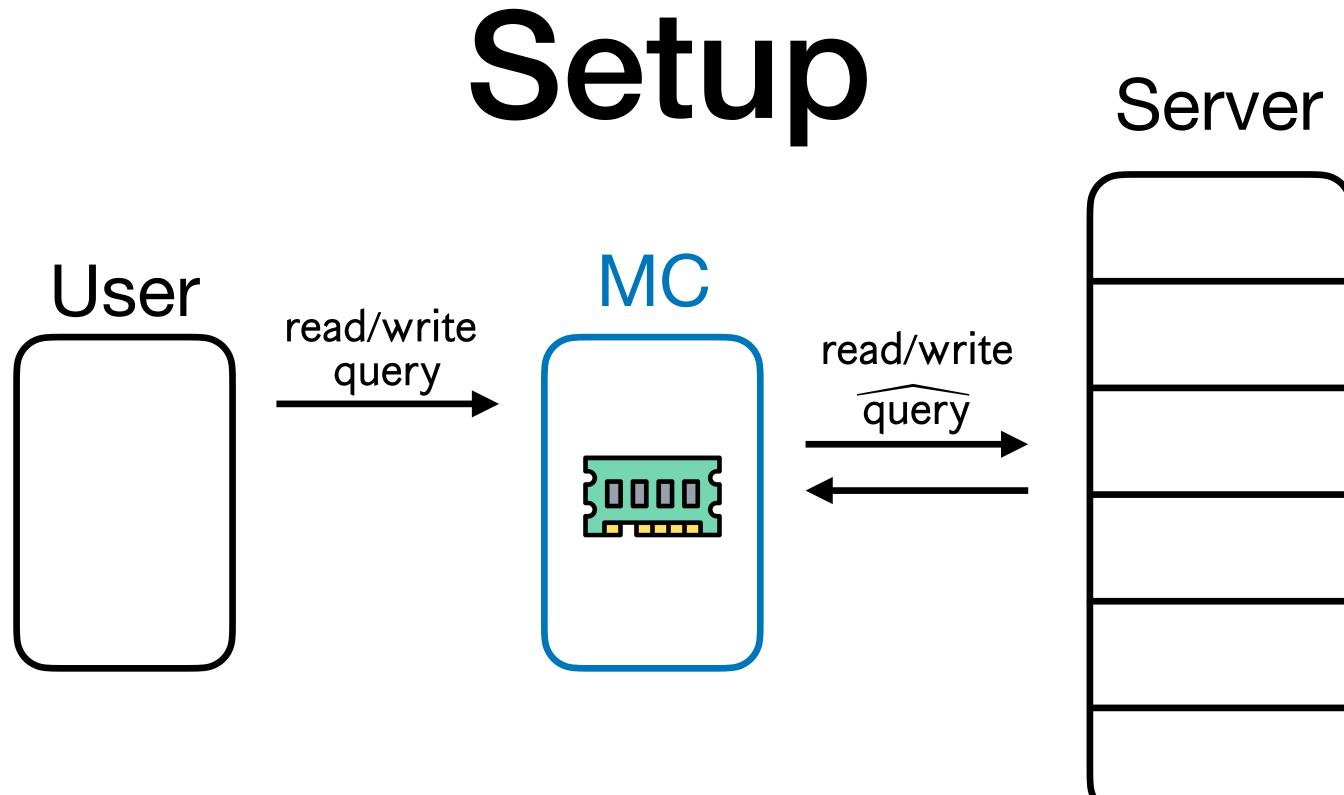


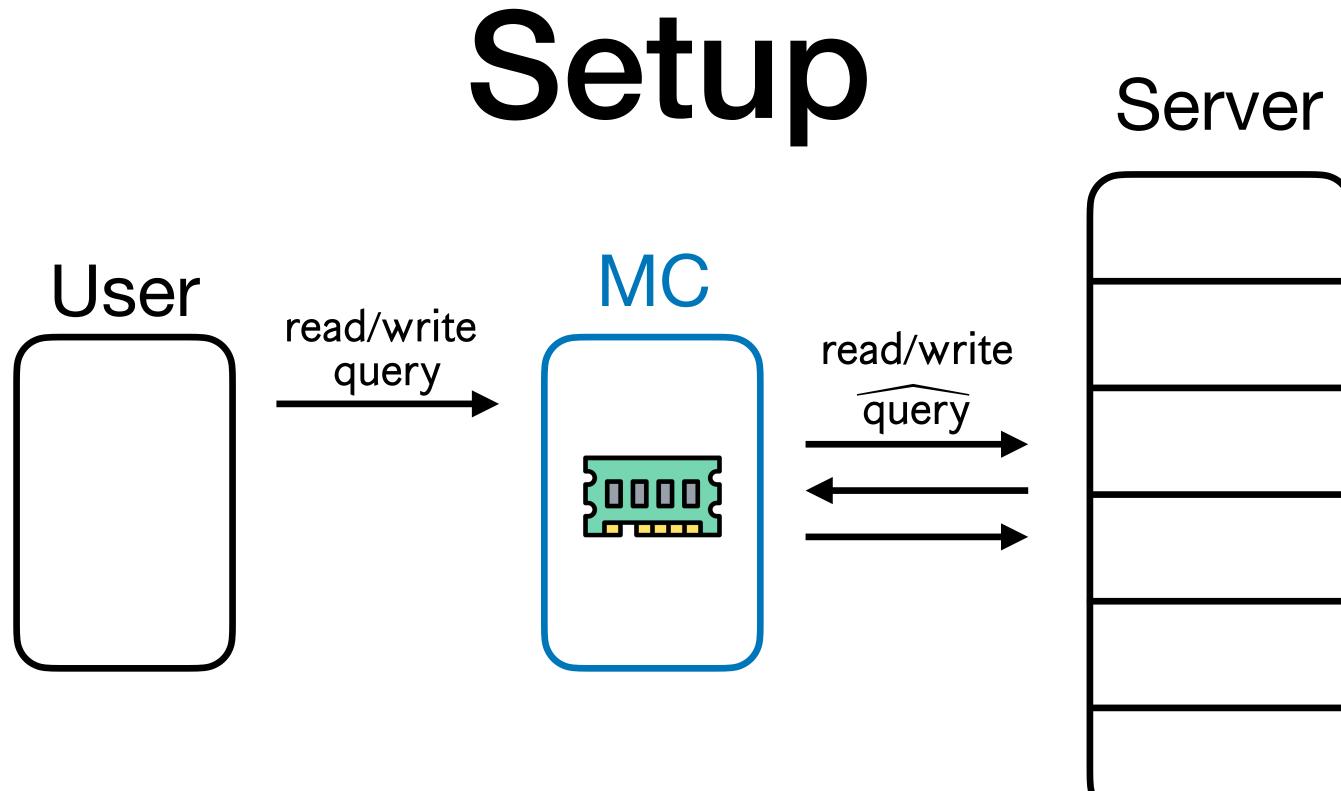
Setup

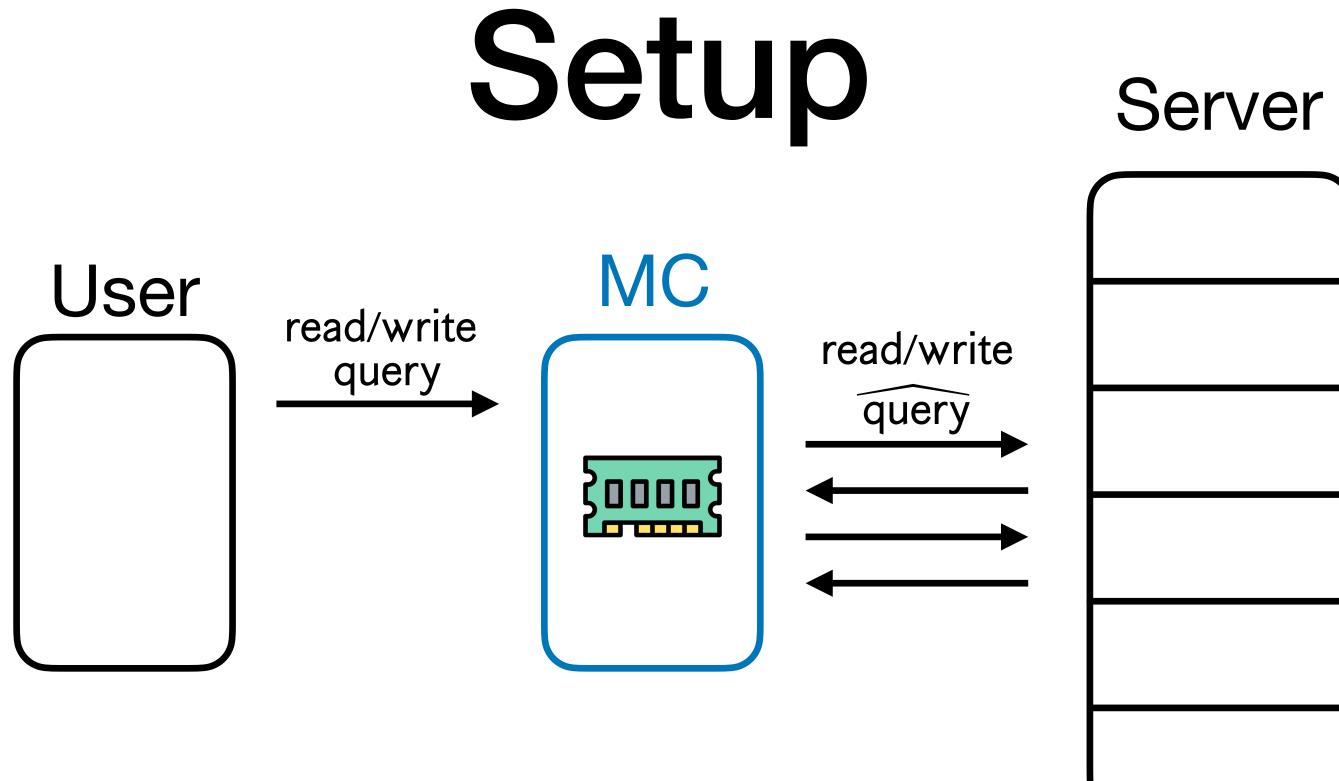
Server

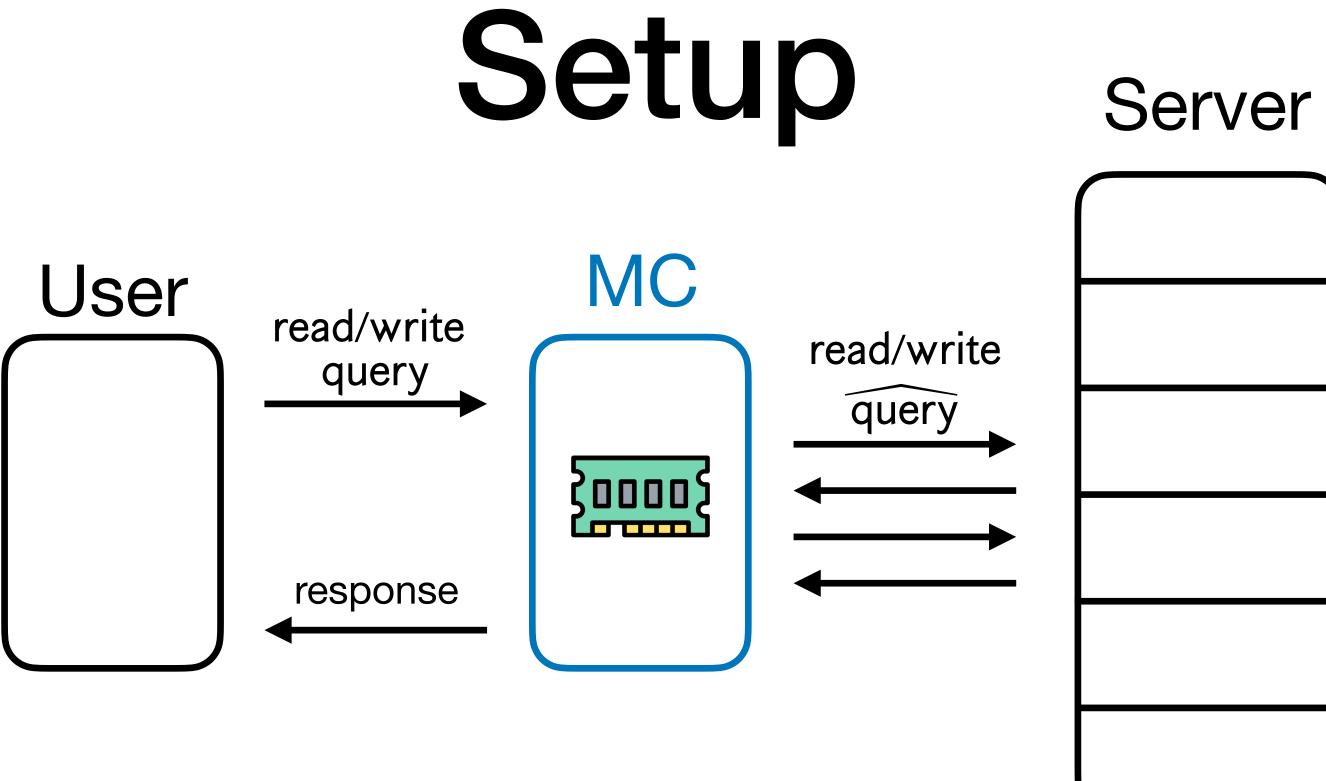


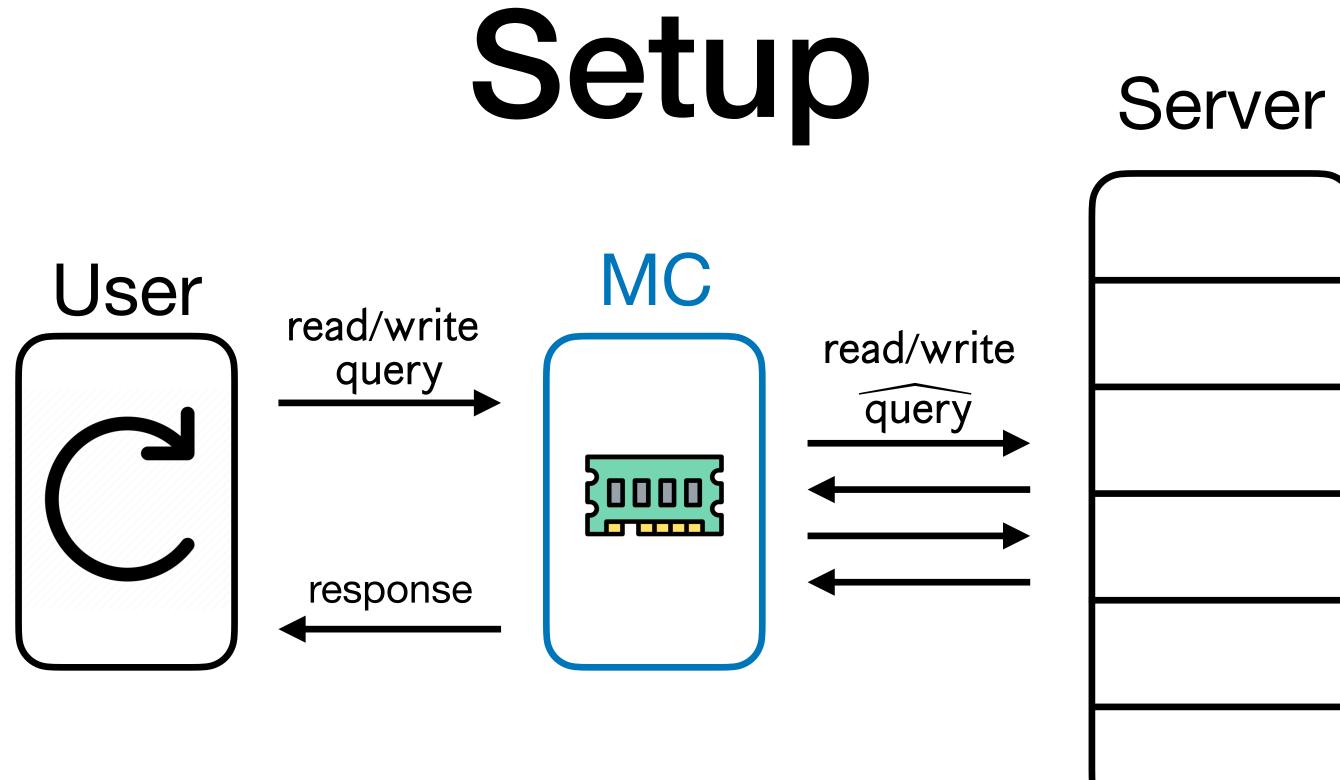


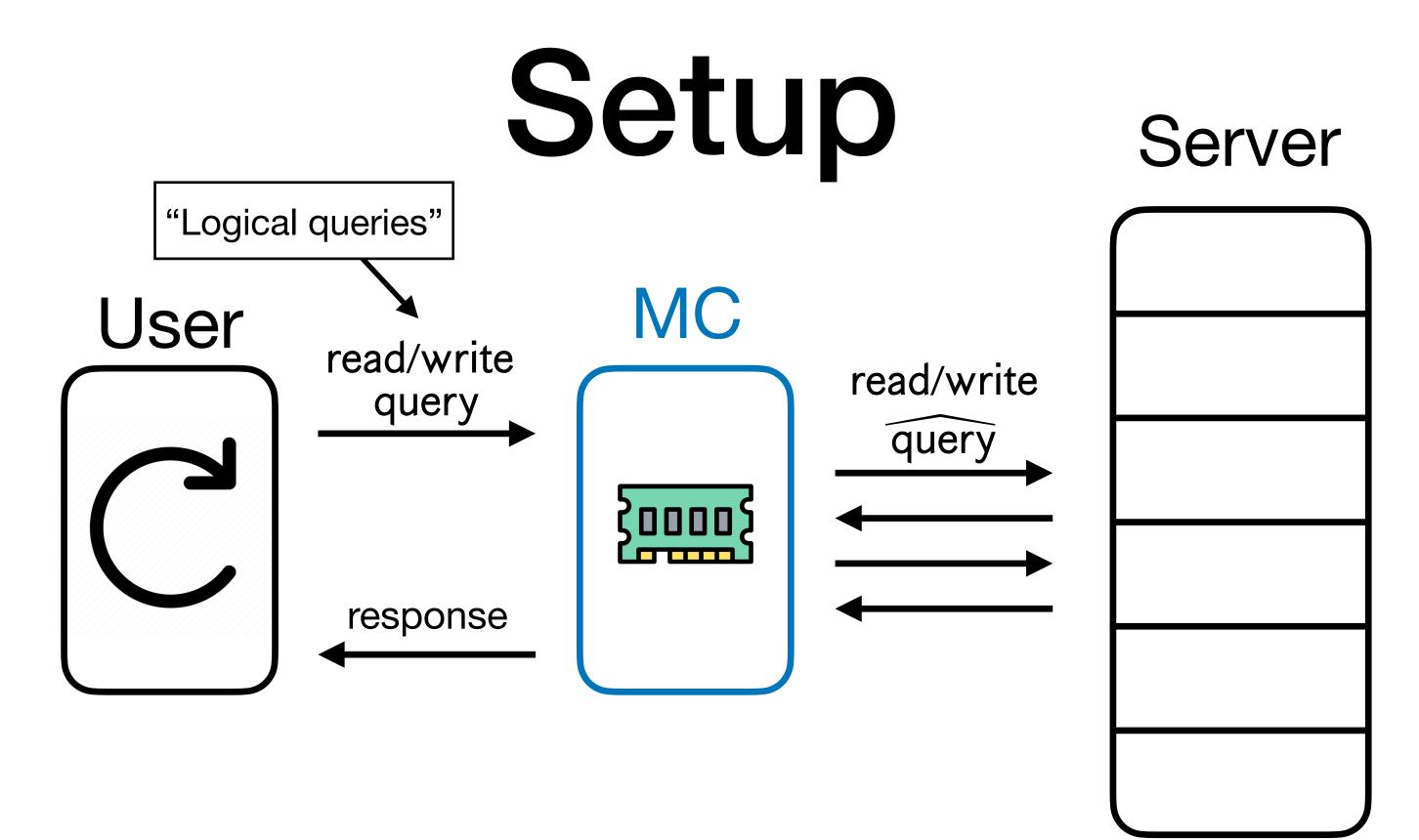


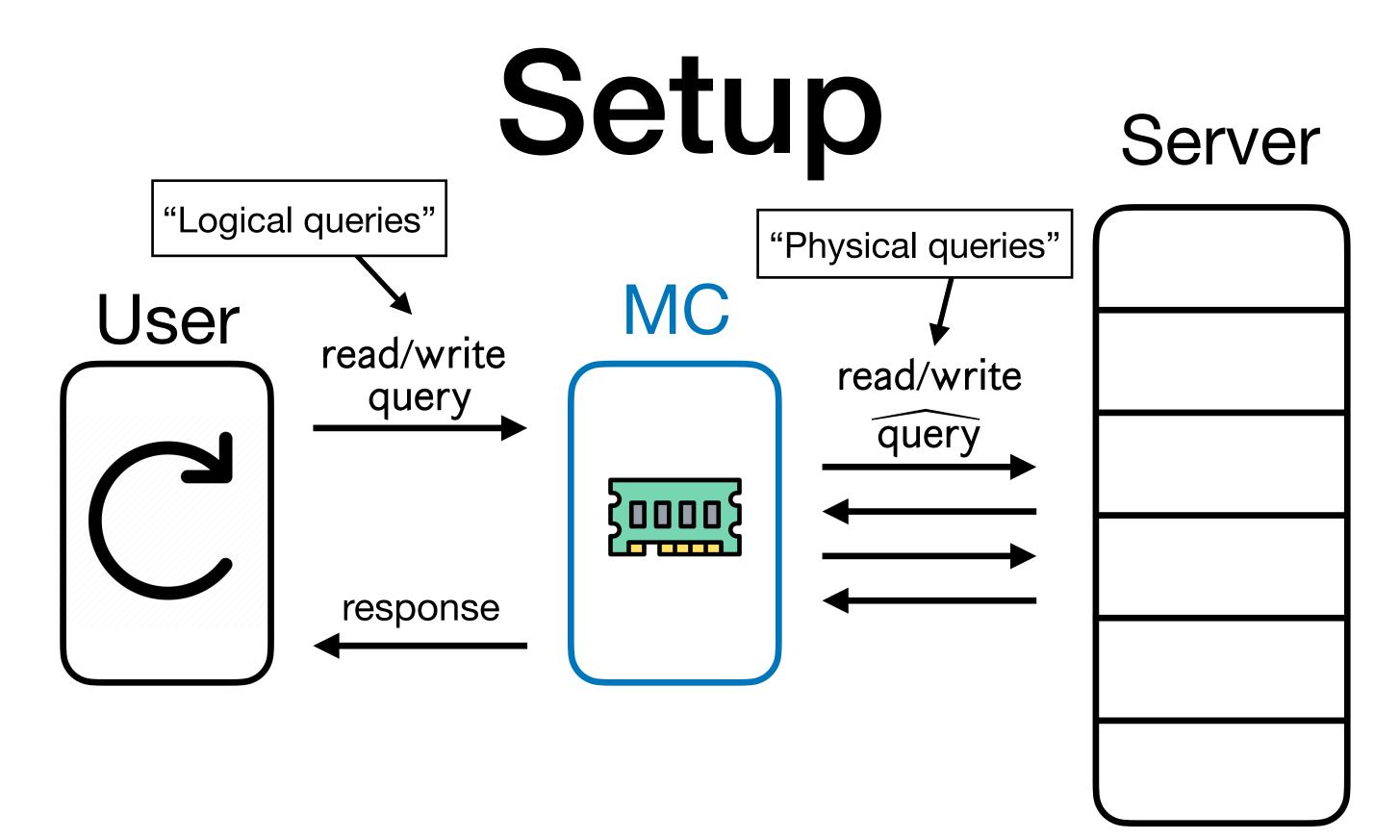


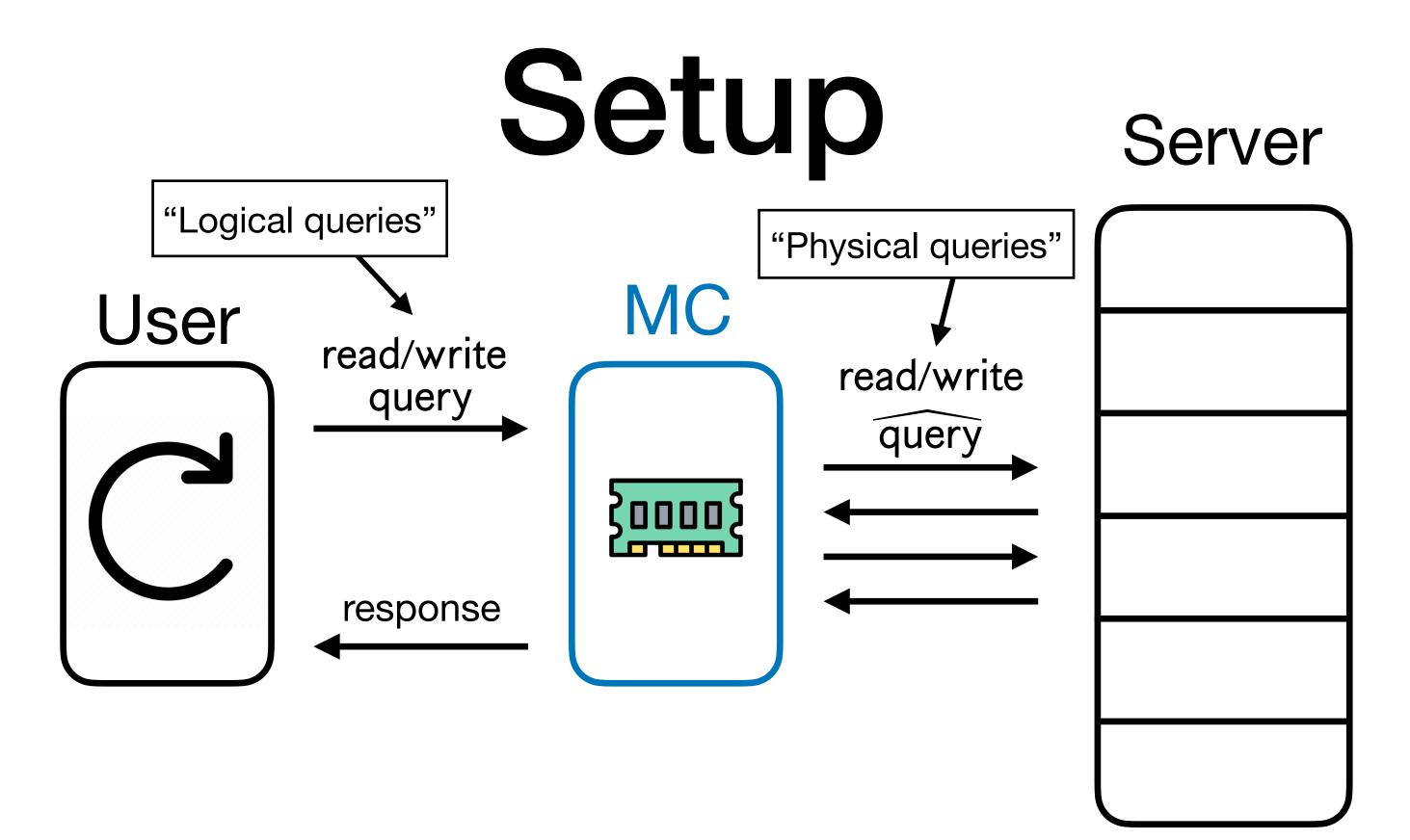




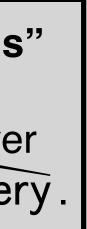




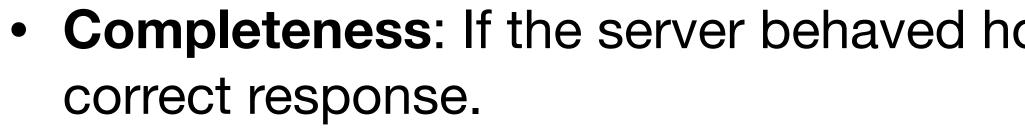




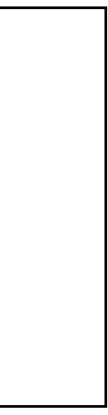
"Read-Only Reads" Assumption: No read query ever invokes a write query.

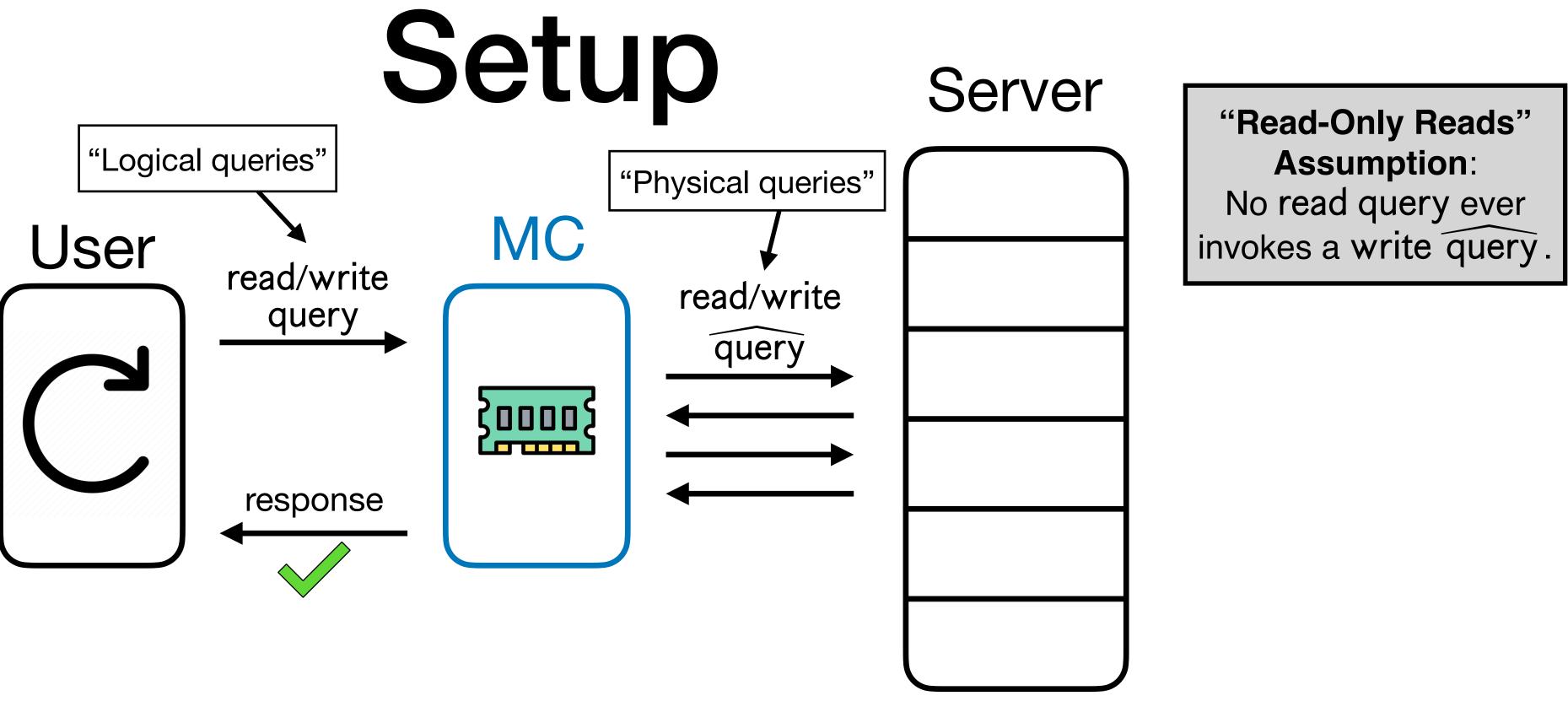


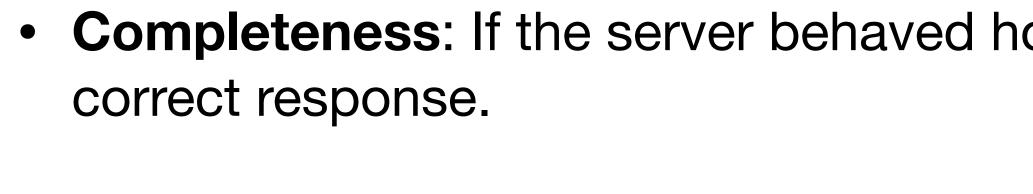




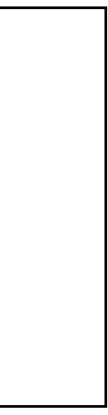
• Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives

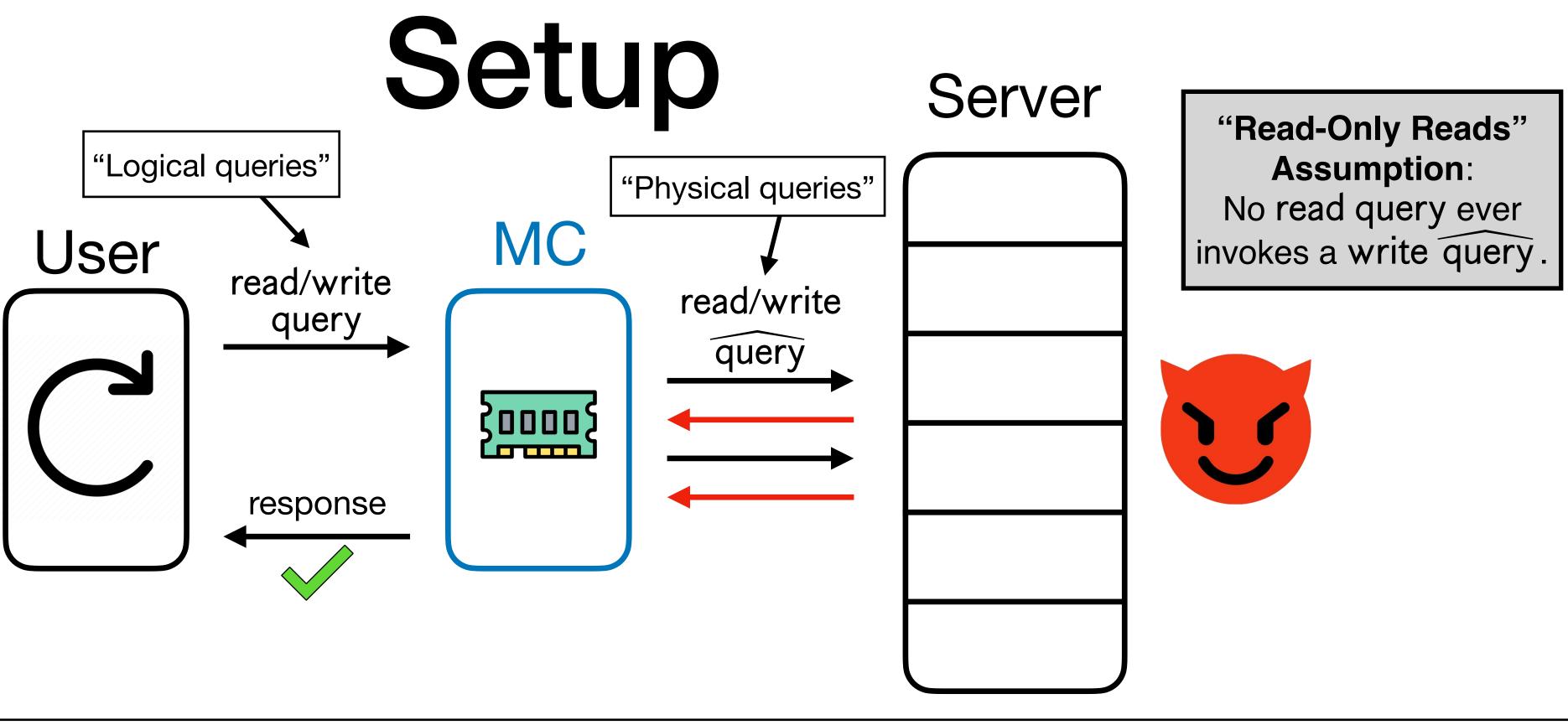






• Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives

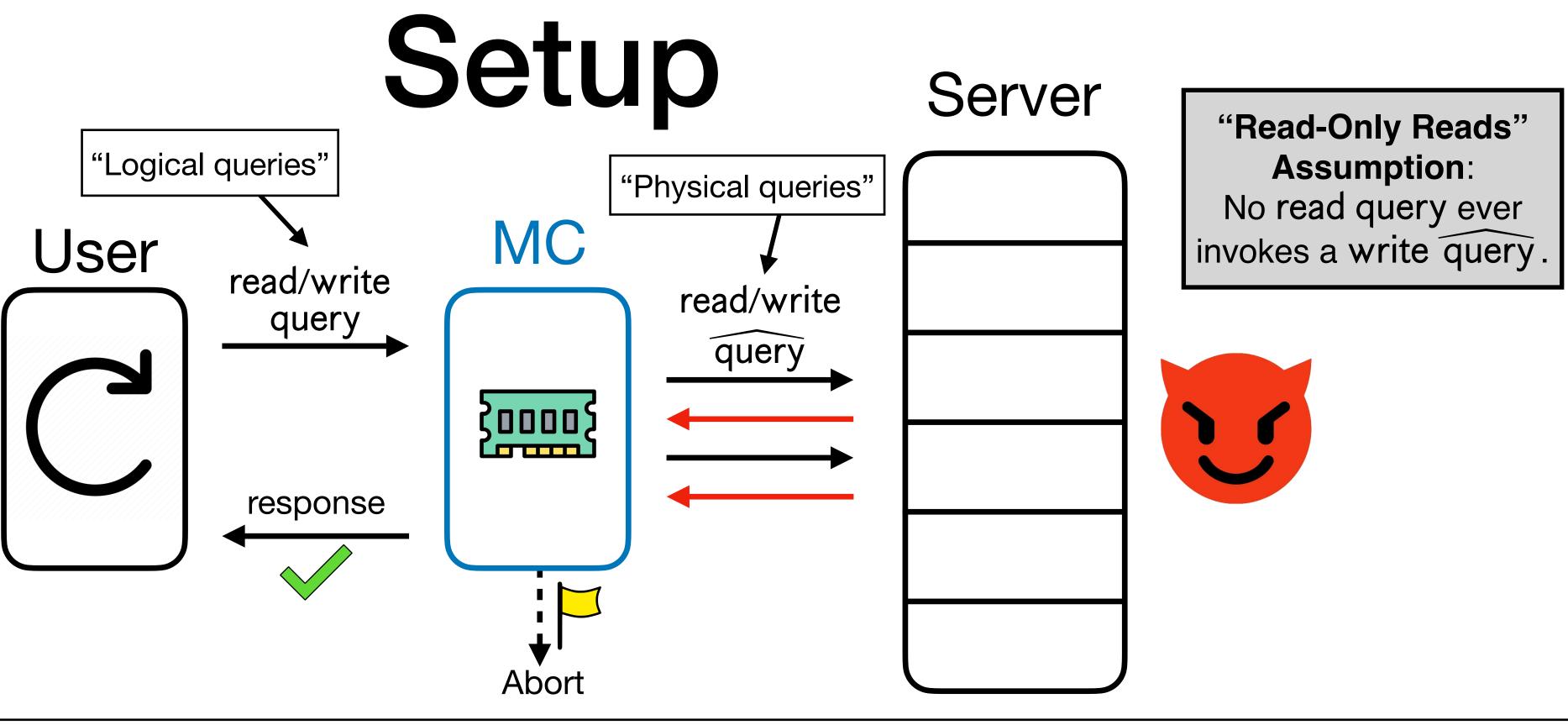




- \bullet correct response.

Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives

Soundness: For any PPT malicious server and any sequence of user queries, the probability that the MC gives an incorrect response without **aborting** is at most p, where p is negligible.

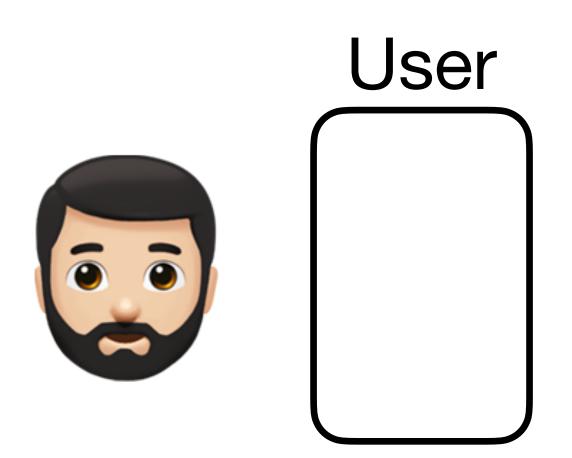


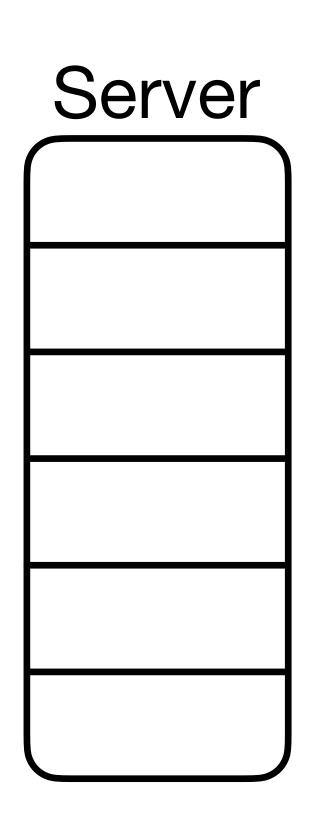
- \bullet correct response.

Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives

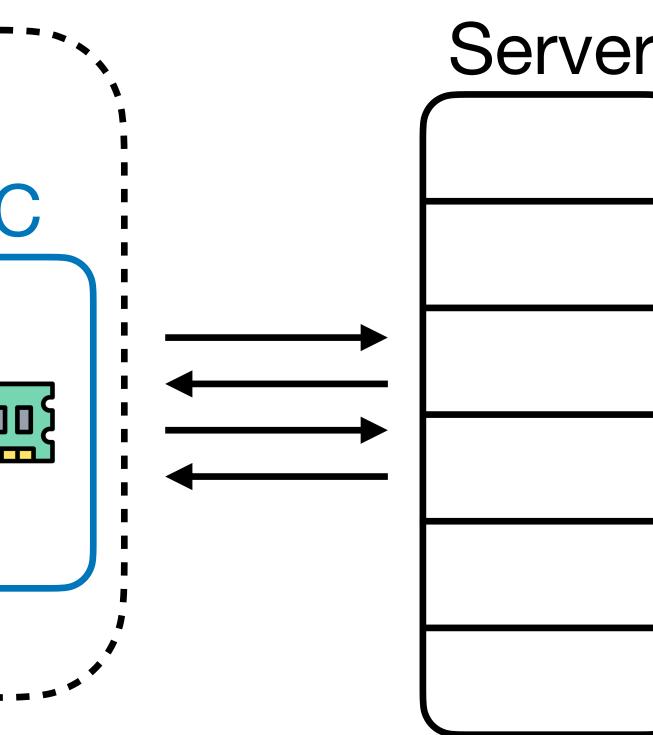
Soundness: For any PPT malicious server and any sequence of user queries, the probability that the MC gives an incorrect response without **aborting** is at most p, where p is negligible.

Application: File Storage Platforms

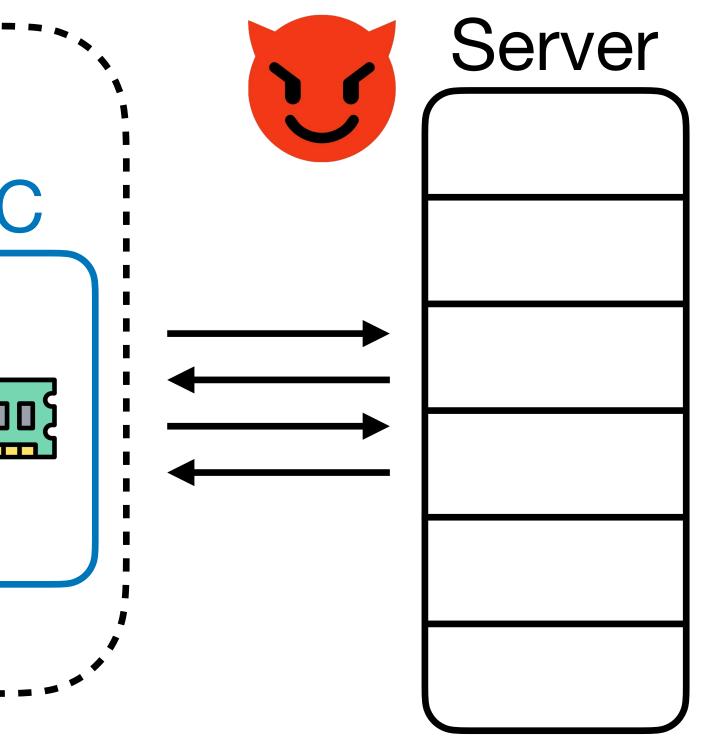




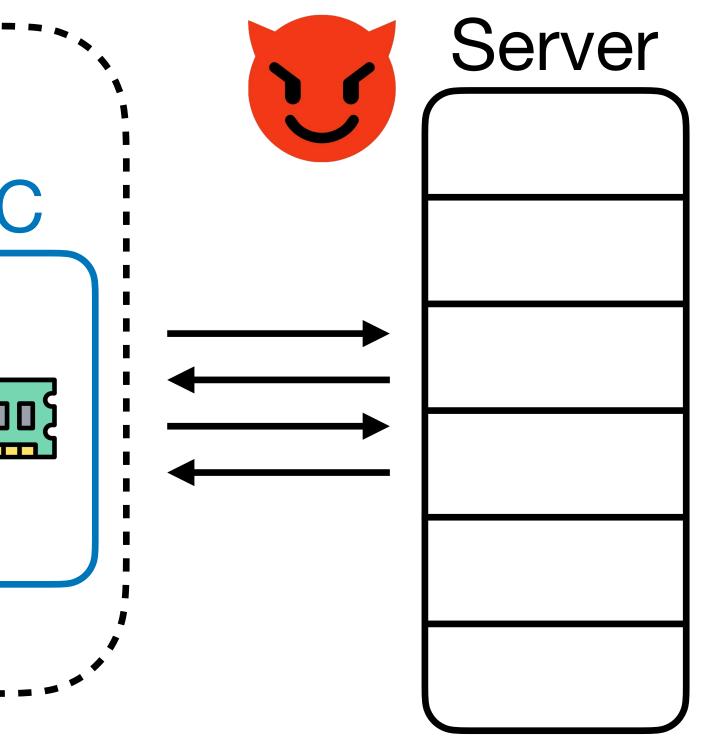
Application: File Storage Platforms Server User MC query 5 0 20000 response



Application: File Storage Platforms Server User MC query **i** 20000 response



Application: File Storage Platforms Server User MC query **i** 20000 response



• Secure hardware (enclaves)

- Secure hardware (enclaves)
- Provable data possession and retrievability systems

- Secure hardware (enclaves)
- Provable data possession and retrievability systems
- **Offline** memory checking

- Secure hardware (enclaves)
- Provable data possession and retrievability systems
- **Offline** memory checking

Verifiable computation (SNARKs) [Setty20, BCHO22, AST23, STW23, ...]

- Secure hardware (enclaves)
- Provable data possession and retrievability systems
- Offline memory checking

 - Accumulation schemes [BC24, …]

Verifiable computation (SNARKs) [Setty20, BCHO22, AST23, STW23, ...]

Two main complexity measures:

Two main complexity measures:

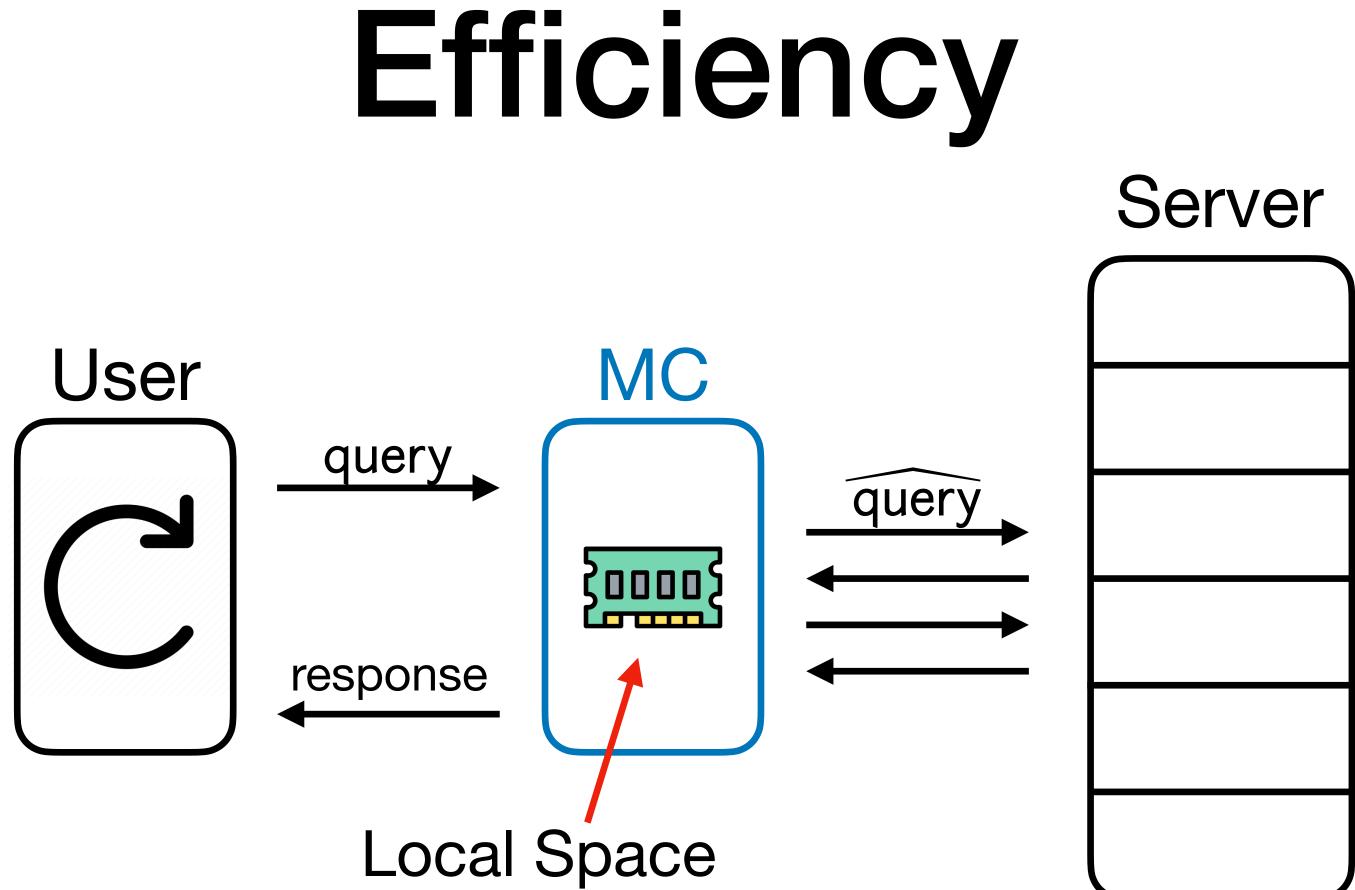
1. Local Space: Amount of private space the MC can store locally.

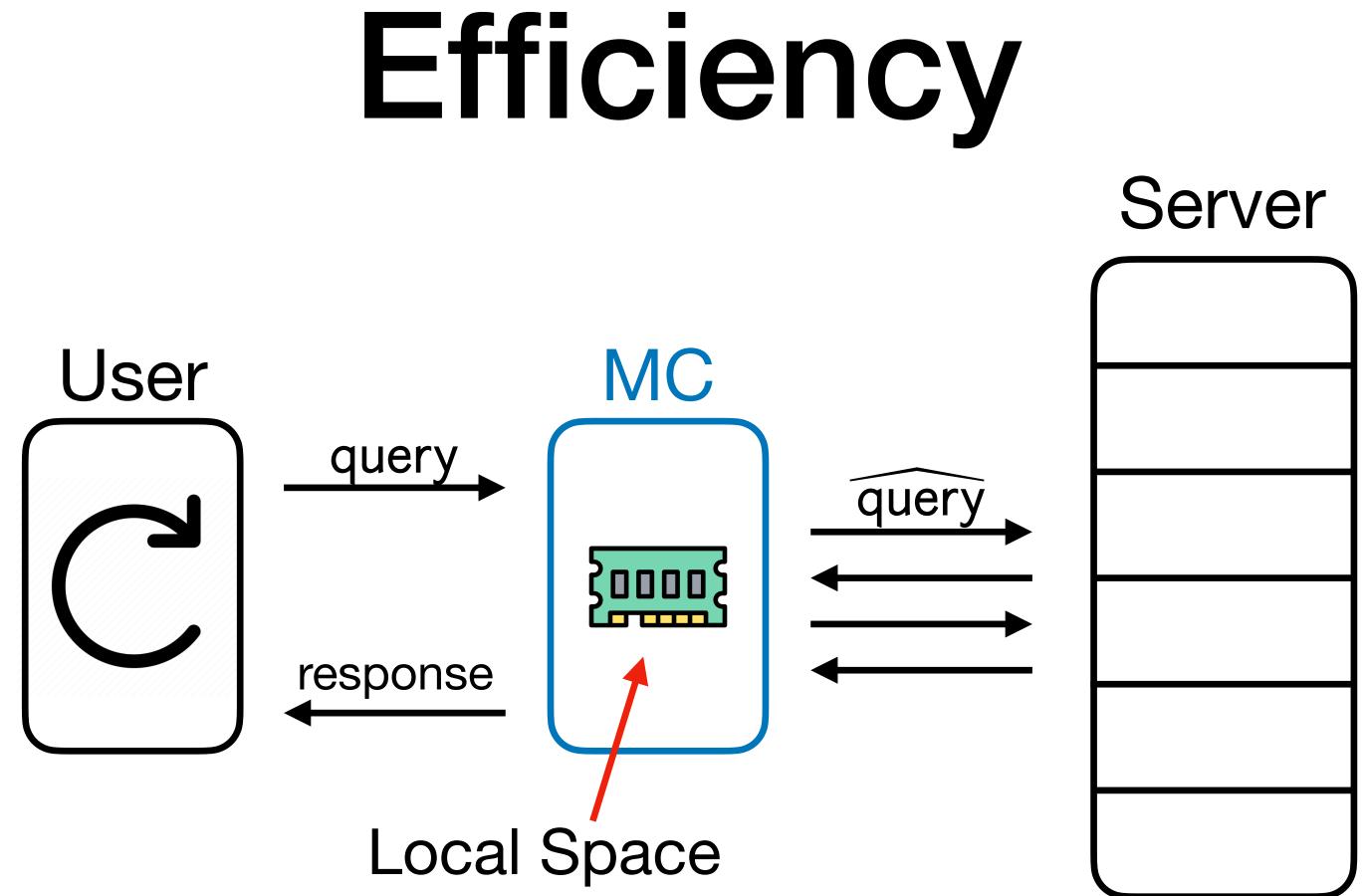
Two main complexity measures:

- 1. Local Space: Amount of private space the MC can store locally.
 - For storing *n* entries, space *n* is trivial (can store the full RAM itself).

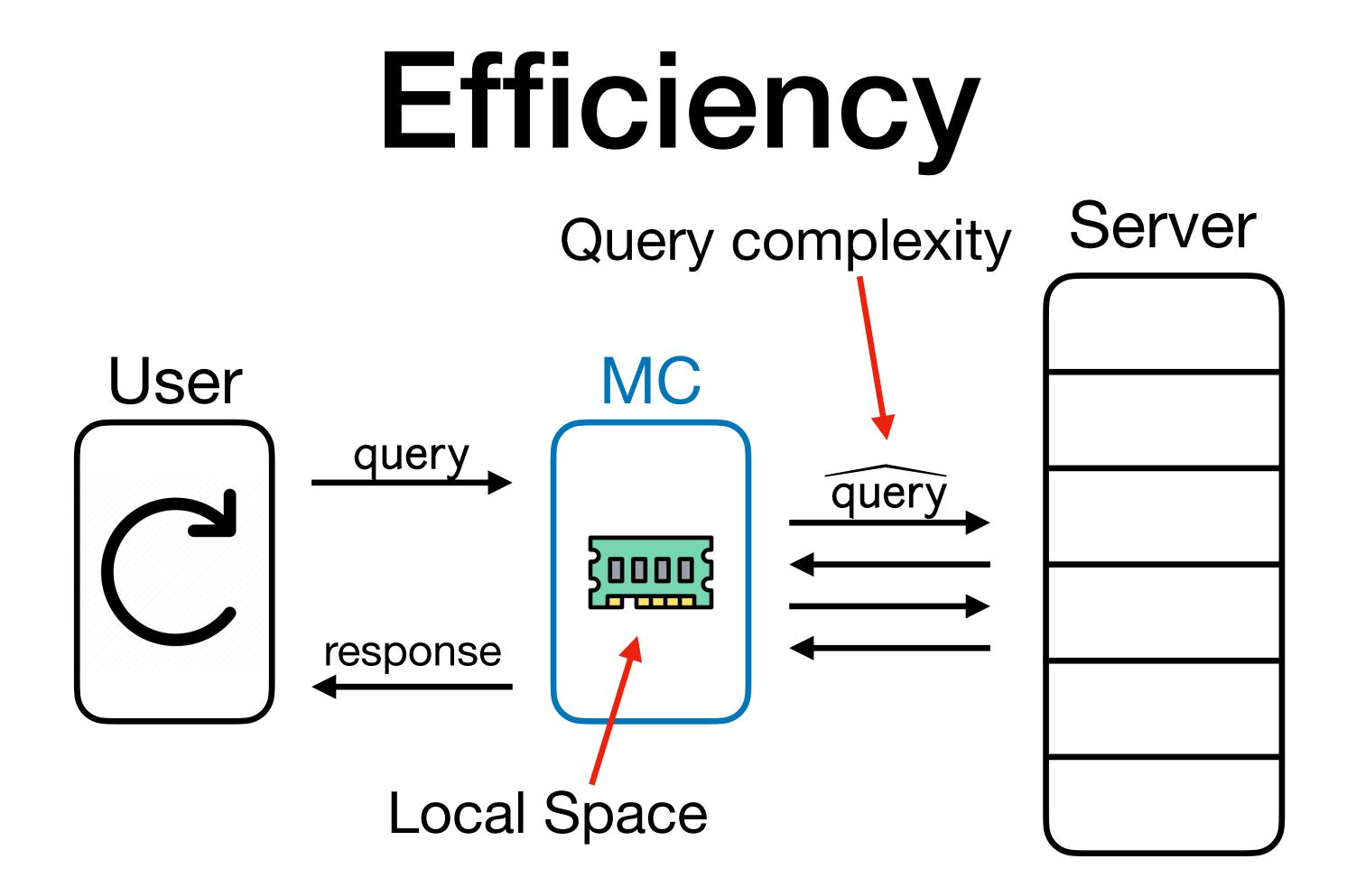
Two main complexity measures:

- 1. Local Space: Amount of private space the MC can store locally.
 - For storing *n* entries, space *n* is trivial (can store the full RAM itself).
 - For the rest of the talk, assume space at most $n^{1-\varepsilon}$ for some $\varepsilon > 0$.





2. Query complexity/overhead: Number of physical queries made to the server per logical query. Ideally as small as possible!



2. Query complexity/overhead: Number of physical queries made to the server per logical query. Ideally as small as possible!

Database of size *n*, word size polylog(n), local space $n^{1-\varepsilon}$

Soundness

Upper Bc

ound	Lower Bound

Soundness	Upper Bound	Lower Bound
Statistical		

Soundness	Upper Bound	Lower Bound
Statistical	$n^{\mathcal{E}}$ [Blum et al. '91, Naor-Rothblum '05]	

Soundness	Upper Bound	Lower Bound
Statistical	$n^{arepsilon}$ [Blum et al. '91, Naor-Rothblum '05]	$n^{\mathcal{E}}$ [Naor-Rothblum '05]

Soundness	Upper Bound	Lower Bound	
Statistical	$n^{arepsilon}$ [Blum et al. '91, Naor-Rothblum '05]	$n^{\mathcal{E}}$ [Naor-Rothblum '05]	

Database of size *n*, word size polylog(n), local space $n^{1-\varepsilon}$

Soundness	Upper Bound	Lower Bound	
Statistical	$n^{arepsilon}$ [Blum et al. '91, Naor-Rothblum '05]	$n^{\mathcal{E}}$ [Naor-Rothblum '05]	

More generally, local space \times queries = $\Theta(n)$

Soundness	Upper Bound	Lower Bound
Statistical	$n^{arepsilon}$ [Blum et al. '91, Naor-Rothblum '05]	n ^E [Naor-Rothblum '05]
Computational		

Soundness	Upper Bound	Lower Bound
Statistical	$n^{arepsilon}$ [Blum et al. '91, Naor-Rothblum '05]	n ^E [Naor-Rothblum '05]
Computational	log n [Merkle '79, Blum et al. '91]	

Soundness	Upper Bound	Lower Bound
Statistical	$n^{\mathcal{E}}$ [Blum et al. '91, Naor-Rothblum '05]	n ^E [Naor-Rothblum '05]
Computational	log n/log log n [Papamanthou- Tamassia '11]	

Memory Checking: What's Known

Soundness	Upper Bound	Lower Bound	
Statistical	$n^{arepsilon}$ [Blum et al. '91, Naor-Rothblum '05]	n ^E [Naor-Rothblum '05]	
Computational	log n/log log n [Papamanthou- Tamassia '11]	log n/log log n [Dwork-Naor-Rothblum-Vaikuntanathan '09, Boyle-Komargodski- V. '24]	

Database of size *n*, word size polylog(n), local space $n^{1-\varepsilon}$

Memory Checking: What's Known

Soundness	Upper Bound	Lower Bound	
Statistical	$n^{arepsilon}$ [Blum et al. '91, Naor-Rothblum '05]	n ^E [Naor-Rothblum '05]	
Computational	log n/log log n [Papamanthou- Tamassia '11]	log n/log log n [Dwork-Naor-Rothblum-Vaikuntanathan '09, Boyle-Komargodski- V. '24]	

Database of size *n*, word size polylog(n), local space $n^{1-\varepsilon}$

Memory Checking: What's Known

Soundness	Upper Bound	Lower Bound	
Statistical	$n^{arepsilon}$ [Blum et al. '91, Naor-Rothblum '05]	n ^E [Naor-Rothblum '05]	
Computational	log n/log log n [Papamanthou- Tamassia '11]	log n/log log n [Dwork-Naor-Rothblum-Vaikuntanathan '09, Boyle-Komargodski- V. '24]	

Database of size *n*, word size polylog(n), local space $n^{1-\varepsilon}$

[Dwork-Naor-Rothblum-Vaikuntanathan '09]

[Dwork-Naor-Rothblum-Vaikuntanathan '09]

 Lower bound applies only to deterministic and non-adaptive memory checkers. Big restriction:

[Dwork-Naor-Rothblum-Vaikuntanathan '09]

- Lower bound applies only to deterministic and non-adaptive memory checkers. Big restriction:
 - For every logical user query to
 i ∈ [*n*], physical query locations
 must be fixed; depend only on *i*.

[Dwork-Naor-Rothblum-Vaikuntanathan '09]

- Lower bound applies only to deterministic and non-adaptive memory checkers. Big restriction:
 - For every logical user query to
 i ∈ [*n*], physical query locations
 must be fixed; depend only on *i*.

[Boyle-Komargodski-V. '24]

• Only rules out memory checkers with inverse polynomial soundness error, roughly $p \approx 1/n$.

[Dwork-Naor-Rothblum-Vaikuntanathan '09]

- Lower bound applies only to deterministic and non-adaptive memory checkers. **Big restriction**:
 - For every logical user query to $i \in [n]$, physical query locations must be fixed; depend only on i.

- Only rules out memory checkers with inverse polynomial soundness error, roughly $p \approx 1/n$.
- Doesn't rule out super-efficient MCs with larger soundness error.

want to get caught.

• In many settings (e.g., commercial, political, social), malicious adversaries don't

- want to get caught.
- Negligible soundness **overkill**!

• In many settings (e.g., commercial, political, social), malicious adversaries don't

- want to get caught.
- Negligible soundness **overkill**!
- instead of (100 negl)%, is **enough of a disincentive**.

• In many settings (e.g., commercial, political, social), malicious adversaries don't

• $\Omega(1)$ soundness error is sufficient. Detecting adversaries with 90% probability,

- want to get caught.
- Negligible soundness **overkill**!
- instead of (100 negl)%, is enough of a disincentive.

• In many settings (e.g., commercial, political, social), malicious adversaries don't

• $\Omega(1)$ soundness error is sufficient. Detecting adversaries with 90% probability,

 This relaxation has enabled asymptotic efficiency gains in terms of computational overhead and communication. (e.g, [Aumann-Lindell '07, Goyal-Mohassel-Smith '08, Hazay-Lindell '10])

- want to get caught.
- Negligible soundness **overkill**!
- instead of (100 negl)%, is enough of a disincentive.
- to harm their reputation!

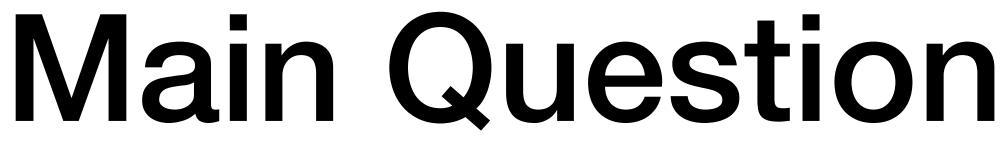
• In many settings (e.g., commercial, political, social), malicious adversaries don't

• $\Omega(1)$ soundness error is sufficient. Detecting adversaries with 90% probability,

 This relaxation has enabled asymptotic efficiency gains in terms of computational overhead and communication. (e.g, [Aumann-Lindell '07, Goyal-Mohassel-Smith '08, Hazay-Lindell '10])

Naturally fits into memory checking setting: file storage cloud server doesn't want

Can MCs, relaxed to covert security (soundness $\Omega(1)$), have query complexity $q \ll \log n / \log \log n$? O(1)?



Main Question

Can MCs, relaxed to covert security (soundness $\Omega(1)$), have query complexity $q \ll \log n / \log \log n$? O(1)?

Concrete Example: Is there a MC with 5% soundness error and q = 2?

Main Result

Main Result

<u>Theorem</u>: Every memory checker^{*}, even with $\Omega(1)$ soundness error, must have $q = \Omega(\log n / \log \log n)$.

Main Result

<u>Theorem</u>: Every memory checker^{*}, even with $\Omega(1)$ soundness error, must have $q = \Omega(\log n / \log \log n)$.

• **Tight** up to constant factors. [Papamanthou-Tamassia '11]

Main Result

Theorem: Every memory checker^{*}, even with $\Omega(1)$ soundness error, must have $q = \Omega(\log n / \log \log n)$.

- **Tight** up to constant factors. [Papamanthou-Tamassia '11]
- Unconditional. Holds regardless of any computational assumptions.

Main Result

Theorem: Every memory checker^{*}, even with $\Omega(1)$ soundness error, must have $q = \Omega(\log n / \log \log n)$.

- **Tight** up to constant factors. [Papamanthou-Tamassia '11]
- Unconditional. Holds regardless of any computational assumptions.
- Handles randomized and adaptive memory checkers.

Main Result

Theorem: Every memory checker^{*}, even with $\Omega(1)$ soundness error, must have $q = \Omega(\log n / \log \log n)$.

- **Tight** up to constant factors. [Papamanthou-Tamassia '11]
- Unconditional. Holds regardless of any computational assumptions.
- Handles randomized and adaptive memory checkers.
- **An Interpretation:** Unlike many other MPC functionalities, covert security does not enable efficiency gains for memory checking.

Main Result

Technical Overview

 Just like [Boyle-Komargodski-V.'2 to compress random bits.

• Just like [Boyle-Komargodski-V.'24], we can use a MC that's too efficient

- to compress random bits.
- Will use following style of compression lemma:

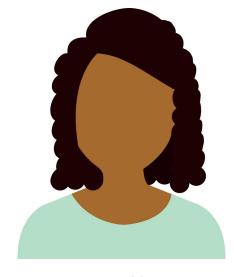
• Just like [Boyle-Komargodski-V.'24], we can use a MC that's too efficient

- Just like [Boyle-Komargodski-V.'24], we can use a MC that's too efficient to compress random bits.
- Will use following style of compression lemma:
 - Transmitting uniformly random $S \subseteq [n]$ from Alice to Bob where |S| = k requires $\log \binom{n}{k}$ bits, even with shared indep. randomness.

Publicly initialize MC:

(by performing write(i, 0) for all $i \in [n]$)

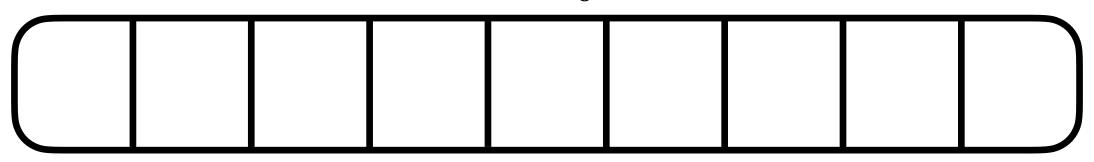
i	 	 	



Knows $S \subseteq [n]$

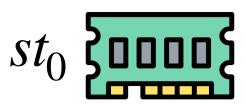
Publicly initialize MC:

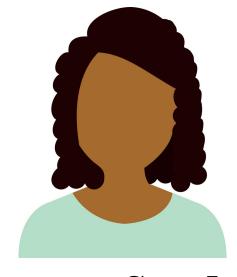
(by performing write(i, 0) for all $i \in [n]$)



Protocol

 DB_0

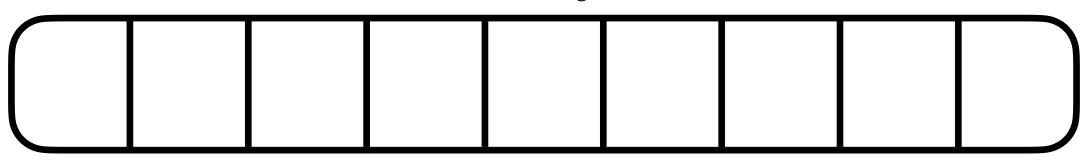




Knows $S \subseteq [n]$

Publicly initialize MC:

(by performing write(i, 0) for all $i \in [n]$)

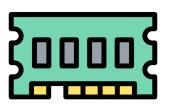


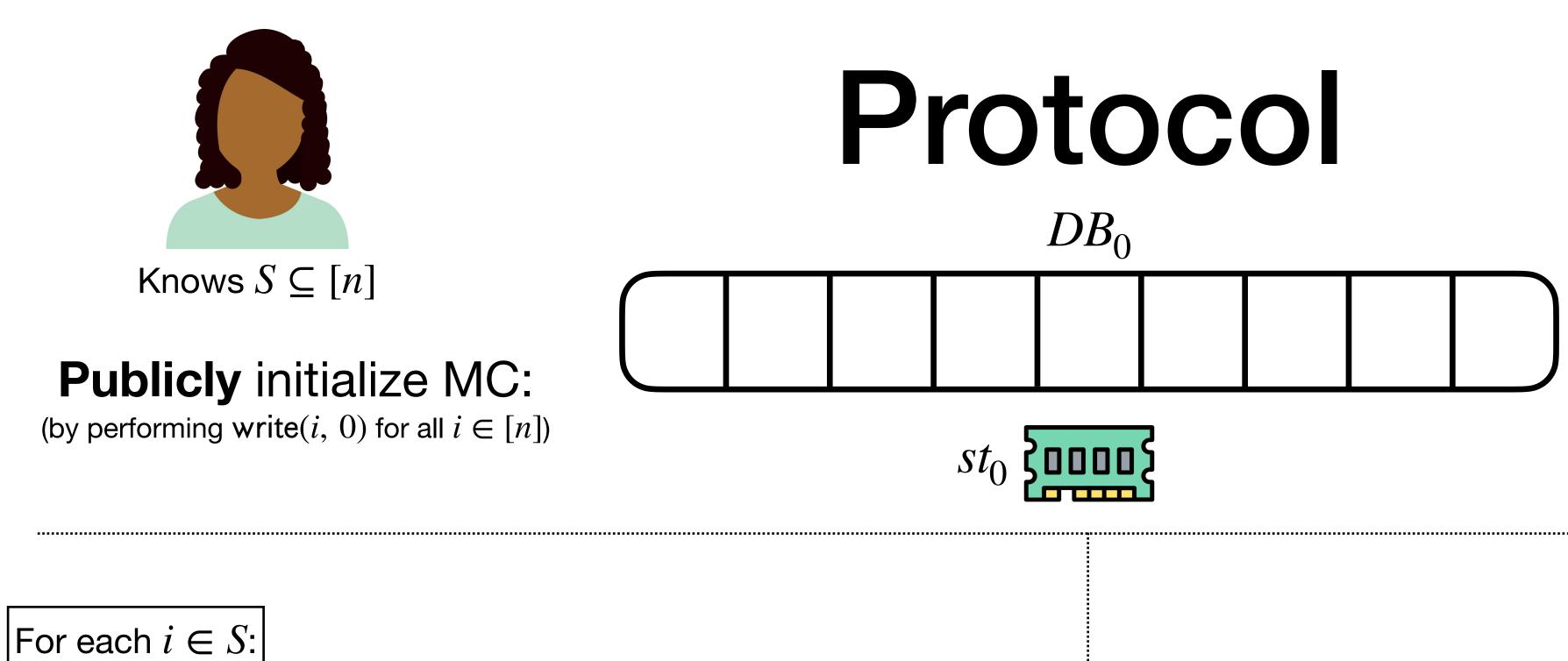
 st_0

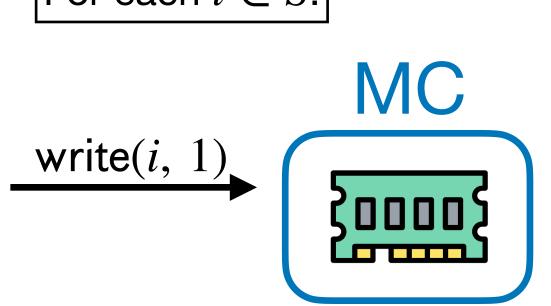
For each $i \in S$:

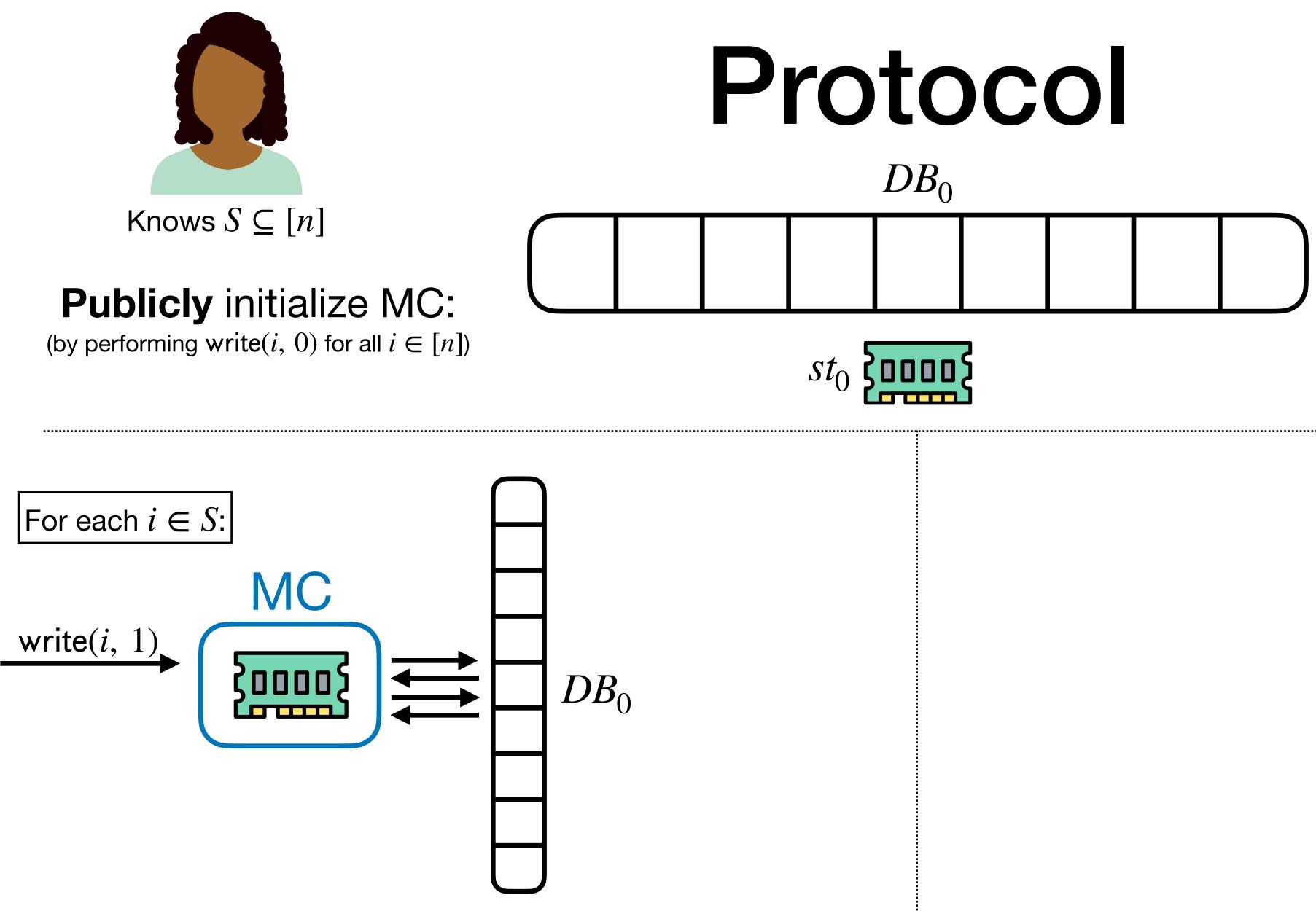
Protocol

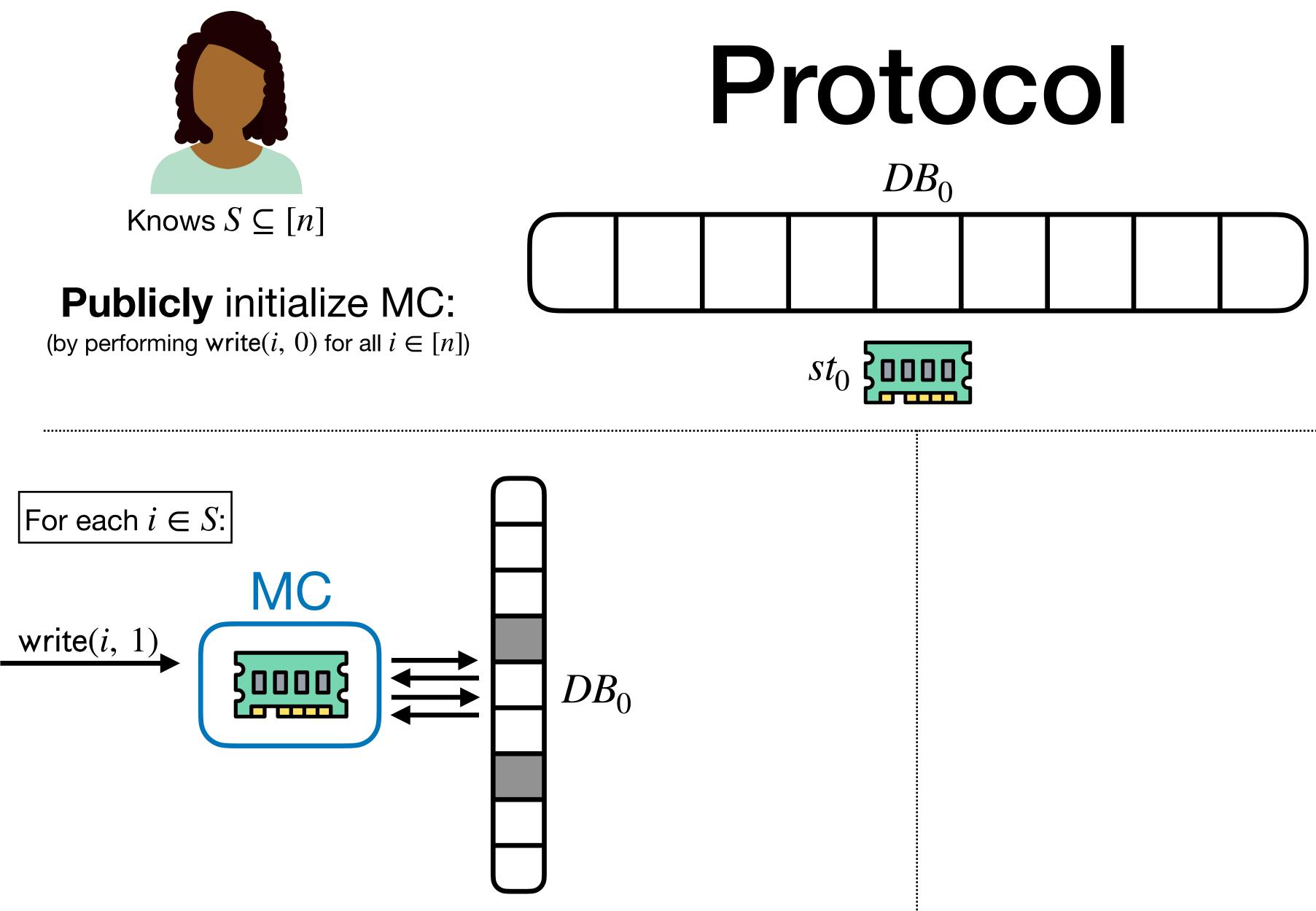
 DB_0

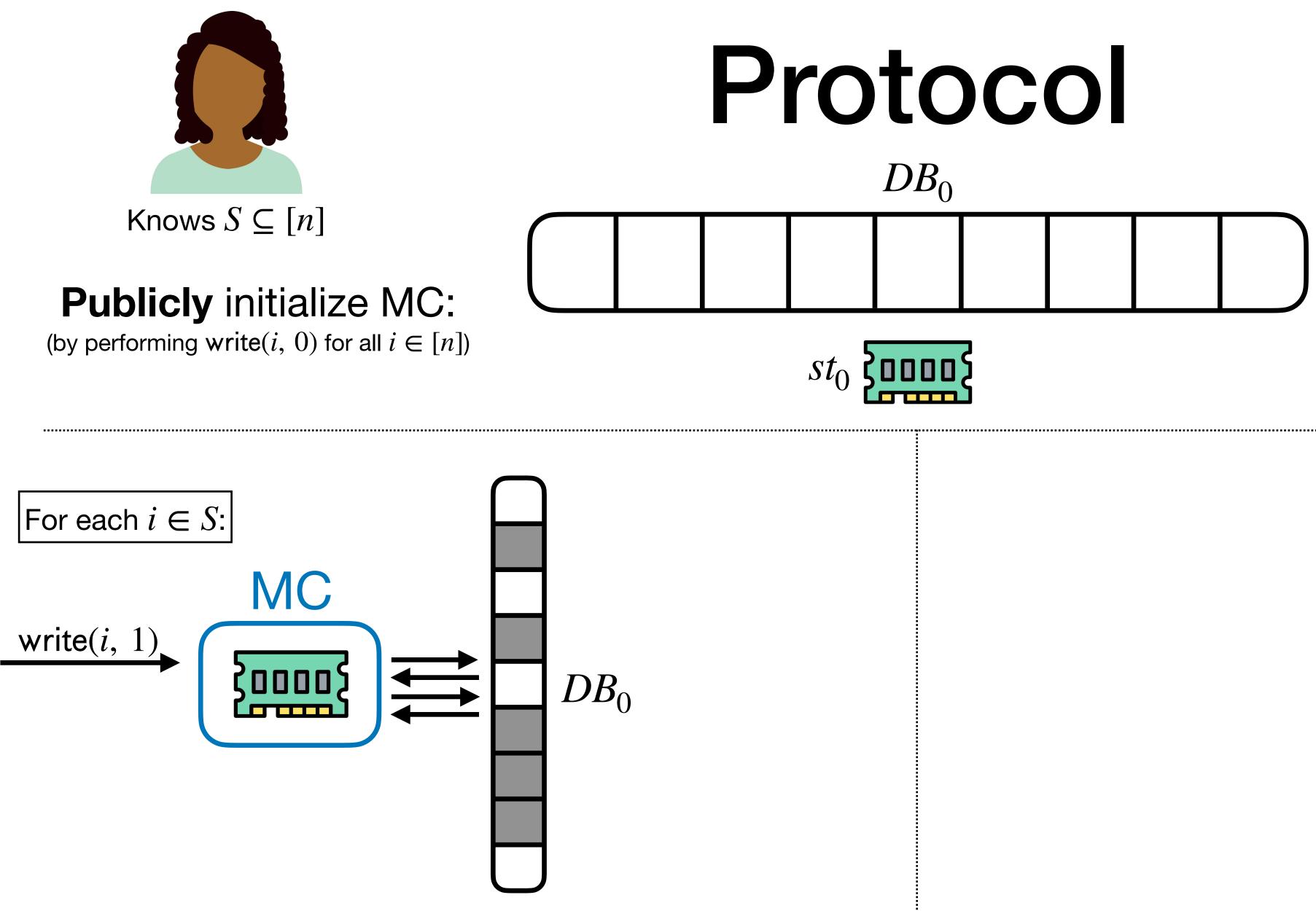


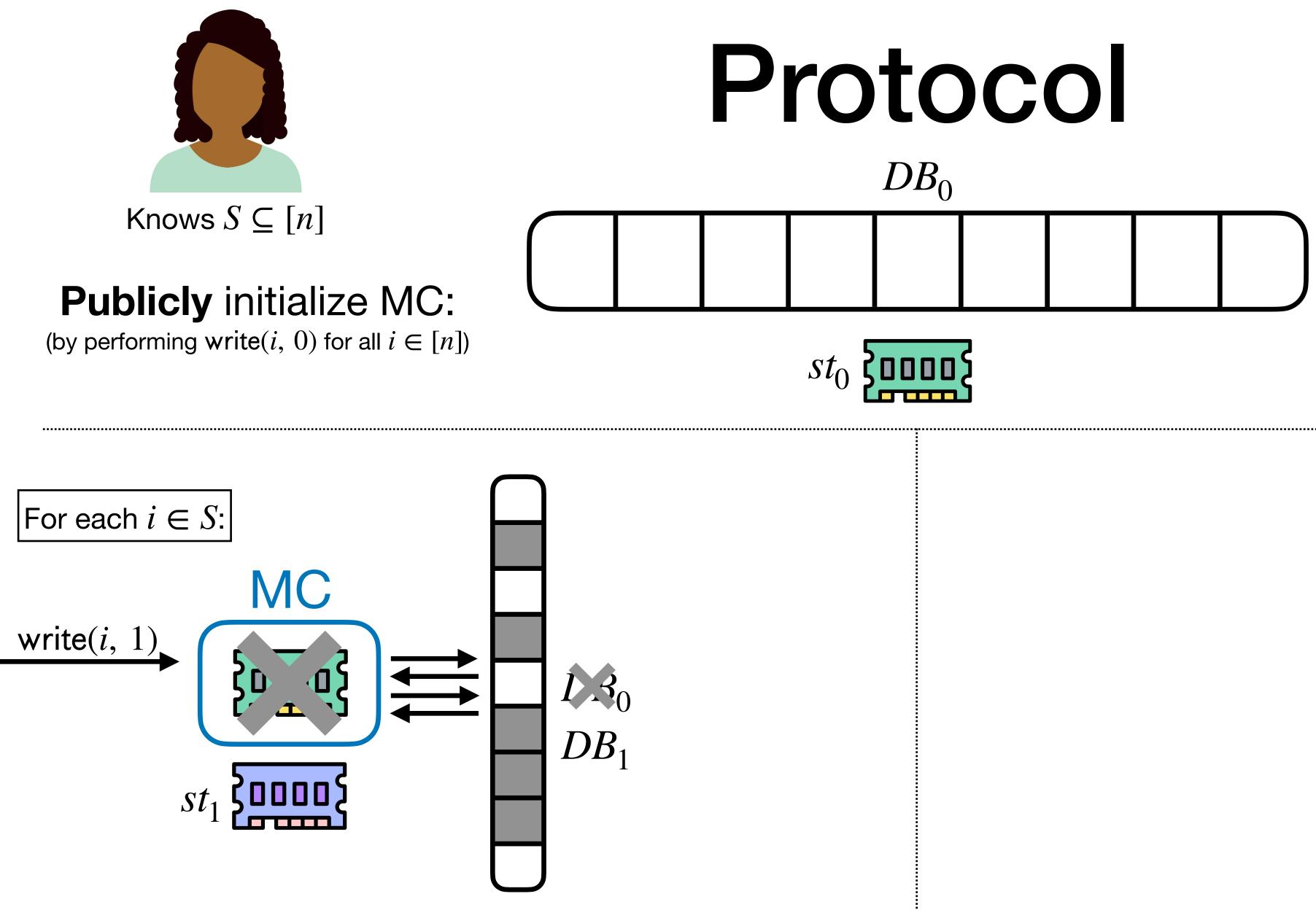




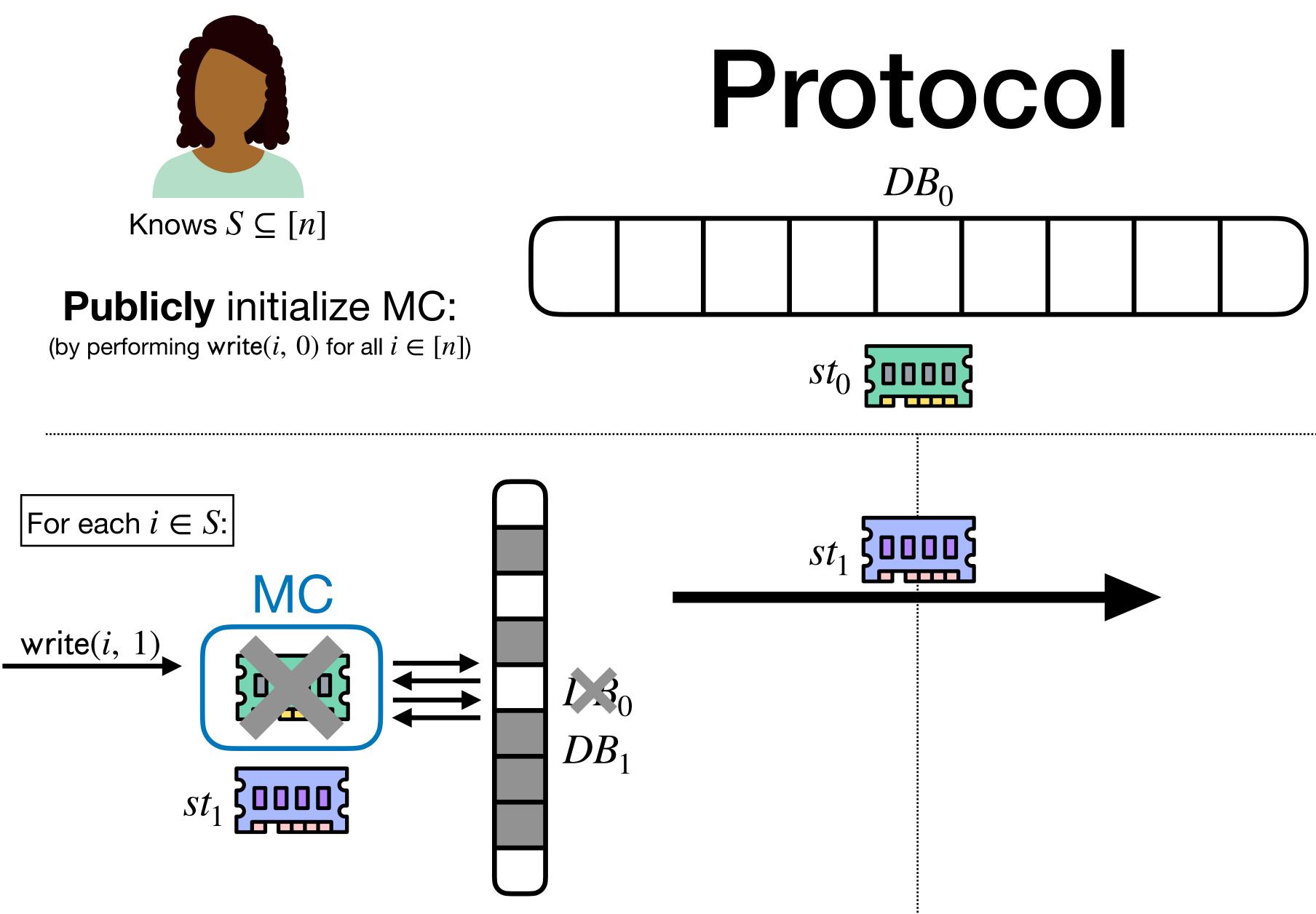




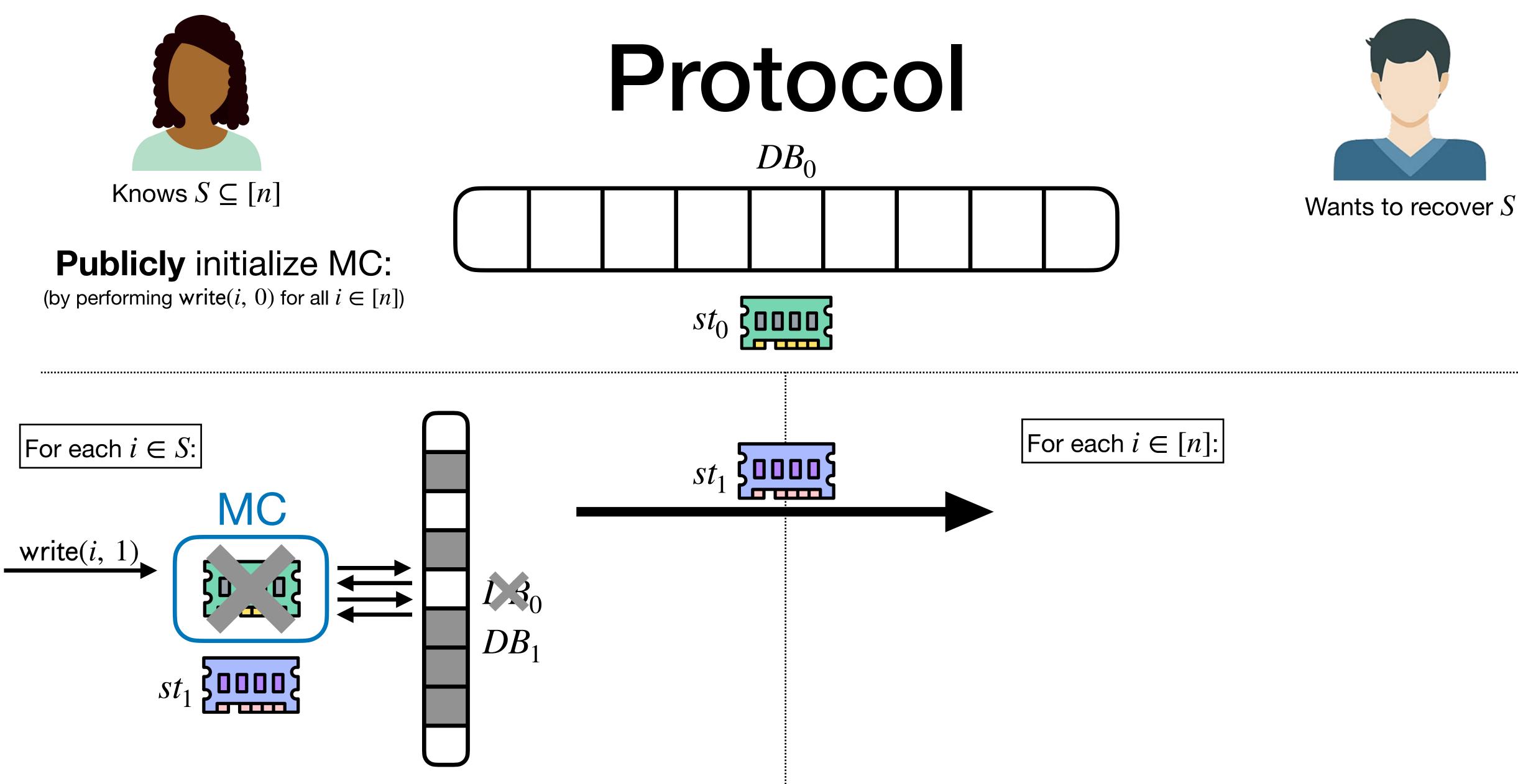


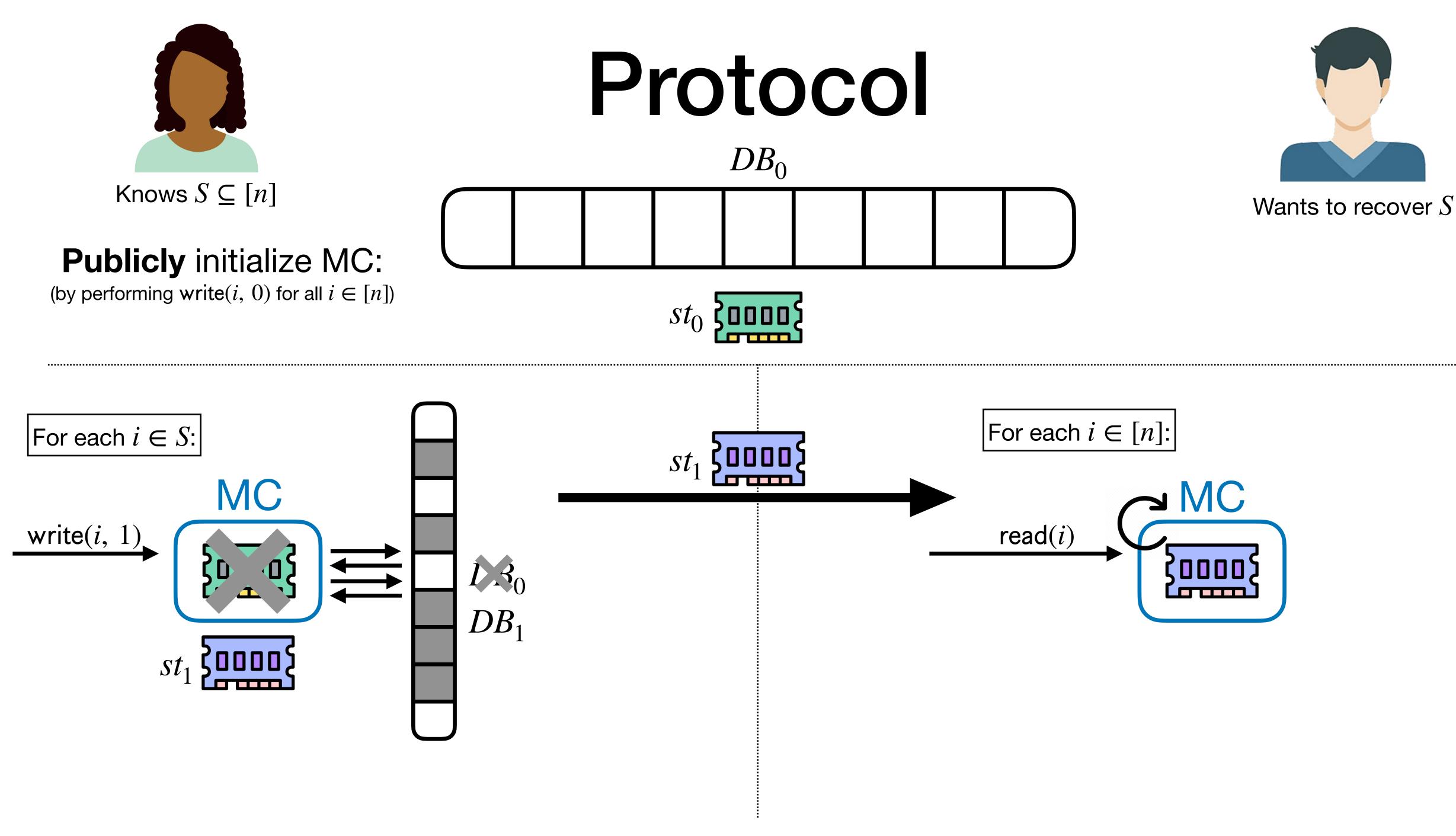


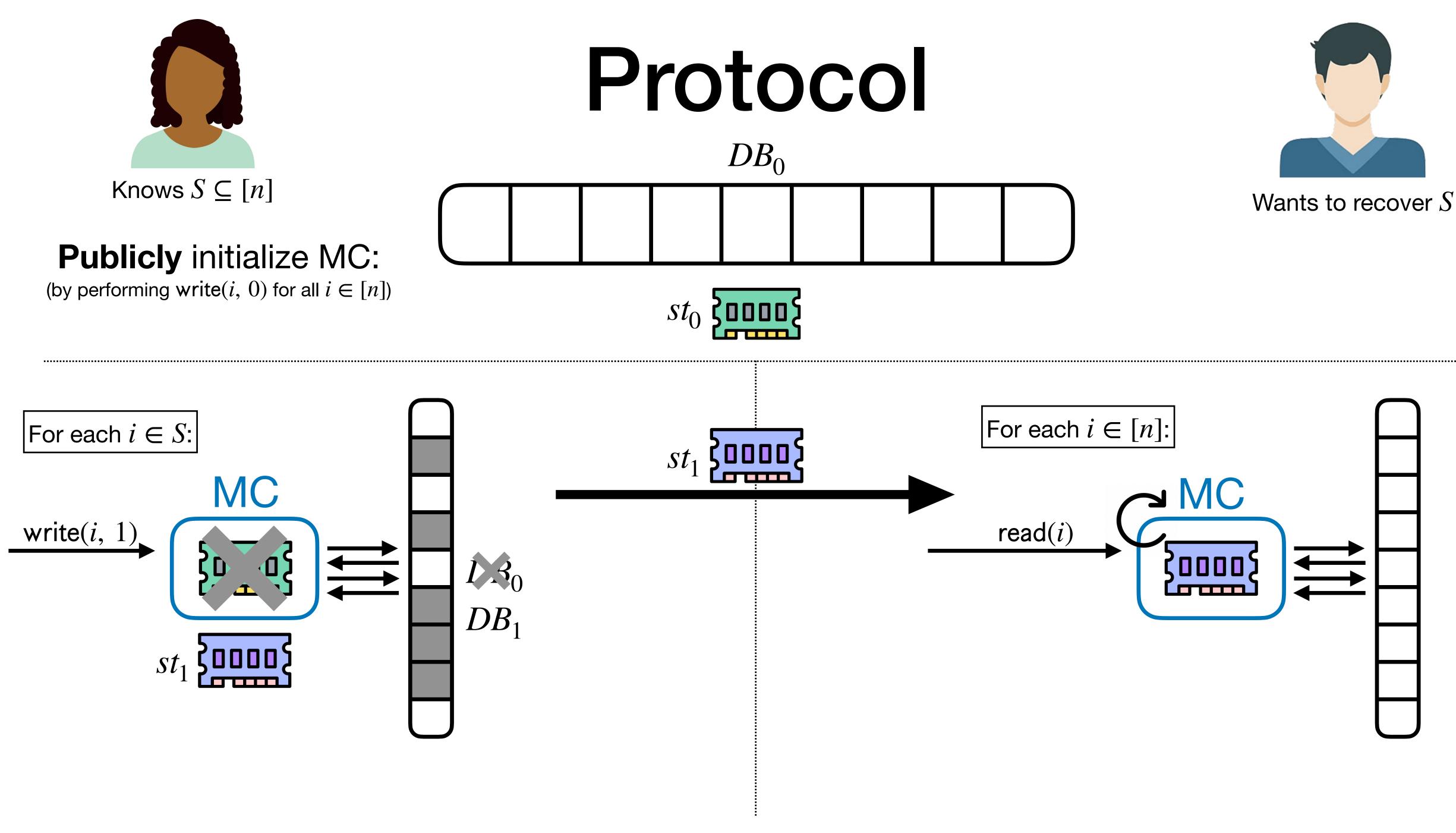
Wants to recover S

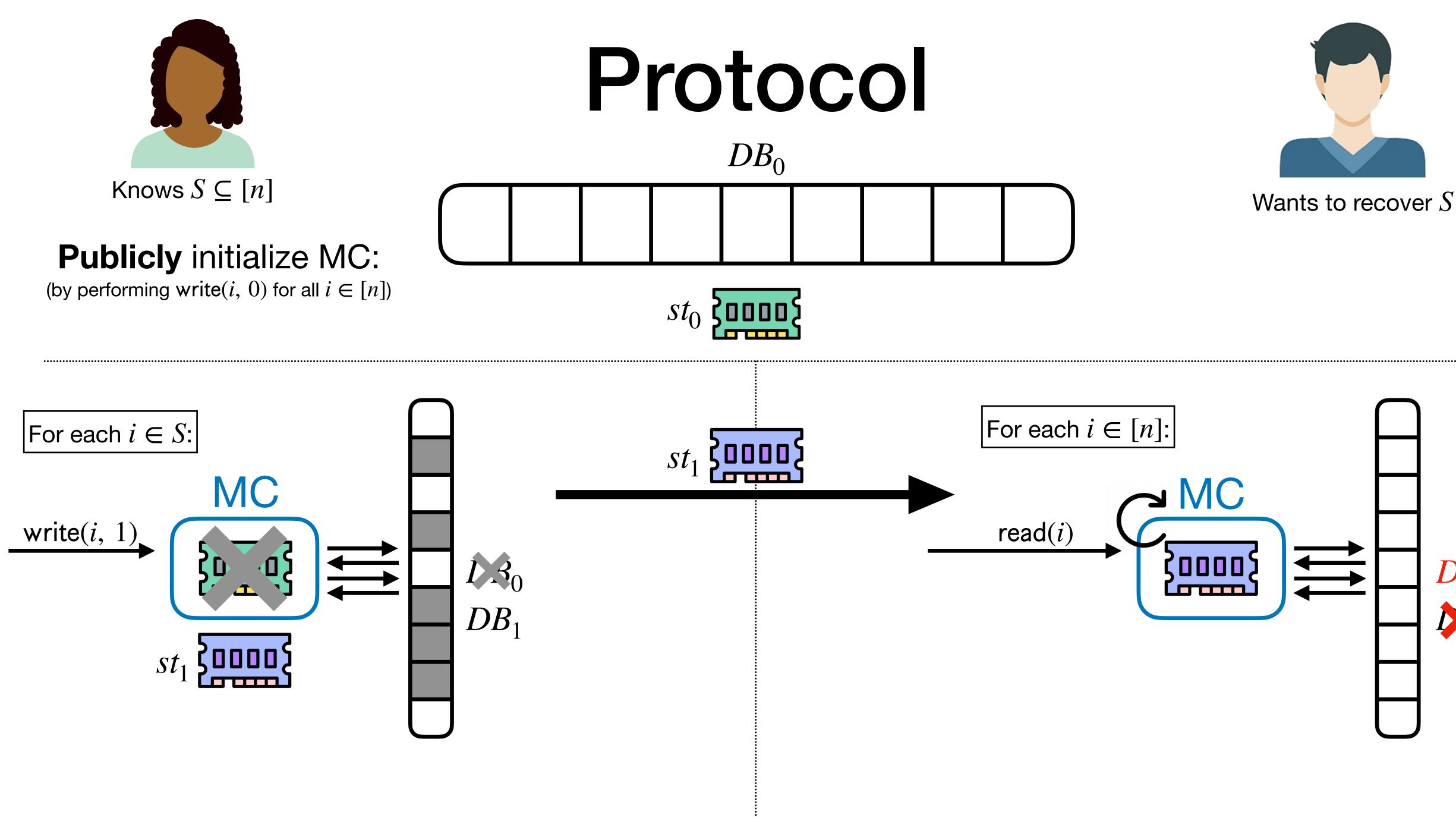


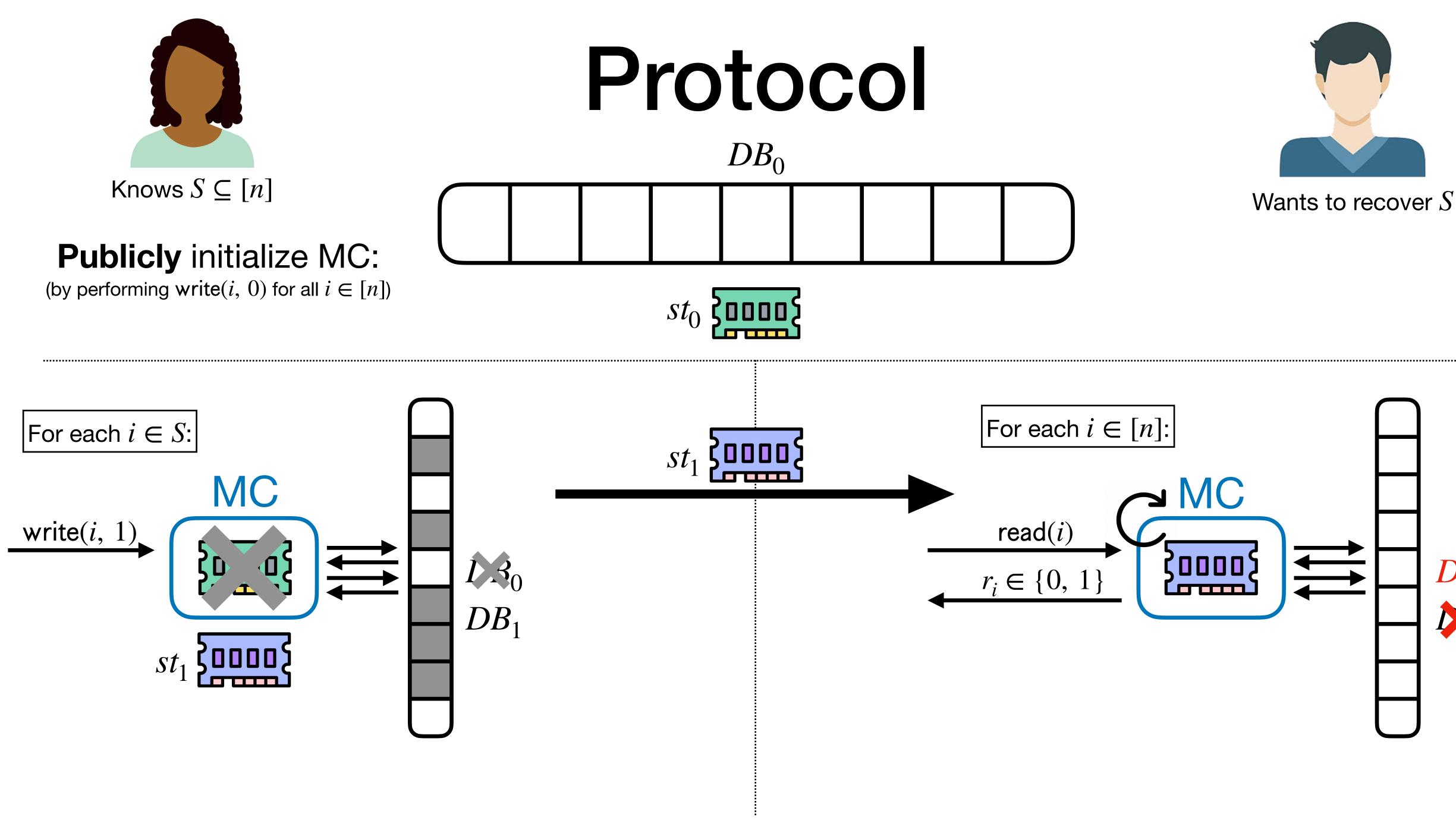
Wants to recover S

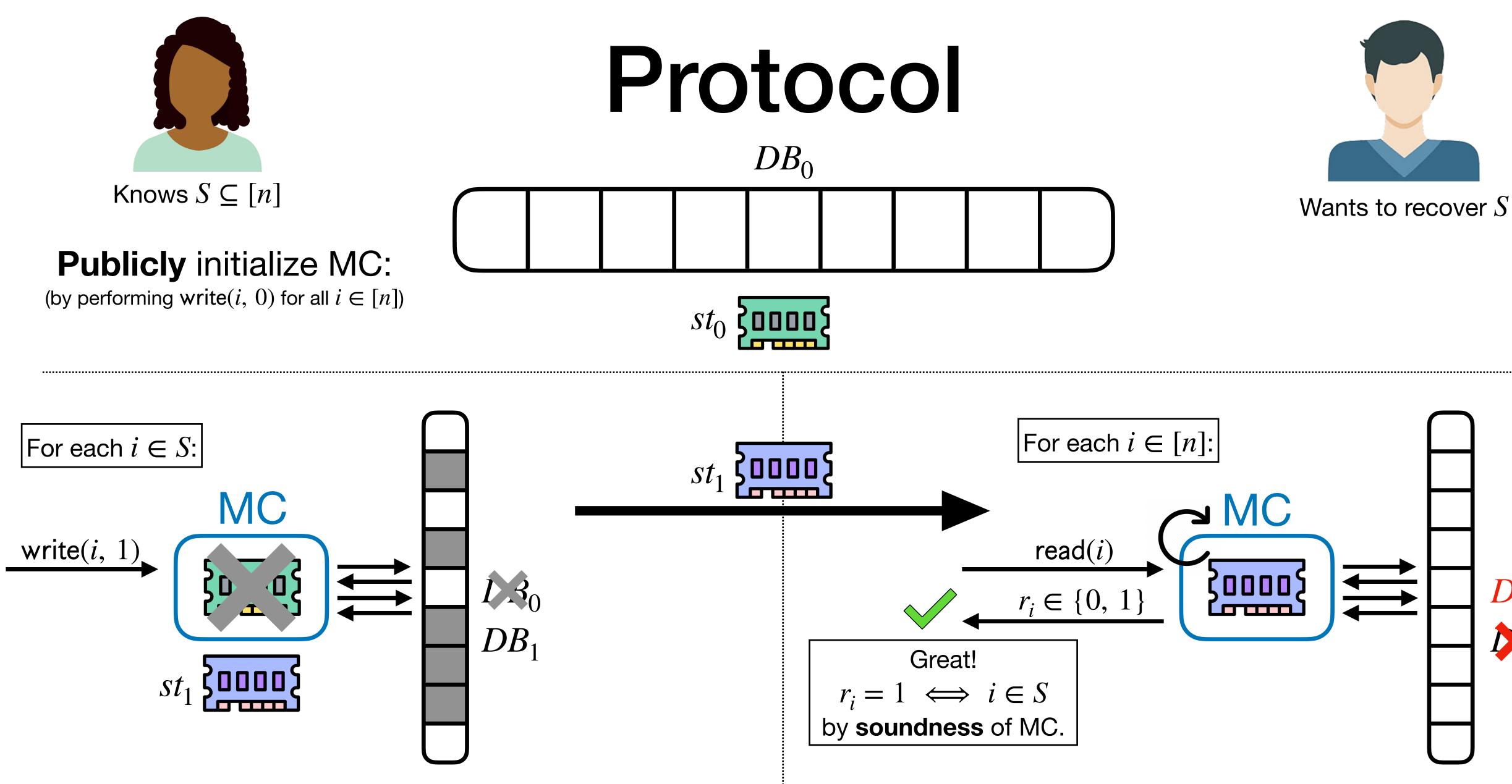


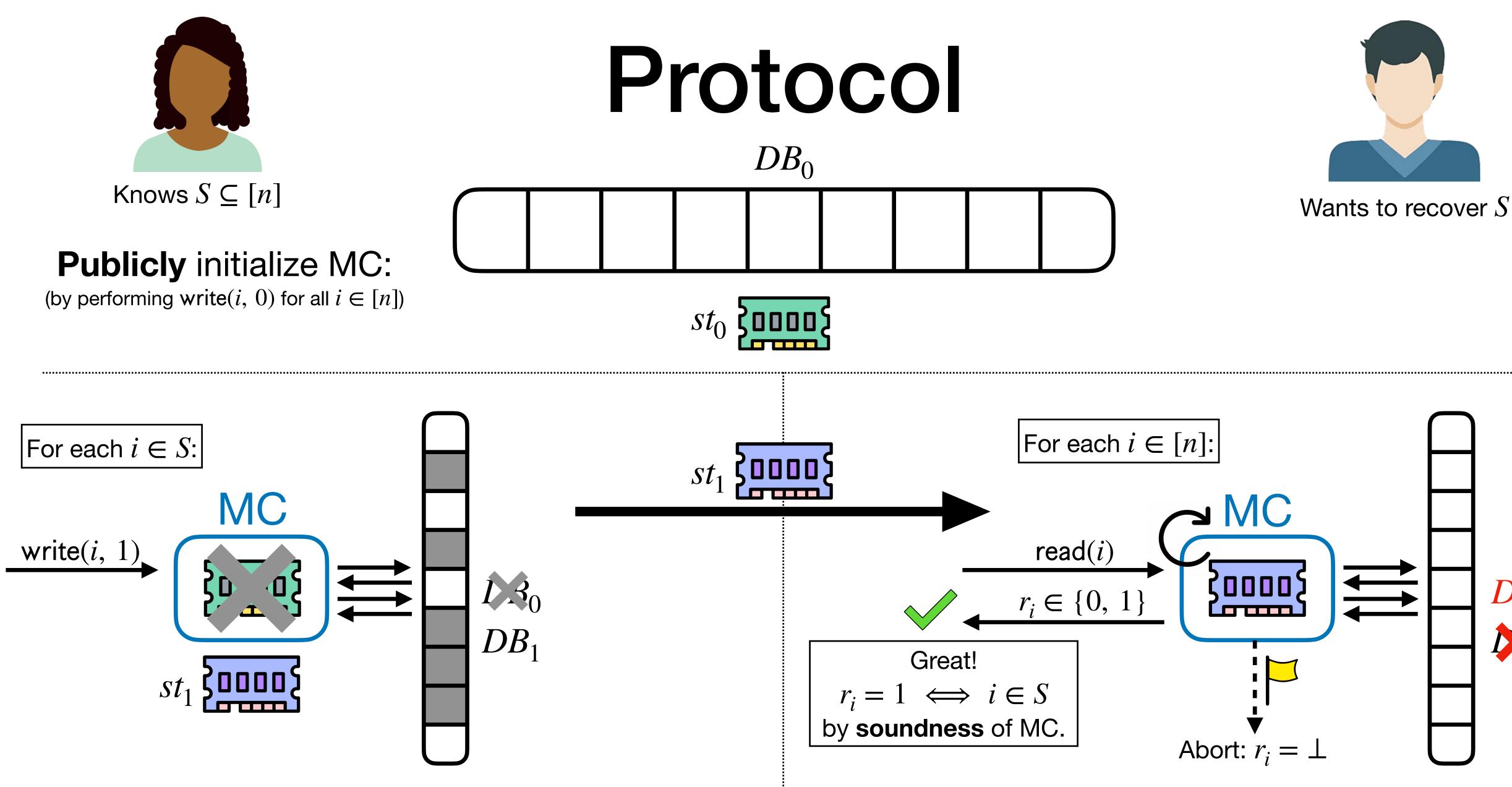


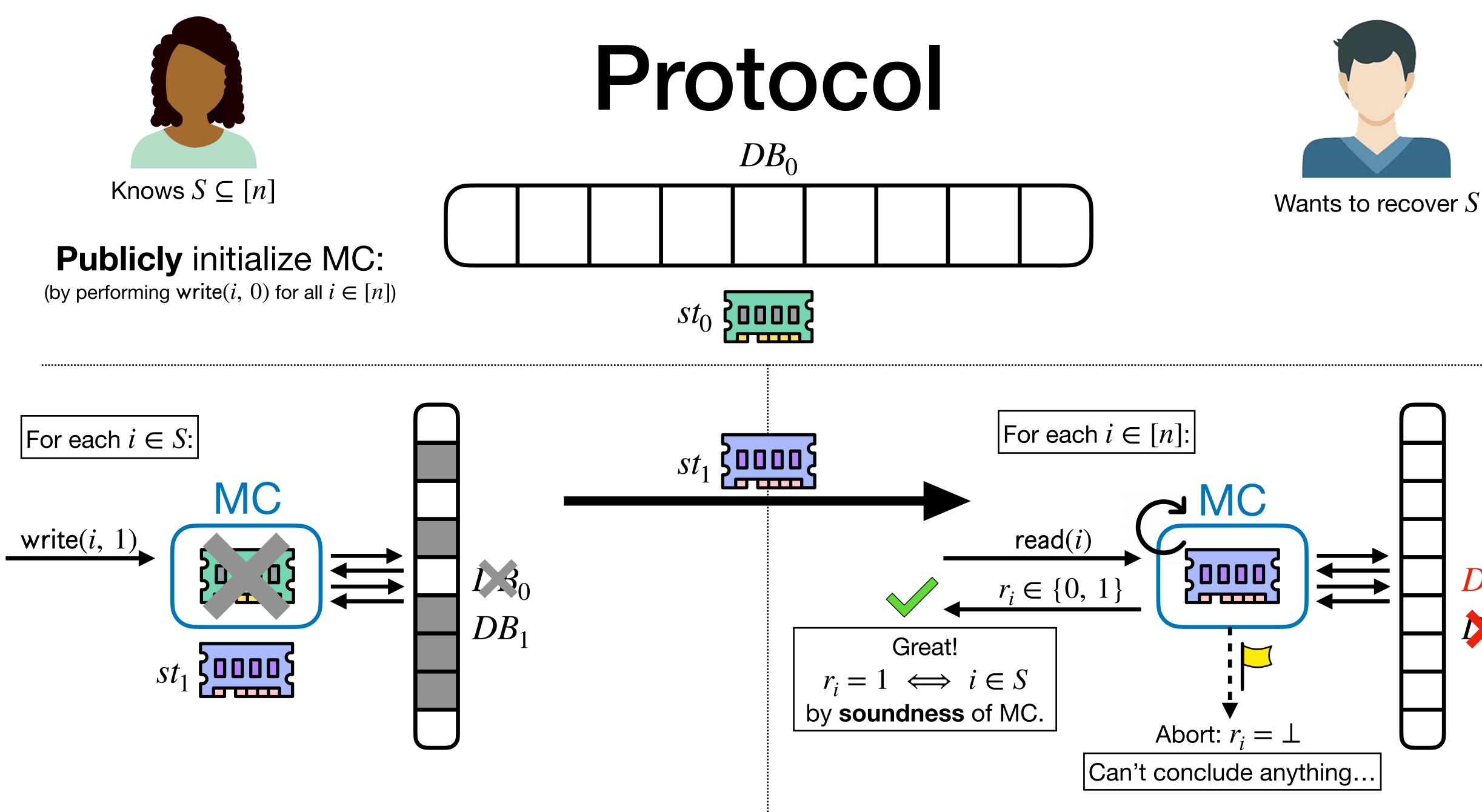












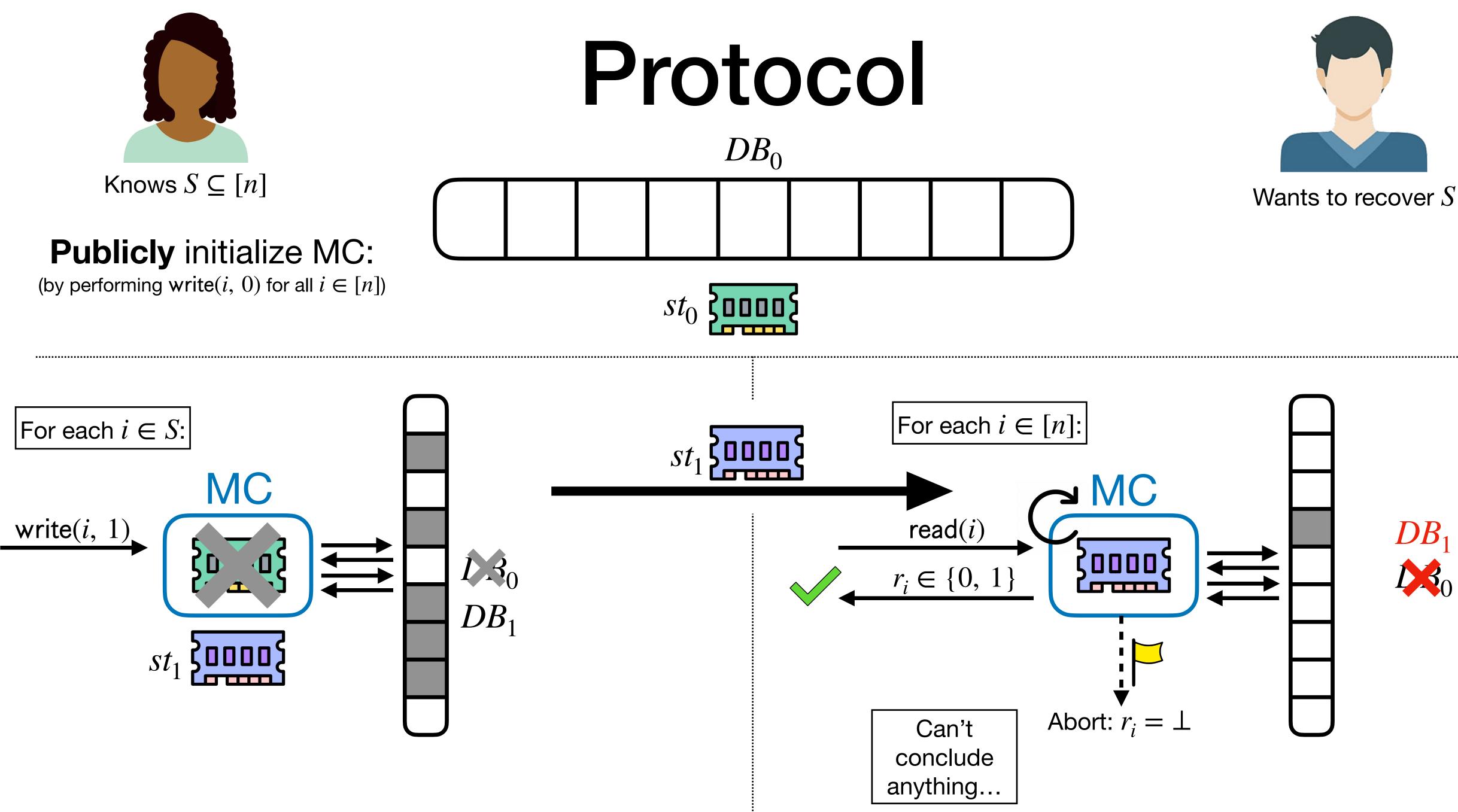
Key [BKV. '24] Idea: Partition the Server's Memory

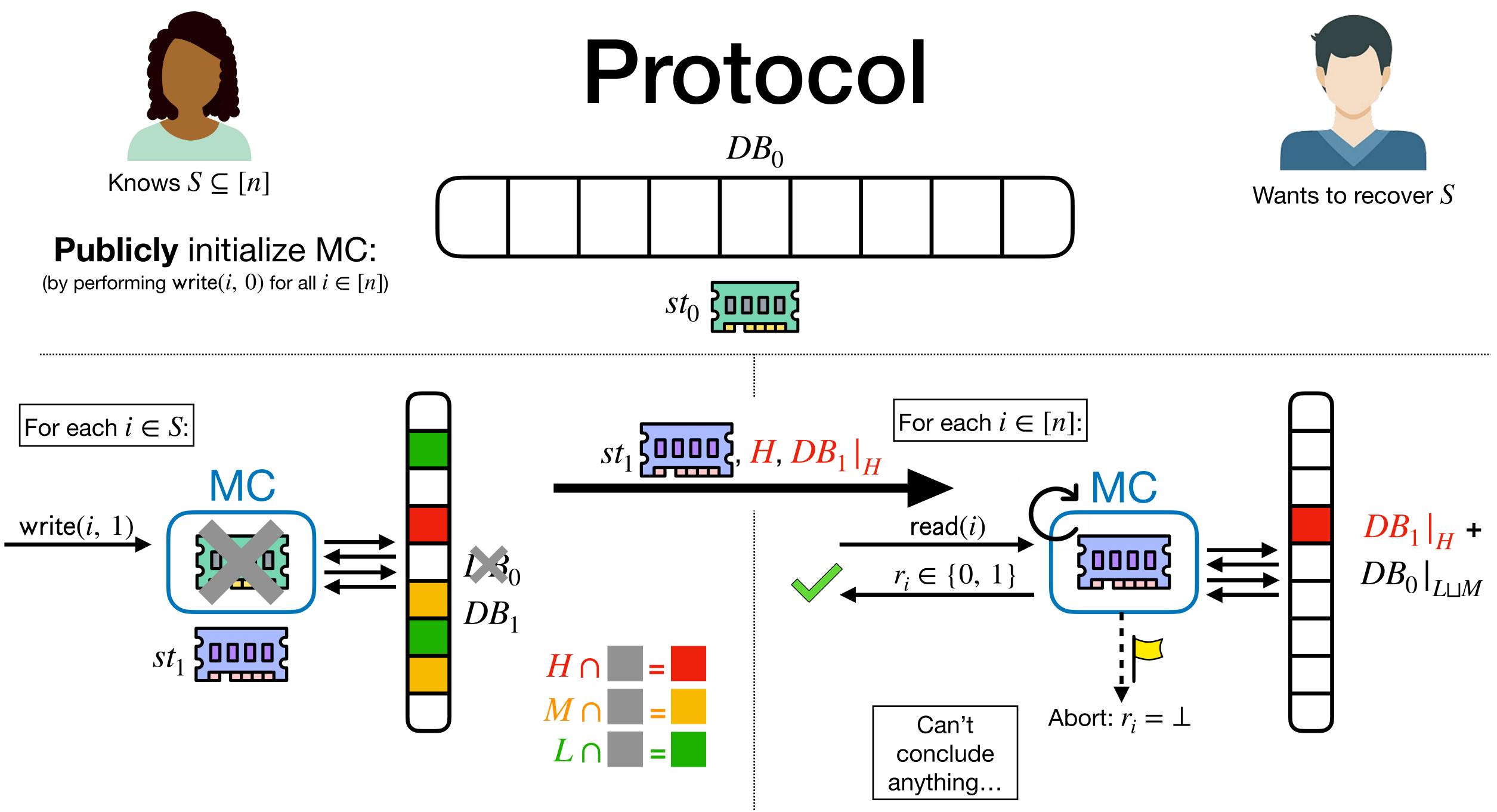
Key [BKV. '24] Idea: Partition the Server's Memory

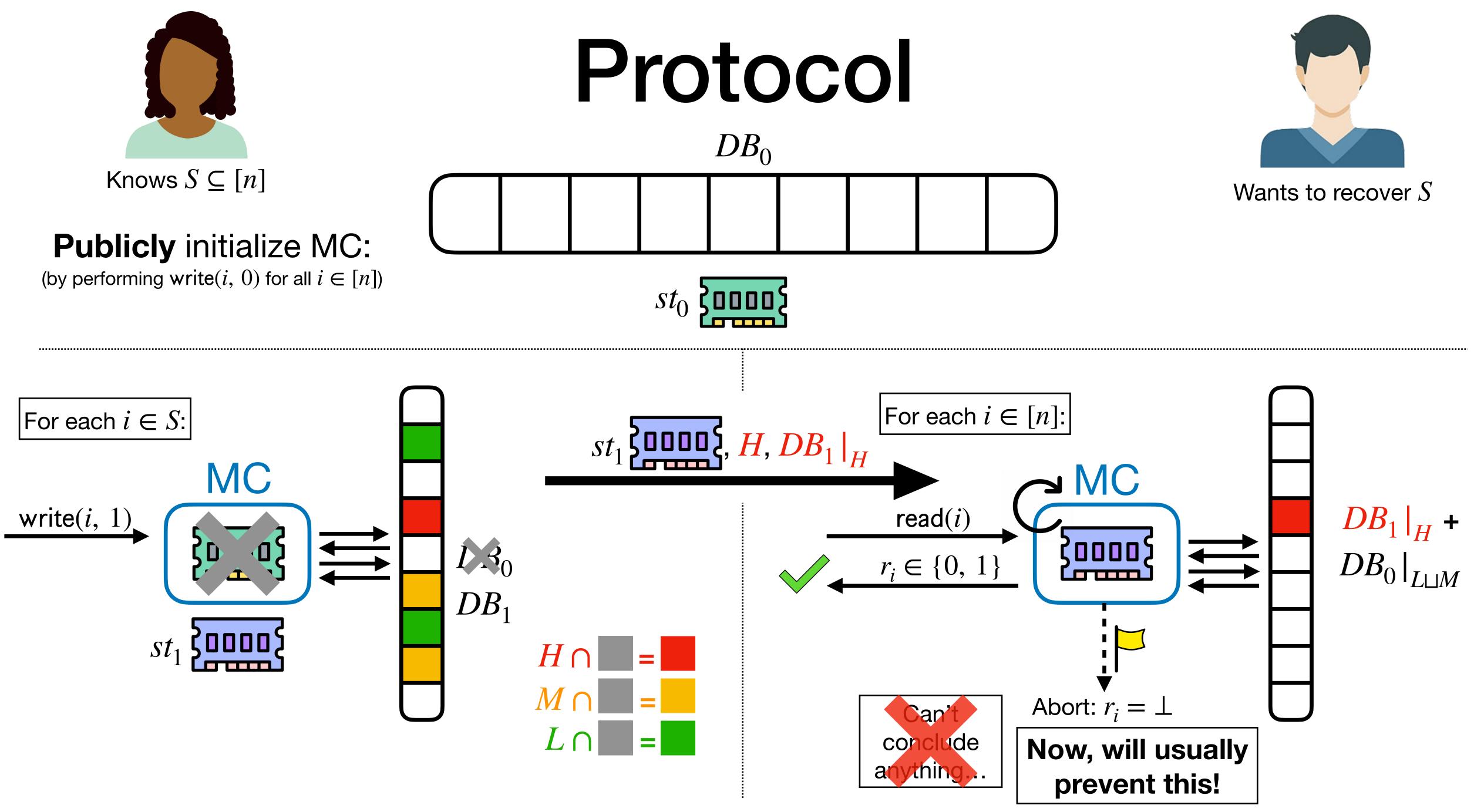
• Analyze the query distribution of read(i) (where $i \leftarrow [n]$):

Key [BKV. '24] Idea: Partition the Server's Memory

- Analyze the query distribution of read(i) (where $i \leftarrow [n]$):
 - Heavy set H: Small set, all have high probability mass.
 - Medium set M: "Total" guarantee of low mass.
 - Light set *L*: "Point-wise" guarantee of low mass.







read).

• The compression argument relies on the adversary being able to compute which queries are heavy to do a replay attack on it (during one logical

- read).

• The compression argument relies on the adversary being able to compute which queries are heavy to do a replay attack on it (during one logical

- read).

 - Problem: Incurs 2^q security loss.

• The compression argument relies on the adversary being able to compute which queries are heavy to do a replay attack on it (during one logical

- read).

 - Problem: Incurs 2^q security loss.
- Can we avoid this guessing?

• The compression argument relies on the adversary being able to compute which queries are heavy to do a replay attack on it (during one logical

- read).

 - Problem: Incurs 2^q security loss.
- Can we avoid this guessing?
 - *H* could depend on private, internal randomness of the MC.

• The compression argument relies on the adversary being able to compute which queries are heavy to do a replay attack on it (during one logical

- read).

 - Problem: Incurs 2^q security loss.
- Can we avoid this guessing?
 - H could depend on private, internal randomness of the MC.
 - H could adaptively change as queries are sent to the MC.

• The compression argument relies on the adversary being able to compute which queries are heavy to do a replay attack on it (during one logical

The adversary can efficiently learn an approximation of H by making many dummy read(i) queries.

The adversary can efficiently learn an approximation of H by making many dummy read(i) queries.

By "read-only reads" property change *H*.

• By "read-only reads" property, making read(i) queries doesn't

The adversary can efficiently learn an approximation of H by making many dummy read(i) queries.

- By "read-only reads" property change *H*.
- Making poly(n) queries is suf approximation of *H*.

• By "read-only reads" property, making read(i) queries doesn't

• Making poly(n) queries is sufficient to learn a sufficiently good

The adversary can efficiently learn an approximation of H by making many dummy read(i) queries.

- change H.
- approximation of H.

• By "read-only reads" property, making read(i) queries doesn't

• Making poly(n) queries is sufficient to learn a sufficiently good

Analysis follows from multiplicative and additive Chernoff bounds.

 Memory Checkers (MCs) remove need for trusting integrity when using remote cloud storage.

- Memory Checkers (MCs) remove need for trusting integrity when using remote cloud storage.
- We prove tight, unconditional lower bounds for MCs, showing that Merkle-style constructions are optimal even when relaxing to covert security.

- Memory Checkers (MCs) remove need for trusting integrity when using remote cloud storage.
- We prove tight, unconditional lower bounds for MCs, showing that Merkle-style constructions are optimal even when relaxing to covert security.
 - Previously known only for deterministic and nonadaptive MCs or for MCs with inverse-polynomial soundness.

Open Questions

 Is there a more general framework to understand when relaxing covert security will enable efficiency gains or not?

Open Questions

- Is there a more general framework to understand when relaxing covert security will enable efficiency gains or not?
- Is there any way to avoid "read-only reads" assumption?

Open Questions

 Is there a more general framework to understand when relaxing covert security will enable efficiency gains or not?

Is there any way to avoid "read-only reads" assumption?

Thanks!

