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• Your goal: Perform computation that requires lots of storage. 

• Problem: You don’t have enough storage yourself (even to 
store the input data!)

• Examples: file storage, experiment with lots of data, 
analytics, …

• Common solution: Run computation using remote cloud as 
storage.
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• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you’re accessing!

• Integrity: An active, malicious server may modify your data!

• (Privacy + Integrity: All simultaneously!)

Trust Concerns 

Solution: Secret-key encryption (or secret sharing)

Solution: Oblivious RAM (ORAM)

Ideally: Verify that the server is behaving honestly

[Goldreich, Ostrovsky ’89, ’90, ’96]
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Integrity: Verifying Honest Server Behavior

• Can we prevent adversary from…

• …modifying data?

• …undetectably modifying data?

• Name for this: memory checker

No!

Yes!



Memory Checking

A memory checker (MC) is a protocol that prevents 
adversaries from undetectably modifying cloud data.

[FOCS ’91, Blum, Evans, Gemmell, Kannan, Naor]
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Related Applications
• Secure hardware (enclaves)

• Provable data possession and retrievability systems

• Offline memory checking

• Verifiable computation (SNARKs) [Setty20, BCHO22, AST23, STW23, …]

• Accumulation schemes [BC24, …]
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Two main complexity measures:

1. Local Space: Amount of private space the MC can store locally.

• For storing  entries, space  is trivial (can store the full RAM itself).n n

• For the rest of the talk, assume space at most  for some .n1−ε ε > 0
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• Lower bound applies only to 
deterministic and non-adaptive 
memory checkers. Big restriction:

• For every logical user query to 
, physical query locations 

must be fixed; depend only on .
i ∈ [n]

i

• Only rules out memory checkers 
with inverse polynomial 
soundness error, roughly 

. p ≈ 1/n

• Doesn’t rule out super-efficient 
MCs with larger soundness error.

[Dwork-Naor-Rothblum-
Vaikuntanathan ’09] [Boyle-Komargodski-V. ’24]
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want to get caught.

• Negligible soundness overkill!

•  soundness error is sufficient. Detecting adversaries with 90% probability, 
instead of (100 - negl)%, is enough of a disincentive.
Ω(1)

• This relaxation has enabled asymptotic efficiency gains in terms of computational 
overhead and communication.

• Naturally fits into memory checking setting: file storage cloud server doesn’t want 
to harm their reputation!

[Aumann-Lindell ’07]

(e.g, [Aumann-Lindell ’07, Goyal-Mohassel-Smith ’08, Hazay-Lindell ’10])
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Concrete Example: Is there a MC 
with 5% soundness error and ?q = 2
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Main Result
• We show:

• Tight up to constant factors.

• Unconditional. Holds regardless of any computational assumptions.

• Handles randomized and adaptive memory checkers.

• An Interpretation: Unlike many other MPC functionalities, covert security 
does not enable efficiency gains for memory checking.

Theorem: Every memory checker*, even with  
soundness error, must have .

Ω(1)
q = Ω(log n/log log n)

[Papamanthou-Tamassia ’11]

*Assuming it has read-only reads
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Our Approach
• Just like [Boyle-Komargodski-V.’24], we can use a MC that’s too efficient 

to compress random bits.

• Will use following style of compression lemma:

• Transmitting uniformly random  from Alice to Bob where

 requires  bits, even with shared indep. randomness.

S ⊆ [n]

|S | = k log (n
k)
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Issue: Computing the Partition
• The compression argument relies on the adversary being able to compute 

which queries are heavy to do a replay attack on it (during one logical 
read).

• [BKV. ’24] approach: Randomly guess whether each query is heavy. 

• Problem: Incurs  security loss. 2q

• Can we avoid this guessing?

•  could depend on private, internal randomness of the MC.H

•  could adaptively change as queries are sent to the MC.H
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Our Idea in a Nutshell

• By “read-only reads” property, making  queries doesn’t 
change .

𝗋𝖾𝖺𝖽(i)
H

• Making  queries is sufficient to learn a sufficiently good 
approximation of . 

𝗉𝗈𝗅𝗒(n)
H

• Analysis follows from multiplicative and additive Chernoff bounds.

The adversary can efficiently learn an approximation 
of  by making many dummy  queries. H 𝗋𝖾𝖺𝖽(i)
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Summary
• Memory Checkers (MCs) remove need for trusting 

integrity when using remote cloud storage.

• We prove tight, unconditional lower bounds for MCs, 
showing that Merkle-style constructions are optimal even 
when relaxing to covert security.

• Previously known only for deterministic and non-
adaptive MCs or for MCs with inverse-polynomial 
soundness.
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• Is there a more general framework to understand when 

relaxing covert security will enable efficiency gains or not? 

• Is there any way to avoid “read-only reads” assumption?

Thanks!


