The Complexity of Memory
Checking with Covert Security

Neekon Vafa (MIT)

Eurocrypt 2025
May 5, 2025

Based on joint work with:

) . s .
Af;'f e :,7 .":.".'o'
?.': :‘ . ;-. -:
59 10 TR 3
' J 5 ‘any s oes '

Elette Boyle llan Komargodski
Reichman University Hebrew University
& NTT Research & NTT Research

Remote Cloud Storage

Remote Cloud Storage

* Your goal: Perform computation that requires lots of storage.

Remote Cloud Storage

* Your goal: Perform computation that requires lots of storage.

* Problem: You don’t have enough storage yourself (even to
store the input data!)

Remote Cloud Storage

* Your goal: Perform computation that requires lots of storage.

* Problem: You don’t have enough storage yourself (even to
store the input data!)

 Examples: file storage, experiment with lots of data,
analytics, ...

Remote Cloud Storage

* Your goal: Perform computation that requires lots of storage.

* Problem: You don’t have enough storage yourself (even to
store the input data!)

 Examples: file storage, experiment with lots of data,
analytics, ...

 Common solution: Run computation using remote cloud as
storage.

Basic Setup

Basic Setup

Server

User

Server is passive; no
work besides storage.

Basic Setup

Server

User

write(3, data)

Server is passive; no
work besides storage.

Basic Setup

Server

User

write(3, data)

write(8, data’)

Server is passive; no
work besides storage.

Basic Setup

Server

User
write(3, data)
write(8, data’)

read(3) |

Server is passive; no
work besides storage.

Basic Setup

Server

User
write(3, data)
write(8, data’)

read(3) |

data

Server is passive; no
work besides storage.

Basic Setup

Server

User
write(3, data)
write(8, data’)
read(3

data
write(3, data”)

Server is passive; no
work besides storage.

Trust Concerns

Trust Concerns

* Privacy #1: The server may see your data!

Trust Concerns

* Privacy #1: The server may see your data!

Solution: Secret-key encryption (or secret sharing)

Trust Concerns

* Privacy #1: The server may see your data!

Solution: Secret-key encryption (or secret sharing)

* Privacy #2: The server can see where you're accessing!

Trust Concerns

* Privacy #1: The server may see your data!

Solution: Secret-key encryption (or secret sharing)

* Privacy #2: The server can see where you're accessing!

Solution: Oblivious RAM (ORAM) [Goldreich, Ostrovsky '89, '90, *96]

Trust Concerns

* Privacy #1: The server may see your data!

Solution: Secret-key encryption (or secret sharing)
* Privacy #2: The server can see where you're accessing!

Solution: Oblivious RAM (ORAM) [Goldreich, Ostrovsky '89, '90, *96]

e Integrity: An active, malicious server may modify your data!

Trust Concerns

* Privacy #1: The server may see your data!

Solution: Secret-key encryption (or secret sharing)
* Privacy #2: The server can see where you're accessing!
Solution: Oblivious RAM (ORAM) (Goldreich, Ostrovsky '89, 90, '96]

e Integrity: An active, malicious server may modify your data!

|ldeally: Verify that the server is behaving honestly

Trust Concerns

* Privacy #1: The server may see your data!
Solution: Secret-key encryption (or secret sharing)
* Privacy #2: The server can see where you're accessing!
Solution: Oblivious RAM (ORAM) (Goidreich, Ostrovsky ‘89, °90, '96]
* Integrity: An active, malicious server may modify your data!
|ldeally: Verify that the server is behaving honestly

e (Privacy + Integrity: All simultaneously!)

Integrity: Verifying Honest Server Behavior

Integrity: Verifying Honest Server Behavior

* Can we prevent adversary from...

Integrity: Verifying Honest Server Behavior

* Can we prevent adversary from...

e ...modifying data?

Integrity: Verifying Honest Server Behavior

* Can we prevent adversary from...

e ...modifying data? No!

Integrity: Verifying Honest Server Behavior

* Can we prevent adversary from...
e ...modifying data? No!

* ...Undetectably modifying data??

Integrity: Verifying Honest Server Behavior

* Can we prevent adversary from...
e ...modifying data? No!

e ...Undetectably modifying data? Yes!

Integrity: Verifying Honest Server Behavior

* Can we prevent adversary from...
e ...modifying data? No!
e ...Undetectably modifying data? Yes!

* Name for this: memory checker

Memory Checking

A memory checker (MC) is a protocol that prevents
adversaries from undetectably modifying cloud data.

[FOCS ’91, Blum, Evans, Gemmell, Kannan, Naor]

Server

User

Server

Setu p Server

User

read/write

query

Setu p Server

U Ser read/write :
query read/write
B query

—_—

Setu p Server

User read/write -
query read/write
—_— query
ﬁ

e

Setu p Server

U Ser read/write -
query read/write
. query
—_—
P E—

—_—

Setu p Server

User -
reaqu\eNrr; © read/write
— query
—_—
e
—_—

User

Setup

read/write

query

response
—

read/write

A

uer
g YI

Server

Setup

User read/write
query
C

response
—

read/write

A

uer
g YI

Server

Setu p Server

“Logical queries”

N\

User s
reaqu\eNrr; © read/write
—_— query
—_—
e
—_—
P I—

response
—

“Logical queries”

N\

read/write

query

User

response
—

Setup

“Physical queries”

/

read/write

A

uer
g YI

Server

Setu p Server

“Read-Only Reads”
Assumption:

“Logical queries”

“Physical queries”

\ No read query ever
User . J invokes a write query .
rea(;j J\e»/rr;te rea/d/irite
B query
—_—
—
——
response —

e

Setu p Server

“Read-Only Reads”
Assumption:

“Logical queries”

“Physical queries”

\ No read query ever
User . J invokes a write query .
rea(;j J\e»/rr;te read/write
— query
e
—
————
response —
—

« Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives
correct response.

Setu p Server

“Read-Only Reads”
Assumption:

“Logical queries”

“Physical queries”

\ No read query ever
User . J invokes a write query .
rea(;j J\e»/rr;te read/write
— query
e
—
————
response —
—

4

A

« Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives
correct response.

Setu p Server

“Read-Only Reads”

“Logical queries” g
ogical queries “Physical queries” Assumption:
\ No read query ever
User dwrit J invokes a write query .
read/write :
query rea/d/irlte
B query
—_—
e
——
response —
—

4

A

« Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives
correct response.

 Soundness: For any PPT malicious server and any sequence of user queries, the probability
that the MC gives an incorrect response without aborting is at most p, where p is negligible.

Setu p Server

“Read-Only Reads”

“Logical queries” g
ogical queries “Physical queries” Assumption:
\ No read query ever
User dwrit J invokes a write query .
read/write :
query rea/d/irlte
B query
—_—
e
——
response —
—

4

Abort

A

« Completeness: If the server behaved honestly (i.e., query are all correct), then MC gives
correct response.

 Soundness: For any PPT malicious server and any sequence of user queries, the probability
that the MC gives an incorrect response without aborting is at most p, where p is negligible.

Application: File Storage Platforms

<3 Dropbox

Server
L Google Drive
User

G &@& OneDrive

Application: File Storage Platforms

<3 Dropbox

Server
L Google Drive

& OneDrive

Application: File Storage Platforms

<3 Dropbox

L Google Drive

& OneDrive

Application: File Storage Platforms

<3 Dropbox

L Google Drive

& OneDrive

Related Applications

Related Applications

e Secure hardware (enclaves)

Related Applications

e Secure hardware (enclaves)

 Provable data possession and retrievabllity systems

Related Applications

e Secure hardware (enclaves)
 Provable data possession and retrievabllity systems

» Offline memory checking

Related Applications

e Secure hardware (enclaves)
 Provable data possession and retrievabllity systems

» Offline memory checking

e \erifiable computation (SNARKS) [Setty20, BCHO22, AST23, STW?23, ...]

Related Applications

e Secure hardware (enclaves)
 Provable data possession and retrievabllity systems
» Offline memory checking

e \erifiable computation (SNARKS) [Setty20, BCHO22, AST23, STW?23, ...]

 Accumulation schemes [BC24, ...]

Efficiency

Efficiency

Two main complexity measures:

Efficiency

Two main complexity measures:

1. Local Space: Amount of private space the MC can store locally.

Efficiency

Two main complexity measures:

1. Local Space: Amount of private space the MC can store locally.

e For storing n entries, space n is trivial (can store the full RAM itself).

Efficiency

Two main complexity measures:

1. Local Space: Amount of private space the MC can store locally.

e For storing n entries, space n is trivial (can store the full RAM itself).

» For the rest of the talk, assume space at most n1=¢ for some € > 0.

Efficiency

Server

User

i

uer

response
4—

Local Space

Efficiency

Server

User

i

uer

response
4—

Local Space

2. Query complexity/overhead: Number of physical queries made to the
server per logical query. Ideally as small as possible!

Efficiency

Query complexity Server

User

i

uer

response
—

Local Space

2. Query complexity/overhead: Number of physical queries made to the
server per logical query. Ideally as small as possible!

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

Memory Checking: What’s Known

Database of size 1, word size polylog(n), local space n'™*

Soundness Upper Bound Lower Bound

Statistical

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

nf;"

[Blum et al. '91,
Naor-Rothblum ’05]

Statistical

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

E E

n

[Blum et al. "91, [Naor-Rothblum ’05]
Naor-Rothblum ’05]

Statistical n

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

E

i + [Tight!

[Blum et al. "91, [Naor-Rothblum ’05]
Naor-Rothblum ’05]

nf;"

Statistical

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

E E

Statistical S otal ‘o1 «/[Tight!

[Naor-Rothblum ’05]
Naor-Rothblum ’05]

More generally, local space X queries = ®(n)

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

E

i + [Tight!

[Blum et al. "91, [Naor-Rothblum ’05]
Naor-Rothblum ’05]

nf;"

Statistical

Computational

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n

Soundness

Statistical

Computational

Upper Bound

E E

n n
[Blum et al. "91, [Naor-Rothblum ’'05]
Naor-Rothblum ’05]
logn

[Merkle 79,
Blum et al. ’91]

|

Lower Bound

v/

|

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

E £
o n n [T

Ight!

StatIStICa| [Blum et al. "91, [Naor-Rothblum ’05] Q/
Naor-Rothblum ’05]
. log n/loglogn
Computational S [Papamar%w_ &
Tamassia '11]

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

E E
tatistical Tight!
S atistica [Blum et al. "91, [Naor-Rothblum ’05] Q/
Naor-Rothblum ’05]
. log n/loglogn log n/loglogn
COm pUtatIOnaI [Papamanthou- [Dwork-Naor-Rothblum-Vaikuntanathan ’09,
Tamassia '11] Boyle-Komargodski-V. '24]

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n'~¢

Soundness Upper Bound Lower Bound

E E
Statistical Tight!
[Blum et al. 91 INaor-Rothblum *05] Q/
Naor-Rothblum ’05]
log n/loglogn log n/loglogn [

- ight!
COmDUtatIOnaI g [Papamar%lou— g [Dwork-Naor-Rothblum-Vaikuntanathan ’09§/

Tamassia '11] Boyle-Komargodski-V. '24]

Memory Checking: What’s Known

Database of size n, word size polylog(n), local space n

Soundness Upper Bound

n8

[Blum et al. '91,
Naor-Rothblum ’05]

Statistical

log n/loglogn
[Papamanthou-
Tamassia '11]

Computational

Lower Bound

[Naor-Rothblum ’05]

|

[Tight!
[Tight!

Limitations of the Computational Lower Bounds

[Dwork-Naor-Rothblum-

Vaikuntanathan ’09] [Boyle-Komargodski-V. "24]

Limitations of the Computational Lower Bounds

[Dwork-Naor-Rothblum-

Vaikuntanathan ’09] [Boyle-Komargodski-V. "24]

 Lower bound applies only to
deterministic and non-adaptive
memory checkers. Big restriction:

Limitations of the Computational Lower Bounds

[Dwork-Naor-Rothblum-

Vaikuntanathan ’09] [Boyle-Komargodski-V. "24]

 Lower bound applies only to
deterministic and non-adaptive
memory checkers. Big restriction:

* [For every logical user query to
1 € |[n], physical query locations
must be fixed; depend only on 1.

Limitations of the Computational Lower Bounds

[Dwork-Naor-Rothblum-

Vaikuntanathan ’09] [Boyle-Komargodski-V. "24]

e | ower bound app”es On|y to * O.nly-rUIGS out memory_ checkers
deterministic and non-adaptive with inverse polynomial
memory checkers. Big restriction: soundness error, roughly

p~l/n.

* [For every logical user query to
1 € |[n], physical query locations
must be fixed; depend only on 1.

Limitations of the Computational Lower Bounds

[Dwork-Naor-Rothblum-

Vaikuntanathan ’09] [Boyle-Komargodski-V. "24]

e | ower bound app”es On|y to * Olnly-rUIGS out memory_ checkers
deterministic and non-adaptive with inverse polynomial
memory checkers. Big restriction: soundness error, roughly

p~l/n.

* [For every logical user query to

i € [n], physical query locations . Doesn’fc rule out super-efficient
must be fixed; depend only on i MCs with larger soundness error.

COvert Secu nty [Aumann-Lindell *07]

COvert Secu nty [Aumann-Lindell *07]

* |[n many settings (e.g., commercial, political, social), malicious adversaries don’t
want to get caught.

COvert Secu nty [Aumann-Lindell *07]

* |[n many settings (e.g., commercial, political, social), malicious adversaries don’t
want to get caught.

* Negligible soundness overkill!

COvert Secu nty [Aumann-Lindell *07]

* |[n many settings (e.g., commercial, political, social), malicious adversaries don’t
want to get caught.

* Negligible soundness overkill!

« ()(1) soundness error is sufficient. Detecting adversaries with 90% probability,
instead of (100 - negl)%, is enough of a disincentive.

COvert Secu nty [Aumann-Lindell *07]

In many settings (e.g., commercial, political, social), malicious adversaries don’t
want to get caught.

Negligible soundness overkill!

€2(1) soundness error is sufficient. Detecting adversaries with 90% probability,
instead of (100 - negl)%, is enough of a disincentive.

This relaxation has enabled asymptotic efficiency gains in terms of computational
overhead and communication. (e.g, [Aumann-Lindell '07, Goyal-Mohassel-Smith *08, Hazay-Lindell *10])

COvert Secu nty [Aumann-Lindell *07]

In many settings (e.g., commercial, political, social), malicious adversaries don’t
want to get caught.

Negligible soundness overkill!

€2(1) soundness error is sufficient. Detecting adversaries with 90% probability,
instead of (100 - negl)%, is enough of a disincentive.

This relaxation has enabled asymptotic efficiency gains in terms of computational
overhead and communication. (e.g, [Aumann-Lindell '07, Goyal-Mohassel-Smith *08, Hazay-Lindell *10])

Naturally fits into memory checking setting: file storage cloud server doesn’t want
to harm thelr reputation!

Main Question

Main Question

Main Question

Can MCs, relaxed to covert security

(soundness €2(1)), have query
complexity g < logn/loglogn? O(1)?

Concrete Example: Is there a MC
with 5% soundness error and g = 2?

Main Result

Main Result

e \We show:

Main Result

e \We show:

Theorem: Every memory checker*, even with €2(1)
soundness error, must have g = Q(log n/loglog n).

*Assuming it has read-only reads

Main Result

e \We show:

Theorem: Every memory checker*, even with €2(1)

soundness error, must have g = 2(log n/log log n).

* Tight up to constant factors. [Papamanthou-Tamassia "11]

*Assuming it has read-only reads

Main Result

e \We show:

Theorem: Every memory checker*, even with €2(1)

soundness error, must have g = 2(log n/log log n).

* Tight up to constant factors. [Papamanthou-Tamassia "11]

 Unconditional. Holds regardless of any computational assumptions.

*Assuming it has read-only reads

Main Result

We show:

Theorem: Every memory checker*, even with €2(1)

soundness error, must have g = 2(log n/log log n).

Tight up to constant factors. [Papamanthou-Tamassia 11]
Unconditional. Holds regardless of any computational assumptions.

Handles randomized and adaptive memory checkers.

*Assuming it has read-only reads

Main Result

We show:

Theorem: Every memory checker*, even with €2(1)

soundness error, must have g = 2(log n/log log n).

Tight up to constant factors. [Papamanthou-Tamassia 11]
Unconditional. Holds regardless of any computational assumptions.
Handles randomized and adaptive memory checkers.

An Interpretation: Unlike many other MPC functionalities, covert security

does not enable efficiency gains for memory checking.

Technical Overview

Our Approach

Our Approach

* Just like [Boyle-Komargodski-V.’24]|, we can use a MC that’s too efficient
to compress random bits.

Our Approach

* Just like [Boyle-Komargodski-V.’24]|, we can use a MC that’s too efficient
to compress random bits.

* Will use following style of compression lemma:

Our Approach

* Just like [Boyle-Komargodski-V.’24]|, we can use a MC that’s too efficient
to compress random bits.

* Will use following style of compression lemma:

e Transmitting uniformly random § C [n] from Alice to Bob where

| S| = k requires log (Z

) bits, even with shared indep. randomness.

Protocol Lt
B 4

Wants to recover S

Knows S C [n]

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto 0oono

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto 0oono

Foreachi € §:

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto 0oono

Foreachi € §:

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto 0oono

Foreachi € §:

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto 0oono

Foreachi € §:

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto 0oono

Foreachi € §:

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

Foreachi € §:

MC

write(i, 1) -
s

st,

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

F hieSs:
or each i st 000

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

Foreachi € §: Foreach i € [n]:
st 0oaao

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])

Foreachi € §:

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

Foreachi € §: Foreach i € [n]:
st 0oaao

read(i)

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

Foreachi € §: Foreach i € [n]:
st 0oaao

read(i)

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])

Foreachi € §:

write(i, 1)
. ——

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

F hieS: Foreach i € [n]:
or each i st .
write(i, 1) read(i)
#
—
DBI Great!
r=1 < 1€8§

by soundness of MC.

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

F hieS: Foreach i € [n]:
or each i st .
write(i, 1) read(i)
#
—
DBI Great!
r=1 < 1€8§

by soundness of MC.

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

Foreachi € §: Foreach i € [n]:
st gooo
write(i, 1) read(i)
.
7% w r; € {0, 1}
—
DBI Great!
r=1 << 1€$

by soundness of MC.

Abort: r; = L

Can’t conclude anything...

Key [BKV. ’24] Idea: Partition the Server’s Memory

Key [BKV. ’24] Idea: Partition the Server’s Memory

» Analyze the query distribution of read(i) (where i « [n]):

Key [BKV. ’24] Idea: Partition the Server’s Memory

» Analyze the query distribution of read(i) (where i « [n]):
 Heavy set /{: Small set, all have high probability mass.
. set /. “Total” guarantee of low mass.

e Light set L.: “Point-wise” guarantee of low mass.

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto gooao

Foreachi € S: Foreach i € [n]:
st 0oaoa

write(i, 1)
. ——

Can’t
conclude
anything...

Protocol *
DB, A A

Publicly initialize MC:
(by performing write(i, 0) for all i € [n])
Sto 0oono

Foreach i € [n]:
st,580804 H, DB, |,

L 20 w r. € {0, 1}
E l—,
DB,

Foreachi € §:

write(i, 1) DB, ‘H +

DBO‘LuM

Can’t
conclude
anything...

Protocol L
DB, A A

Publicly initialize MC:

(by performing write(i, 0) for all i € [n])
Sto 0oono

Foreach i € [n]:
st,580804 H, DB, |,

Foreachi € §:

write(i, 1) read(i) DB, ‘H +
> 4_'
% — M() w r. € {0, 1} DBy, v,

DB,

Hnl=1H
B
Lnl=1

st,

Abort: r; = L

Now, will usually
prevent this!

Issue: Computing the Partition

Issue: Computing the Partition

 The compression argument relies on the adversary being able to compute
which queries are heavy to do a replay attack on it (during one logical
read).

Issue: Computing the Partition

 The compression argument relies on the adversary being able to compute
which queries are heavy to do a replay attack on it (during one logical
read).

o [BKV. 24| approach: Randomly guess whether each query is heavy.

Issue: Computing the Partition

 The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

o [BKV. 24| approach: Randomly guess whether each query is heavy.

* Problem: Incurs 24 security loss.

Issue: Computing the Partition

 The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

o [BKV. 24| approach: Randomly guess whether each query is heavy.

* Problem: Incurs 24 security loss.

 Can we avoid this guessing?

Issue: Computing the Partition

 The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

o [BKV. 24| approach: Randomly guess whether each query is heavy.
* Problem: Incurs 24 security loss.

 Can we avoid this guessing?

« /1 could depend on private, internal randomness of the MC.

Issue: Computing the Partition

 The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

o [BKV. 24| approach: Randomly guess whether each query is heavy.

* Problem: Incurs 24 security loss.

 Can we avoid this guessing?
« /1 could depend on private, internal randomness of the MC.

« [could adaptively change as queries are sent to the MC.

Our Idea in a Nutshell

Our Idea in a Nutshell

The adversary can efficiently learn an approximation
of /7 by making many dummy read(i) queries.

Our Idea in a Nutshell

The adversary can efficiently learn an approximation
of /7 by making many dummy read(i) queries.

» By “read-only reads” property, making read(i) queries doesn’t
change /.

Our Idea in a Nutshell

The adversary can efficiently learn an approximation

of /7 by making many dummy read(i) queries.

» By “read-only reads” property, making read(i) queries doesn’t
change /.

» Making poly(n) queries is sufficient to learn a sufficiently good
approximation of /1.

Our Idea in a Nutshell

The adversary can efficiently learn an approximation

of /7 by making many dummy read(i) queries.

» By “read-only reads” property, making read(i) queries doesn’t
change /.

» Making poly(n) queries is sufficient to learn a sufficiently good

approximation of /7.
* Analysis follows from multiplicative and additive Chernoff bounds.

Summary

Summary

* Memory Checkers (MCs) remove need for trusting
Integrity when using remote cloud storage.

Summary

* Memory Checkers (MCs) remove need for trusting
Integrity when using remote cloud storage.

* We prove tight, unconditional lower bounds for MCs,
showing that Merkle-style constructions are optimal even

when relaxing to covert security.

Summary

* Memory Checkers (MCs) remove need for trusting
Integrity when using remote cloud storage.

* We prove tight, unconditional lower bounds for MCs,
showing that Merkle-style constructions are optimal even

when relaxing to covert security.

* Previously known only for deterministic and non-
adaptive MCs or for MCs with inverse-polynomial
soundness.

Open Questions

Open Questions

* |s there a more general framework to understand when
relaxing covert security will enable efficiency gains or not?

Open Questions

* |s there a more general framework to understand when
relaxing covert security will enable efficiency gains or not?

* |s there any way to avoid “read-only reads” assumption?

Open Questions

* |s there a more general framework to understand when
relaxing covert security will enable efficiency gains or not?

* |s there any way to avoid “read-only reads” assumption?

