
The Complexity of Memory
Checking with Covert Security

Eurocrypt 2025

May 5, 2025

Ilan Komargodski
Hebrew University

& NTT Research

Elette Boyle
Reichman University

& NTT Research

Neekon Vafa (MIT)

Based on joint work with:

Remote Cloud Storage

Remote Cloud Storage
• Your goal: Perform computation that requires lots of storage.

Remote Cloud Storage
• Your goal: Perform computation that requires lots of storage.

• Problem: You don’t have enough storage yourself (even to
store the input data!)

Remote Cloud Storage
• Your goal: Perform computation that requires lots of storage.

• Problem: You don’t have enough storage yourself (even to
store the input data!)

• Examples: file storage, experiment with lots of data,
analytics, …

Remote Cloud Storage
• Your goal: Perform computation that requires lots of storage.

• Problem: You don’t have enough storage yourself (even to
store the input data!)

• Examples: file storage, experiment with lots of data,
analytics, …

• Common solution: Run computation using remote cloud as
storage.

Basic Setup

Basic Setup

User

Server

Data

Source

Server is passive; no
work besides storage.

Basic Setup

User

Server

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

Server is passive; no
work besides storage.

Basic Setup

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

Server is passive; no
work besides storage.

Basic Setup

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)
𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

Server is passive; no
work besides storage.

Basic Setup

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺′

𝖽𝖺𝗍𝖺

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

Server is passive; no
work besides storage.

Basic Setup

User

Server

𝗐𝗋𝗂𝗍𝖾(8, 𝖽𝖺𝗍𝖺′)

𝖽𝖺𝗍𝖺
𝗋𝖾𝖺𝖽(3)

𝖽𝖺𝗍𝖺′

1

2

3

4

5

6

7

8

9

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺)

Data

Source

Server is passive; no
work besides storage.

𝗐𝗋𝗂𝗍𝖾(3, 𝖽𝖺𝗍𝖺′ ′)

…
…

𝖽𝖺𝗍𝖺′ ′

Trust Concerns

• Privacy #1: The server may see your data!

Trust Concerns

• Privacy #1: The server may see your data!

Trust Concerns

Solution: Secret-key encryption (or secret sharing)

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you’re accessing!

Trust Concerns

Solution: Secret-key encryption (or secret sharing)

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you’re accessing!

Trust Concerns

Solution: Secret-key encryption (or secret sharing)

Solution: Oblivious RAM (ORAM) [Goldreich, Ostrovsky ’89, ’90, ’96]

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you’re accessing!

• Integrity: An active, malicious server may modify your data!

Trust Concerns

Solution: Secret-key encryption (or secret sharing)

Solution: Oblivious RAM (ORAM) [Goldreich, Ostrovsky ’89, ’90, ’96]

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you’re accessing!

• Integrity: An active, malicious server may modify your data!

Trust Concerns

Solution: Secret-key encryption (or secret sharing)

Solution: Oblivious RAM (ORAM)

Ideally: Verify that the server is behaving honestly

[Goldreich, Ostrovsky ’89, ’90, ’96]

• Privacy #1: The server may see your data!

• Privacy #2: The server can see where you’re accessing!

• Integrity: An active, malicious server may modify your data!

• (Privacy + Integrity: All simultaneously!)

Trust Concerns

Solution: Secret-key encryption (or secret sharing)

Solution: Oblivious RAM (ORAM)

Ideally: Verify that the server is behaving honestly

[Goldreich, Ostrovsky ’89, ’90, ’96]

Integrity: Verifying Honest Server Behavior

Integrity: Verifying Honest Server Behavior

• Can we prevent adversary from…

Integrity: Verifying Honest Server Behavior

• Can we prevent adversary from…

• …modifying data?

Integrity: Verifying Honest Server Behavior

• Can we prevent adversary from…

• …modifying data? No!

Integrity: Verifying Honest Server Behavior

• Can we prevent adversary from…

• …modifying data?

• …undetectably modifying data?

No!

Integrity: Verifying Honest Server Behavior

• Can we prevent adversary from…

• …modifying data?

• …undetectably modifying data?

No!

Yes!

Integrity: Verifying Honest Server Behavior

• Can we prevent adversary from…

• …modifying data?

• …undetectably modifying data?

• Name for this: memory checker

No!

Yes!

Memory Checking

A memory checker (MC) is a protocol that prevents
adversaries from undetectably modifying cloud data.

[FOCS ’91, Blum, Evans, Gemmell, Kannan, Naor]

Setup
User

Server

Setup
User

Server

MC

Setup
User

𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾
MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

“Logical queries”

MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

“Logical queries” “Physical queries”

MC

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

“Logical queries” “Physical queries”

MC

“Read-Only Reads”
Assumption:

No ever
invokes a .

𝗋𝖾𝖺𝖽 𝗊𝗎𝖾𝗋𝗒
𝗐𝗋𝗂𝗍𝖾 ̂𝗊𝗎𝖾𝗋𝗒

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

• Completeness: If the server behaved honestly (i.e., are all correct), then MC gives
correct response.

̂𝗊𝗎𝖾𝗋𝗒

“Logical queries” “Physical queries”

MC

“Read-Only Reads”
Assumption:

No ever
invokes a .

𝗋𝖾𝖺𝖽 𝗊𝗎𝖾𝗋𝗒
𝗐𝗋𝗂𝗍𝖾 ̂𝗊𝗎𝖾𝗋𝗒

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

• Completeness: If the server behaved honestly (i.e., are all correct), then MC gives
correct response.

̂𝗊𝗎𝖾𝗋𝗒

“Logical queries” “Physical queries”

MC

“Read-Only Reads”
Assumption:

No ever
invokes a .

𝗋𝖾𝖺𝖽 𝗊𝗎𝖾𝗋𝗒
𝗐𝗋𝗂𝗍𝖾 ̂𝗊𝗎𝖾𝗋𝗒

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

• Completeness: If the server behaved honestly (i.e., are all correct), then MC gives
correct response.

̂𝗊𝗎𝖾𝗋𝗒

• Soundness: For any PPT malicious server and any sequence of user queries, the probability
that the MC gives an incorrect response without aborting is at most , where is negligible.p p

“Logical queries” “Physical queries”

MC

“Read-Only Reads”
Assumption:

No ever
invokes a .

𝗋𝖾𝖺𝖽 𝗊𝗎𝖾𝗋𝗒
𝗐𝗋𝗂𝗍𝖾 ̂𝗊𝗎𝖾𝗋𝗒

Setup
User

𝗊𝗎𝖾𝗋𝗒
̂𝗊𝗎𝖾𝗋𝗒

response

Server

/𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾 /𝗋𝖾𝖺𝖽 𝗐𝗋𝗂𝗍𝖾

Abort

• Completeness: If the server behaved honestly (i.e., are all correct), then MC gives
correct response.

̂𝗊𝗎𝖾𝗋𝗒

• Soundness: For any PPT malicious server and any sequence of user queries, the probability
that the MC gives an incorrect response without aborting is at most , where is negligible.p p

“Logical queries” “Physical queries”

MC

“Read-Only Reads”
Assumption:

No ever
invokes a .

𝗋𝖾𝖺𝖽 𝗊𝗎𝖾𝗋𝗒
𝗐𝗋𝗂𝗍𝖾 ̂𝗊𝗎𝖾𝗋𝗒

Application: File Storage Platforms

User

Server

🧔

Application: File Storage Platforms

User

Server

🧔
𝗊𝗎𝖾𝗋𝗒

MC

response

💻

Application: File Storage Platforms

User

Server

🧔
𝗊𝗎𝖾𝗋𝗒

MC

response

💻

Application: File Storage Platforms

User

Server

🧔
𝗊𝗎𝖾𝗋𝗒

MC

response

💻

Related Applications

Related Applications
• Secure hardware (enclaves)

Related Applications
• Secure hardware (enclaves)

• Provable data possession and retrievability systems

Related Applications
• Secure hardware (enclaves)

• Provable data possession and retrievability systems

• Offline memory checking

Related Applications
• Secure hardware (enclaves)

• Provable data possession and retrievability systems

• Offline memory checking

• Verifiable computation (SNARKs) [Setty20, BCHO22, AST23, STW23, …]

Related Applications
• Secure hardware (enclaves)

• Provable data possession and retrievability systems

• Offline memory checking

• Verifiable computation (SNARKs) [Setty20, BCHO22, AST23, STW23, …]

• Accumulation schemes [BC24, …]

Efficiency

Efficiency
Two main complexity measures:

Efficiency
Two main complexity measures:

1. Local Space: Amount of private space the MC can store locally.

Efficiency
Two main complexity measures:

1. Local Space: Amount of private space the MC can store locally.

• For storing entries, space is trivial (can store the full RAM itself).n n

Efficiency
Two main complexity measures:

1. Local Space: Amount of private space the MC can store locally.

• For storing entries, space is trivial (can store the full RAM itself).n n

• For the rest of the talk, assume space at most for some .n1−ε ε > 0

Efficiency

User
𝗊𝗎𝖾𝗋𝗒

MC
̂𝗊𝗎𝖾𝗋𝗒

response

Server

Local Space

Efficiency

User
𝗊𝗎𝖾𝗋𝗒

MC
̂𝗊𝗎𝖾𝗋𝗒

response

Server

2. Query complexity/overhead: Number of physical queries made to the
server per logical query. Ideally as small as possible!

Local Space

Efficiency

User
𝗊𝗎𝖾𝗋𝗒

MC
̂𝗊𝗎𝖾𝗋𝗒

response

ServerQuery complexity

2. Query complexity/overhead: Number of physical queries made to the
server per logical query. Ideally as small as possible!

Local Space

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical nε
[Blum et al. ’91,

Naor-Rothblum ’05]

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical nε
[Blum et al. ’91,

Naor-Rothblum ’05]
[Naor-Rothblum ’05]

nε

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical Tight!nε
[Blum et al. ’91,

Naor-Rothblum ’05]
[Naor-Rothblum ’05]

nε

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical Tight!nε
[Blum et al. ’91,

Naor-Rothblum ’05]
[Naor-Rothblum ’05]

nε

More generally, 𝗅𝗈𝖼𝖺𝗅 𝗌𝗉𝖺𝖼𝖾 × 𝗊𝗎𝖾𝗋𝗂𝖾𝗌 = Θ(n)

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical

Computational

Tight!nε
[Blum et al. ’91,

Naor-Rothblum ’05]
[Naor-Rothblum ’05]

nε

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical

Computational

Tight!nε
[Blum et al. ’91,

Naor-Rothblum ’05]

log n
[Merkle ’79,

Blum et al. ’91]

[Naor-Rothblum ’05]

nε

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical

Computational

Tight!nε
[Blum et al. ’91,

Naor-Rothblum ’05]

log n/log log n
[Papamanthou-
Tamassia ’11]

[Naor-Rothblum ’05]

nε

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical

Computational

Tight!nε
[Blum et al. ’91,

Naor-Rothblum ’05]

log n/log log n
[Papamanthou-
Tamassia ’11]

[Naor-Rothblum ’05]

nε

log n/log log n
Boyle-Komargodski-V. ’24]

[Dwork-Naor-Rothblum-Vaikuntanathan ’09,

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical

Computational

Tight!nε
[Blum et al. ’91,

Naor-Rothblum ’05]

log n/log log n
[Papamanthou-
Tamassia ’11]

[Naor-Rothblum ’05]

nε

log n/log log n
Boyle-Komargodski-V. ’24]

[Dwork-Naor-Rothblum-Vaikuntanathan ’09,
Tight!

Memory Checking: What’s Known
Database of size , word size , local space n 𝗉𝗈𝗅𝗒𝗅𝗈𝗀(n) n1−ε

Soundness Upper Bound Lower Bound

Statistical

Computational

Tight!nε
[Blum et al. ’91,

Naor-Rothblum ’05]

log n/log log n
[Papamanthou-
Tamassia ’11]

[Naor-Rothblum ’05]

nε

log n/log log n
Boyle-Komargodski-V. ’24]

[Dwork-Naor-Rothblum-Vaikuntanathan ’09,
Tight!

Limitations of the Computational Lower Bounds

[Dwork-Naor-Rothblum-
Vaikuntanathan ’09] [Boyle-Komargodski-V. ’24]

Limitations of the Computational Lower Bounds

• Lower bound applies only to
deterministic and non-adaptive
memory checkers. Big restriction:

[Dwork-Naor-Rothblum-
Vaikuntanathan ’09] [Boyle-Komargodski-V. ’24]

Limitations of the Computational Lower Bounds

• Lower bound applies only to
deterministic and non-adaptive
memory checkers. Big restriction:

• For every logical user query to
, physical query locations

must be fixed; depend only on .
i ∈ [n]

i

[Dwork-Naor-Rothblum-
Vaikuntanathan ’09] [Boyle-Komargodski-V. ’24]

Limitations of the Computational Lower Bounds

• Lower bound applies only to
deterministic and non-adaptive
memory checkers. Big restriction:

• For every logical user query to
, physical query locations

must be fixed; depend only on .
i ∈ [n]

i

• Only rules out memory checkers
with inverse polynomial
soundness error, roughly

. p ≈ 1/n

[Dwork-Naor-Rothblum-
Vaikuntanathan ’09] [Boyle-Komargodski-V. ’24]

Limitations of the Computational Lower Bounds

• Lower bound applies only to
deterministic and non-adaptive
memory checkers. Big restriction:

• For every logical user query to
, physical query locations

must be fixed; depend only on .
i ∈ [n]

i

• Only rules out memory checkers
with inverse polynomial
soundness error, roughly

. p ≈ 1/n

• Doesn’t rule out super-efficient
MCs with larger soundness error.

[Dwork-Naor-Rothblum-
Vaikuntanathan ’09] [Boyle-Komargodski-V. ’24]

Covert Security [Aumann-Lindell ’07]

Covert Security
• In many settings (e.g., commercial, political, social), malicious adversaries don’t

want to get caught.

[Aumann-Lindell ’07]

Covert Security
• In many settings (e.g., commercial, political, social), malicious adversaries don’t

want to get caught.

• Negligible soundness overkill!

[Aumann-Lindell ’07]

Covert Security
• In many settings (e.g., commercial, political, social), malicious adversaries don’t

want to get caught.

• Negligible soundness overkill!

• soundness error is sufficient. Detecting adversaries with 90% probability,
instead of (100 - negl)%, is enough of a disincentive.
Ω(1)

[Aumann-Lindell ’07]

Covert Security
• In many settings (e.g., commercial, political, social), malicious adversaries don’t

want to get caught.

• Negligible soundness overkill!

• soundness error is sufficient. Detecting adversaries with 90% probability,
instead of (100 - negl)%, is enough of a disincentive.
Ω(1)

• This relaxation has enabled asymptotic efficiency gains in terms of computational
overhead and communication.

[Aumann-Lindell ’07]

(e.g, [Aumann-Lindell ’07, Goyal-Mohassel-Smith ’08, Hazay-Lindell ’10])

Covert Security
• In many settings (e.g., commercial, political, social), malicious adversaries don’t

want to get caught.

• Negligible soundness overkill!

• soundness error is sufficient. Detecting adversaries with 90% probability,
instead of (100 - negl)%, is enough of a disincentive.
Ω(1)

• This relaxation has enabled asymptotic efficiency gains in terms of computational
overhead and communication.

• Naturally fits into memory checking setting: file storage cloud server doesn’t want
to harm their reputation!

[Aumann-Lindell ’07]

(e.g, [Aumann-Lindell ’07, Goyal-Mohassel-Smith ’08, Hazay-Lindell ’10])

Main Question

Main Question
Can MCs, relaxed to covert security

(soundness), have query
complexity ? ?

Ω(1)
q ≪ log n/log log n O(1)

Main Question
Can MCs, relaxed to covert security

(soundness), have query
complexity ? ?

Ω(1)
q ≪ log n/log log n O(1)

Concrete Example: Is there a MC
with 5% soundness error and ?q = 2

Main Result

Main Result
• We show:

Main Result
• We show:

Theorem: Every memory checker*, even with
soundness error, must have .

Ω(1)
q = Ω(log n/log log n)

*Assuming it has read-only reads

Main Result
• We show:

• Tight up to constant factors.

Theorem: Every memory checker*, even with
soundness error, must have .

Ω(1)
q = Ω(log n/log log n)

[Papamanthou-Tamassia ’11]

*Assuming it has read-only reads

Main Result
• We show:

• Tight up to constant factors.

• Unconditional. Holds regardless of any computational assumptions.

Theorem: Every memory checker*, even with
soundness error, must have .

Ω(1)
q = Ω(log n/log log n)

[Papamanthou-Tamassia ’11]

*Assuming it has read-only reads

Main Result
• We show:

• Tight up to constant factors.

• Unconditional. Holds regardless of any computational assumptions.

• Handles randomized and adaptive memory checkers.

Theorem: Every memory checker*, even with
soundness error, must have .

Ω(1)
q = Ω(log n/log log n)

[Papamanthou-Tamassia ’11]

*Assuming it has read-only reads

Main Result
• We show:

• Tight up to constant factors.

• Unconditional. Holds regardless of any computational assumptions.

• Handles randomized and adaptive memory checkers.

• An Interpretation: Unlike many other MPC functionalities, covert security
does not enable efficiency gains for memory checking.

Theorem: Every memory checker*, even with
soundness error, must have .

Ω(1)
q = Ω(log n/log log n)

[Papamanthou-Tamassia ’11]

*Assuming it has read-only reads

Technical Overview

Our Approach

Our Approach
• Just like [Boyle-Komargodski-V.’24], we can use a MC that’s too efficient

to compress random bits.

Our Approach
• Just like [Boyle-Komargodski-V.’24], we can use a MC that’s too efficient

to compress random bits.

• Will use following style of compression lemma:

Our Approach
• Just like [Boyle-Komargodski-V.’24], we can use a MC that’s too efficient

to compress random bits.

• Will use following style of compression lemma:

• Transmitting uniformly random from Alice to Bob where

 requires bits, even with shared indep. randomness.

S ⊆ [n]

|S | = k log (n
k)

Protocol
Wants to recover SKnows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

st1

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]
st1

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
MC

st1

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
MC

st1

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
DB0
DB1

MC
st1

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
DB0
DB1

MC

ri ∈ {0, 1}

st1

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
DB0
DB1

MC

ri ∈ {0, 1}

st1

Great!

by soundness of MC.
ri = 1 ⟺ i ∈ S

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
DB0
DB1

MC

ri ∈ {0, 1}

st1

Abort: ri = ⊥

Great!

by soundness of MC.
ri = 1 ⟺ i ∈ S

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Protocol
Wants to recover S

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
DB0
DB1

MC

ri ∈ {0, 1}

st1

Abort: ri = ⊥

Great!

by soundness of MC.
ri = 1 ⟺ i ∈ S

Can’t conclude anything…

Knows S ⊆ [n]

Publicly initialize MC:
(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Key [BKV. ’24] Idea: Partition the Server’s Memory

Key [BKV. ’24] Idea: Partition the Server’s Memory

• Analyze the query distribution of (where :𝗋𝖾𝖺𝖽(i) i ← [n])

Key [BKV. ’24] Idea: Partition the Server’s Memory

• Analyze the query distribution of (where :𝗋𝖾𝖺𝖽(i) i ← [n])

• Heavy set : Small set, all have high probability mass.H

• Medium set : “Total” guarantee of low mass.M

• Light set : “Point-wise” guarantee of low mass.L

Protocol
Knows S ⊆ [n] Wants to recover S

Publicly initialize MC:

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
MC

ri ∈ {0, 1}

st1

(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Abort: ri = ⊥

 DB1
DB0

Can’t
conclude

anything…

Protocol
Knows S ⊆ [n] Wants to recover S

Publicly initialize MC:

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
MC

ri ∈ {0, 1}

st1

(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Abort: ri = ⊥

, , H DB1 |H

 =H ∩

 = L ∩
 = M ∩

 +DB1 |H
DB0 |L⊔M

Can’t
conclude

anything…

Protocol
Knows S ⊆ [n] Wants to recover S

Publicly initialize MC:

DB0

st0

For each :i ∈ S

𝗐𝗋𝗂𝗍𝖾(i, 1)
MC

DB0
DB1

st1

For each :i ∈ [n]

𝗋𝖾𝖺𝖽(i)
MC

ri ∈ {0, 1}

st1

(by performing for all)𝗐𝗋𝗂𝗍𝖾(i, 0) i ∈ [n]

Abort: ri = ⊥

, , H DB1 |H

 =H ∩

 = L ∩
 = M ∩

 +DB1 |H
DB0 |L⊔M

Now, will usually
prevent this!

Can’t
conclude

anything…

Issue: Computing the Partition

Issue: Computing the Partition
• The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

Issue: Computing the Partition
• The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

• [BKV. ’24] approach: Randomly guess whether each query is heavy.

Issue: Computing the Partition
• The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

• [BKV. ’24] approach: Randomly guess whether each query is heavy.

• Problem: Incurs security loss. 2q

Issue: Computing the Partition
• The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

• [BKV. ’24] approach: Randomly guess whether each query is heavy.

• Problem: Incurs security loss. 2q

• Can we avoid this guessing?

Issue: Computing the Partition
• The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

• [BKV. ’24] approach: Randomly guess whether each query is heavy.

• Problem: Incurs security loss. 2q

• Can we avoid this guessing?

• could depend on private, internal randomness of the MC.H

Issue: Computing the Partition
• The compression argument relies on the adversary being able to compute

which queries are heavy to do a replay attack on it (during one logical
read).

• [BKV. ’24] approach: Randomly guess whether each query is heavy.

• Problem: Incurs security loss. 2q

• Can we avoid this guessing?

• could depend on private, internal randomness of the MC.H

• could adaptively change as queries are sent to the MC.H

Our Idea in a Nutshell

Our Idea in a Nutshell
The adversary can efficiently learn an approximation

of by making many dummy queries. H 𝗋𝖾𝖺𝖽(i)

Our Idea in a Nutshell

• By “read-only reads” property, making queries doesn’t
change .

𝗋𝖾𝖺𝖽(i)
H

The adversary can efficiently learn an approximation
of by making many dummy queries. H 𝗋𝖾𝖺𝖽(i)

Our Idea in a Nutshell

• By “read-only reads” property, making queries doesn’t
change .

𝗋𝖾𝖺𝖽(i)
H

• Making queries is sufficient to learn a sufficiently good
approximation of .

𝗉𝗈𝗅𝗒(n)
H

The adversary can efficiently learn an approximation
of by making many dummy queries. H 𝗋𝖾𝖺𝖽(i)

Our Idea in a Nutshell

• By “read-only reads” property, making queries doesn’t
change .

𝗋𝖾𝖺𝖽(i)
H

• Making queries is sufficient to learn a sufficiently good
approximation of .

𝗉𝗈𝗅𝗒(n)
H

• Analysis follows from multiplicative and additive Chernoff bounds.

The adversary can efficiently learn an approximation
of by making many dummy queries. H 𝗋𝖾𝖺𝖽(i)

Summary

Summary
• Memory Checkers (MCs) remove need for trusting

integrity when using remote cloud storage.

Summary
• Memory Checkers (MCs) remove need for trusting

integrity when using remote cloud storage.

• We prove tight, unconditional lower bounds for MCs,
showing that Merkle-style constructions are optimal even
when relaxing to covert security.

Summary
• Memory Checkers (MCs) remove need for trusting

integrity when using remote cloud storage.

• We prove tight, unconditional lower bounds for MCs,
showing that Merkle-style constructions are optimal even
when relaxing to covert security.

• Previously known only for deterministic and non-
adaptive MCs or for MCs with inverse-polynomial
soundness.

Open Questions

Open Questions
• Is there a more general framework to understand when

relaxing covert security will enable efficiency gains or not?

Open Questions
• Is there a more general framework to understand when

relaxing covert security will enable efficiency gains or not?

• Is there any way to avoid “read-only reads” assumption?

Open Questions
• Is there a more general framework to understand when

relaxing covert security will enable efficiency gains or not?

• Is there any way to avoid “read-only reads” assumption?

Thanks!

