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Introduction



Cryptographic Hashing

arbitrary message H 011 . . . 01\

∗

\

n

• Function H from {0, 1}∗ to {0, 1}n

• Variable-length input

• Classically fixed length output (but could be variable as well)
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Merkle-Damg̊ard [Dam89, Mer89]

IV F F · · · F F h

M1 M2 Mℓ−1 M̄ℓ∥10∗· · ·

h1 h2 hℓ−2 hℓ−1

\

n

\m

\

n

Merkle-Damg̊ard with Strengthening

• Uses compression function F from n+m to n bits

• State initialized using IV

• Message M injectively padded and cut into m-bit blocks

• Consecutive evaluation of compression function F

• Used, among others, in SHA-1/2 [Nat15]

What if we want to do message authentication?
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Keying Merkle-Damg̊ard – Length Extension Attack

IV F F · · · F F h

K M1 Mℓ−1 M̄ℓ∥10∗· · ·

h1 h2 hℓ−2 hℓ−1

\

n

\m

\

n

Keying at the Prefix

• Vulnerable to the length extension attack [Tsu92, KR95]

• Query tag h← H(K∥M)

• Compute h′ ← F (h,X∥10∗) as forgery for M∥10∗∥X

• We need a band-aid
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Keying Merkle-Damg̊ard – Alternative Options

Enveloped Merkle-Damg̊ard: H(K∥M∥K) [Tsu92]

• Evolved into HMAC(K,M) = H
(
Kout∥H(Kin∥M)

)
[BCK96]

• HMAC: secure if F is a pseudorandom function (PRF) [BCK96, Bel06]

• Similar result applies to enveloped Merkle-Damg̊ard [Yas07]

Suffix Keyed Merkle-Damg̊ard: H(M∥K) [Tsu92]

• Vulnerable to offline collision attack in 2n/2 evaluations of F [PvO95]

• Not much analysis since
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Intermezzo: Modern Approach

HMAC: Bad Solution to a Bad Problem

• Novel approach:

• Take H that is indifferentiable from random oracle [MRH04]

• Sponge [BDPV07], Merkle-Damg̊ard with permutation [HPY07], . . .

• Generic security of keyed constructions follows by composition

Example: Sponge [BDPV07]

• Sponge(K∥M) works fine (see also KMAC [Joh16])

• Sponge(K∥M∥K) works fine

• Sponge(M∥K) works fine

←−− even achieves leakage resilience [DM19]
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Completing the Picture for Merkle-Damg̊ard

Prefix Keyed Merkle-Damg̊ard

• Vulnerable to the length extension attack

Enveloped Merkle-Damg̊ard and HMAC

• Both got various proofs [BCK96, Bel06, Yas07]

• All rely on PRF security of F

Suffix Keyed Merkle-Damg̊ard?

• What security does it actually achieve (black-box, leakage resilience)?

• Can we prove security without using random oracle model for F?
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Suffix Keyed and Suffix Blinded

Merkle-Damg̊ard



Suffix Keyed and Suffix Blinded Merkle-Damg̊ard

Suffix Keyed Merkle-Damg̊ard (sukMD)

IV F F · · · F F h

M1 M2 Mℓ−1 M̄ℓ∥10∗∥K· · ·

h1 h2 hℓ−2 hℓ−1

\

n

\m

\

n

Suffix Blinded Merkle-Damg̊ard (subMD)

IV F F · · · F F h

M1 M2 Mℓ−1 M̄ℓ∥10∗· · ·

h1 h2 hℓ−2

hℓ−1

↓
G

K

\

n

\m

\

n
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Black-Box Security Results (1/2)

Suffix Keyed Merkle-Damg̊ard (sukMD)

IV F F · · · F F h

M1 M2 Mℓ−1 M̄ℓ∥10∗∥K· · ·

h1 h2 hℓ−2 hℓ−1

\

n

\m

\

n

• PRF secure if

• F is collision resistant

• F is right-input PRF secure

• PRF attack on sukMD implies either:

• PRF attack on final F , or

• a collision in hℓ−1 (which can be further reduced to collision in F )
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Black-Box Security Results (2/2)

Suffix Blinded Merkle-Damg̊ard (subMD)

IV F F · · · F F h

M1 M2 Mℓ−1 M̄ℓ∥10∗· · ·

h1 h2 hℓ−2

hℓ−1

↓
G

K
\

n

\m

\

n

• PRF secure if

• F is collision resistant

• F is related-key PRF secure

(under key relation G)

• Different from previous proof: related-key security of F

• δ-uniform and ε-universal G (e.g., ⊕) works
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Leakage Resilience

hin F hout

M

p

K[δ]

IV

0

leftr(P )

rightc(P )

flagZ

r r

c

p
0

leftr(P )

rightc(P )

flagZ

r r

c

p

. . .

. . .

` ` `

Non-Adaptive Leakage Resilience [DP10]

• Evaluations of F may leak: L(hin,M, hout)

• Adversary may influence the type of function L

• Strongest possible setting: it may choose L

• We assume that G is strongly protected [DM19]
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Leakage Resilience Security Results (1/2)

Suffix Keyed Merkle-Damg̊ard (sukMD)

IV F F · · · F F h
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\
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• Insecure under leakage

• Adversary may vary hℓ−1 or M̄ℓ

to learn different bits of K

• Precise attack in paper
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Leakage Resilience Security Results (2/2)

Zero-Padded Suffix Blinded Merkle-Damg̊ard (zsubMD)

IV F F · · · F F h

M1 M2 M̄ℓ∥10∗ 0m· · ·

h1 h2 hℓ−2

hℓ−1

↓
G

K
\

n

\m

\

n

• Difference: padding with m zeros 0m

• Leakage resilient PRF secure if

• F is collision resistant

• F is related-key leakage resilient PRF secure (under key relation G)
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Conclusion



Conclusion

In-Depth Analysis of Keying Merkle-Damg̊ard

black-box leakage resilient

Suffix keyed Merkle-Damg̊ard ✓ ✗

Suffix blinded Merkle-Damg̊ard ✓ with zero-pad

• Results directly extend to Merkle-Damg̊ard with permutation [HPY07]

Conditions

• F must be collision resistant and (somehow) PRF secure

• G must be “good enough” ←−−− how to instantiate?

• Key must be of size at most min{m,n}, otherwise it overflows

Thank you for your attention!
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