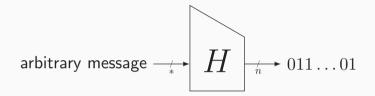


Keying Merkle-Damgård at the Suffix


Bart Mennink

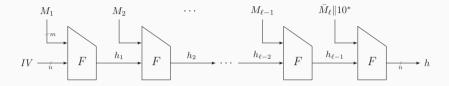
Radboud University

FSE 2025

March 19, 2025

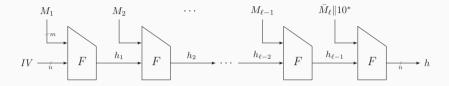
Introduction

- Function H from $\{0,1\}^*$ to $\{0,1\}^n$
 - Variable-length input
 - Classically fixed length output (but could be variable as well)


Merkle-Damgård [Dam89, Mer89]

Merkle-Damgård with Strengthening

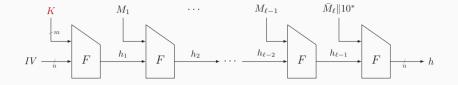
- Uses compression function F from n+m to n bits
- State initialized using ${\it IV}$
- Message M injectively padded and cut into m-bit blocks
- Consecutive evaluation of compression function ${\cal F}$


Merkle-Damgård [Dam89, Mer89]

Merkle-Damgård with Strengthening

- Uses compression function F from n+m to n bits
- State initialized using ${\it IV}$
- Message M injectively padded and cut into m-bit blocks
- Consecutive evaluation of compression function F
- Used, among others, in SHA-1/2 [Nat15]

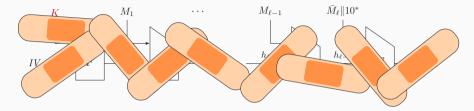
Merkle-Damgård [Dam89, Mer89]



Merkle-Damgård with Strengthening

- Uses compression function F from n+m to n bits
- State initialized using IV
- Message M injectively padded and cut into m-bit blocks
- Consecutive evaluation of compression function F
- Used, among others, in SHA-1/2 [Nat15]

What if we want to do message authentication?


Keying Merkle-Damgård – Length Extension Attack

Keying at the Prefix

- Vulnerable to the length extension attack [Tsu92, KR95]
 - Query tag $h \leftarrow H(\mathbf{K} \| M)$
 - Compute $h' \leftarrow F(h, X \| 10^*)$ as forgery for $M \| 10^* \| X$

Keying Merkle-Damgård – Length Extension Attack

Keying at the Prefix

- Vulnerable to the length extension attack [Tsu92, KR95]
 - Query tag $h \leftarrow H(\mathbf{K} \| M)$
 - Compute $h' \leftarrow F(h, X \| 10^*)$ as forgery for $M \| 10^* \| X$
- We need a band-aid

- Evolved into $HMAC(K, M) = H(K_{out} || H(K_{in} || M))$ [BCK96]
- HMAC: secure if F is a pseudorandom function (PRF) [BCK96, Bel06]

- Evolved into $HMAC(K, M) = H(K_{out} || H(K_{in} || M))$ [BCK96]
- HMAC: secure if F is a pseudorandom function (PRF) [BCK96, Bel06]
- Similar result applies to enveloped Merkle-Damgård [Yas07]

- Evolved into $HMAC(K, M) = H(K_{out} || H(K_{in} || M))$ [BCK96]
- HMAC: secure if F is a pseudorandom function (PRF) [BCK96, Bel06]
- Similar result applies to enveloped Merkle-Damgård [Yas07]

Suffix Keyed Merkle-Damgård: H(M||K) [Tsu92]

• Vulnerable to offline collision attack in $2^{n/2}$ evaluations of F [PvO95]

- Evolved into $HMAC(K, M) = H(K_{out} || H(K_{in} || M))$ [BCK96]
- HMAC: secure if F is a pseudorandom function (PRF) [BCK96, Bel06]
- Similar result applies to enveloped Merkle-Damgård [Yas07]

- Vulnerable to offline collision attack in $2^{n/2}$ evaluations of F [PvO95]
- Not much analysis since

- Novel approach:
 - Take H that is indifferentiable from random oracle [MRH04]
 - Sponge [BDPV07], Merkle-Damgård with permutation [HPY07], ...

- Novel approach:
 - Take H that is indifferentiable from random oracle [MRH04]
 - Sponge [BDPV07], Merkle-Damgård with permutation [HPY07], ...
- Generic security of keyed constructions follows by composition

- Novel approach:
 - Take H that is indifferentiable from random oracle [MRH04]
 - Sponge [BDPV07], Merkle-Damgård with permutation [HPY07], ...
- · Generic security of keyed constructions follows by composition

Example: Sponge [BDPV07]

- Sponge(K||M) works fine (see also KMAC [Joh16])
- Sponge(K||M||K) works fine
- $\mathsf{Sponge}(M\|K)$ works fine

- Novel approach:
 - Take H that is indifferentiable from random oracle [MRH04]
 - Sponge [BDPV07], Merkle-Damgård with permutation [HPY07], ...
- Generic security of keyed constructions follows by composition

Example: Sponge [BDPV07]

- Sponge(K||M) works fine (see also KMAC [Joh16])
- Sponge(K||M||K) works fine
- Sponge $(M \| K)$ works fine \leftarrow even achieves leakage resilience [DM19]

Prefix Keyed Merkle-Damgård

• Vulnerable to the length extension attack

Enveloped Merkle-Damgård and HMAC

- Both got various proofs [BCK96, Bel06, Yas07]
- All rely on PRF security of F

Prefix Keyed Merkle-Damgård

• Vulnerable to the length extension attack

Enveloped Merkle-Damgård and HMAC

- Both got various proofs [BCK96, Bel06, Yas07]
- All rely on PRF security of F

Suffix Keyed Merkle-Damgård?

Prefix Keyed Merkle-Damgård

• Vulnerable to the length extension attack

Enveloped Merkle-Damgård and HMAC

- Both got various proofs [BCK96, Bel06, Yas07]
- All rely on PRF security of F

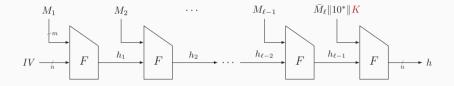
Suffix Keyed Merkle-Damgård?

• What security does it actually achieve (black-box, leakage resilience)?

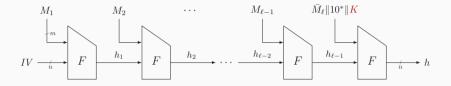
Prefix Keyed Merkle-Damgård

• Vulnerable to the length extension attack

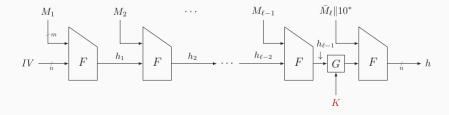
Enveloped Merkle-Damgård and HMAC


- Both got various proofs [BCK96, Bel06, Yas07]
- All rely on PRF security of F

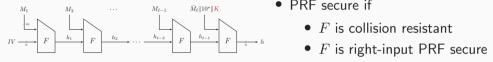
Suffix Keyed Merkle-Damgård?


- What security does it actually achieve (black-box, leakage resilience)?
- Can we prove security without using random oracle model for F?

Suffix Keyed and Suffix Blinded Merkle-Damgård

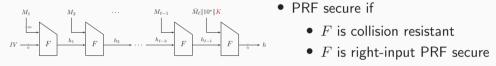

Suffix Keyed Merkle-Damgård (sukMD)

Suffix Keyed Merkle-Damgård (sukMD)



Suffix Blinded Merkle-Damgård (subMD)

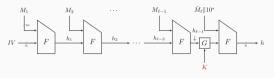
Black-Box Security Results (1/2)


Suffix Keyed Merkle-Damgård (sukMD)

- PRF secure if

Black-Box Security Results (1/2)

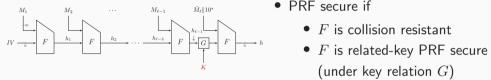
Suffix Keyed Merkle-Damgård (sukMD)



- PRF secure if

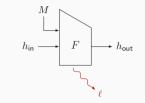
- PRF attack on sukMD implies either:
 - PRF attack on final F. or
 - a collision in $h_{\ell-1}$ (which can be further reduced to collision in F)

Black-Box Security Results (2/2)

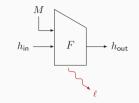

Suffix Blinded Merkle-Damgård (subMD)

- PRF secure if
- F is collision resistant
 F is related-key PRF secure (under key relation G)

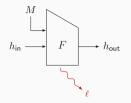
Black-Box Security Results (2/2)


Suffix Blinded Merkle-Damgård (subMD)

- PRF secure if

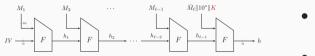

 - (under key relation G)

- Different from previous proof: related-key security of F
- δ -uniform and ε -universal G (e.g., \oplus) works


Non-Adaptive Leakage Resilience [DP10]

• Evaluations of F may leak: $L(h_{in}, M, h_{out})$

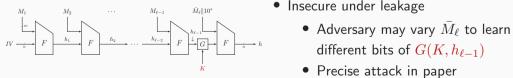
Non-Adaptive Leakage Resilience [DP10]


- Evaluations of F may leak: $L(h_{in}, M, h_{out})$
- Adversary may influence the type of function L
 - Strongest possible setting: it may choose L

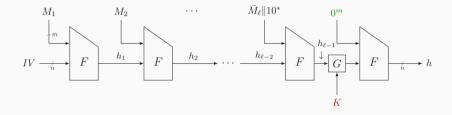
Non-Adaptive Leakage Resilience [DP10]

- Evaluations of F may leak: $L(h_{in}, M, h_{out})$
- Adversary may influence the type of function L
 - Strongest possible setting: it may choose L
- We assume that G is strongly protected [DM19]

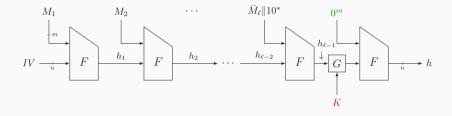
Suffix Keyed Merkle-Damgård (sukMD)


- Insecure under leakage
 - Adversary may vary $h_{\ell-1}$ or \bar{M}_{ℓ} to learn different bits of K
 - Precise attack in paper

Suffix Keyed Merkle-Damgård (sukMD)


- Insecure under leakage
 - Adversary may vary $h_{\ell-1}$ or \bar{M}_{ℓ}
 - Precise attack in paper

Suffix Blinded Merkle-Damgård (subMD)


- Insecure under leakage
 - different bits of $G(K, h_{\ell-1})$
 - Precise attack in paper

Zero-Padded Suffix Blinded Merkle-Damgård (zsubMD)

• Difference: padding with *m* zeros 0^{*m*}

Zero-Padded Suffix Blinded Merkle-Damgård (zsubMD)

- Difference: padding with *m* zeros 0^{*m*}
- Leakage resilient PRF secure if
 - F is collision resistant
 - F is related-key leakage resilient PRF secure (under key relation G)

In-Depth Analysis of Keying Merkle-Damgård

	black-box	leakage resilient
Suffix keyed Merkle-Damgård	✓	×
Suffix blinded Merkle-Damgård	 Image: A second s	with zero-pad

• Results directly extend to Merkle-Damgård with permutation [HPY07]

In-Depth Analysis of Keying Merkle-Damgård

	black-box	leakage resilient
Suffix keyed Merkle-Damgård	 Image: A second s	×
Suffix blinded Merkle-Damgård	 Image: A set of the set of the	with zero-pad

• Results directly extend to Merkle-Damgård with permutation [HPY07]

Conditions

- F must be collision resistant and (somehow) PRF secure
- *G* must be "good enough" \leftarrow how to instantiate?
- Key must be of size at most $\min\{m, n\}$, otherwise it overflows

In-Depth Analysis of Keying Merkle-Damgård

	black-box	leakage resilient
Suffix keyed Merkle-Damgård	 Image: A second s	×
Suffix blinded Merkle-Damgård	 Image: A set of the set of the	with zero-pad

• Results directly extend to Merkle-Damgård with permutation [HPY07]

Conditions

- F must be collision resistant and (somehow) PRF secure
- *G* must be "good enough" \leftarrow how to instantiate?
- Key must be of size at most $\min\{m, n\}$, otherwise it overflows

Thank you for your attention!

References i

- Mihir Bellare, Ran Canetti, and Hugo Krawczyk.

Keying Hash Functions for Message Authentication.

In Neal Koblitz, editor, Advances in Cryptology - CRYPTO '96, 16th Annual International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge functions.

Ecrypt Hash Workshop 2007, May 2007.

References ii

Mihir Bellare.

New Proofs for NMAC and HMAC: Security without collision-resistance.

In Cynthia Dwork, editor, *Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings*, volume 4117 of *Lecture Notes in Computer Science*, pages 602–619. Springer, 2006.

📄 Ivan Damgård.

A Design Principle for Hash Functions.

In Gilles Brassard, editor, Advances in Cryptology - CRYPTO '89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer, 1989.

References iii

- Christoph Dobraunig and Bart Mennink.
 Security of the Suffix Keyed Sponge.
 IACR Trans. Symmetric Cryptol., 2019(4):223–248, 2019.
- Yevgeniy Dodis and Krzysztof Pietrzak.

Leakage-Resilient Pseudorandom Functions and Side-Channel Attacks on Feistel Networks.

In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of Lecture Notes in Computer Science, pages 21–40. Springer, 2010.

References iv

- Shoichi Hirose, Je Hong Park, and Aaram Yun.
 - A Simple Variant of the Merkle-Damgård Scheme with a Permutation. In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages 113–129. Springer, 2007.
- John Kelsey, Shu-jen Chang, Ray Perlner.
 NIST Special Publication 800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and ParallelHash, December 2016.

References v

- Burt Kaliski and Matt Robshaw.
 Message Authentication with MD5.
 CryptoBytes, 1(1):5–8, 1995.
- Ralph C. Merkle.

One Way Hash Functions and DES.

In Gilles Brassard, editor, Advances in Cryptology - CRYPTO '89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer, 1989.

References vi

Ueli M. Maurer, Renato Renner, and Clemens Holenstein.

Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology.

In Moni Naor, editor, *Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings,* volume 2951 of *Lecture Notes in Computer Science*, pages 21–39. Springer, 2004.

National Institute of Standards and Technology.
 FIPS 180-4: Secure Hash Standard (SHS), August 2015.

References vii

Bart Preneel and Paul C. van Oorschot.

MDx-MAC and Building Fast MACs from Hash Functions.

In Don Coppersmith, editor, Advances in Cryptology - CRYPTO '95, 15th Annual International Cryptology Conference, Santa Barbara, California, USA, August 27-31, 1995, Proceedings, volume 963 of Lecture Notes in Computer Science, pages 1–14. Springer, 1995.

🔋 Gene Tsudik.

Message authentication with one-way hash functions.

Comput. Commun. Rev., 22(5):29-38, 1992.

References viii

🛯 Kan Yasuda.

Boosting Merkle-Damgård Hashing for Message Authentication.

In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory and Application of Cryptology and Information Security, Kuching, Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science, pages 216–231. Springer, 2007.