

SoK: Security of the Ascon Modes

Charlotte Lefevre, Bart Mennink

Radboud University

FSE 2025

March 17, 2025

Introduction

Authenticated Encryption

- Using key K:
 - Ciphertext C encrypts plaintext P
 - Tag T authenticates (N, A, P)

Authenticated Encryption

- Using key K:
 - Ciphertext C encrypts plaintext P
 - Tag T authenticates (N, A, P)
- Unwrapping needs to satisfy that
 - Plaintext disclosed if tag is correct
 - Plaintext is not leaked if tag is incorrect

Cryptographic Competitions

CAESAR Competition

- 2014-2019
- Call for authenticated encryption scheme
- 57 submissions (of which \approx 10 sponge/duplex-based)
- Ascon selected as winner in category lightweight applications

Cryptographic Competitions

CAESAR Competition

- 2014-2019
- Call for authenticated encryption scheme
- 57 submissions (of which pprox 10 sponge/duplex-based)
- Ascon selected as winner in category lightweight applications

NIST Lightweight Cryptography Competition

- 2019–2023
- Call for authenticated encryption scheme and, optionally, hash function
- 57 submissions (of which \approx 22 sponge/duplex-based)
- Ascon selected as winner

Ascon [DEMS21]

Ascon [DEMS21]

Authenticated Encryption

• Duplex-based but with additional key blindings

Ascon [DEMS21]

Authenticated Encryption

• Duplex-based but with additional key blindings

Hashing

- Sponge-based hashing and XOFing
- Only included in NIST Lightweight Cryptography submission

Ascon-AE

Variant of SpongeWrap [BDPV11]

- Outer permutation p and inner permutation q, both on b bits
 - r is the rate, c is the capacity (security parameter)

Variant of SpongeWrap [BDPV11]

- Outer permutation p and inner permutation q, both on b bits
 - r is the rate, c is the capacity (security parameter)
- Additional key blindings around "outer" permutations

Variant of SpongeWrap [BDPV11]

- Outer permutation p and inner permutation q, both on b bits
 - r is the rate, c is the capacity (security parameter)
- Additional key blindings around "outer" permutations
- Domain separation simplified and spilled-over into inner part

2011 Bertoni et al. [BDPV11] Duplex and SpongeWrap

2011 Bertoni et al. [BDPV11] Duplex and SpongeWrap

2015

Mennink et al. [MRV15] Full-state duplex and SpongeWrap

- 2011 Bertoni et al. [BDPV11] Duplex and SpongeWrap
- 2015 Mennink et al. [MRV15] Full-state duplex and SpongeWrap
 2017 Daemen et al. [DMV17] Generalized duplex

2011 Bertoni et al. [BDPV11] Duplex and SpongeWrap Mennink et al. [MRV15] 2015 Full-state duplex and SpongeWrap Daemen et al. [DMV17] 2017 Generalized duplex Dobraunig and Mennink [DM19] 2019 Leakage resilience of generalized duplex

2011 Bertoni et al. [BDPV11] Duplex and SpongeWrap Mennink et al. [MRV15] 2015 Full-state duplex and SpongeWrap Daemen et al. [DMV17] 2017 Generalized duplex Dobraunig and Mennink [DM19] 2019 Leakage resilience of generalized duplex 2023 Mennink [Men23] Duplex guide and MonkeySpongeWrap

2011	Bertoni et al. [BDPV11]
	Duplex and SpongeWrap
2014	Jovanovic et al. [JLM14]
	Security of NORX with claim on Ascon
2015	Mennink et al. [MRV15]
	Full-state duplex and SpongeWrap
2017	Daemen et al. [DMV17]
	Generalized duplex
2019	Dobraunig and Mennink [DM19]
	Leakage resilience of generalized duplex
2023	Mennink [Men23]
	Duplex guide and MonkeySpongeWrap

Bertoni et al. [BDPV11] 2011 Duplex and SpongeWrap Jovanovic et al. [JLM14] 2014 Security of NORX with claim on Ascon Mennink et al. [MRV15] 2015 Full-state duplex and SpongeWrap Daemen et al. [DMV17] 2017 Generalized duplex Dobraunig and Mennink [DM19] 2019 Leakage resilience of generalized duplex Mennink [Men23] 2023 Duplex guide and MonkeySpongeWrap

none of these results deals with additional key blindings

2023

• Chakraborty et al. [CDN23]

Single-user security in nonce-respecting setting

2023 • Chakraborty et al. [CDN23]

Single-user security in nonce-respecting setting

2024 Lefevre and Mennink [LM24]

Multi-user security in nonce-respecting and nonce-misuse setting

2023 Chakraborty et al. [CDN23] Single-user security in nonce-respecting setting 2024 Lefevre and Mennink [LM24] Multi-user security in nonce-respecting and nonce-misuse setting

2024 • Chakraborty et al. [CDN24]

Extended [CDN23] to multi-user security and nonce-misuse setting

Guo et al. [GPPS19] Multi-user security in nonce-misuse resilience setting
Chakraborty et al. [CDN23]
Single-user security in nonce-respecting setting
Lefevre and Mennink [LM24]
Multi-user security in nonce-respecting and nonce-misuse setting
Chakraborty et al. [CDN24] Extended [CDN23] to multi-user security and nonce-misuse setting

2019	Guo et al. [GPPS19]
	Multi-user security in nonce-misuse resilience setting
	Multi-user security under leakage resilience
2023	Chakraborty et al. [CDN23]
	Single-user security in nonce-respecting setting
2024	Lefevre and Mennink [LM24]
	Multi-user security in nonce-respecting and nonce-misuse setting
2024	Chakraborty et al. [CDN24]
	Extended [CDN23] to multi-user security and nonce-misuse setting

2019	Guo et al. [GPPS19]
	Multi-user security in nonce-misuse resilience setting
	Multi-user security under leakage resilience
2023	Chakraborty et al. [CDN23]
	Single-user security in nonce-respecting setting
2024	Lefevre and Mennink [LM24]
	Multi-user security in nonce-respecting and nonce-misuse setting
	Multi-user security under state recovery
2024	Chakraborty et al. [CDN24]
	Extended [CDN23] to multi-user security and nonce-misuse setting

2019	ł.	Guo et al. [GPPS19] Only "proof sketches"
		Multi-user security in nonce-misuse resilience setting
		Multi-user security under leakage resilience contain gaps [LM24]
2023	ł.	Chakraborty et al. [CDN23]
		Single-user security in nonce-respecting setting
2024	ł.	Lefevre and Mennink [LM24]
		Multi-user security in nonce-respecting and nonce-misuse setting
		Multi-user security under state recovery
2024	ł.	Chakraborty et al. [CDN24]
		Extended [CDN23] to multi-user security and nonce-misuse setting

2019	Guo et al. [GPPS19]
	Multi-user security in nonce-misuse resilience setting
	Multi-user security under leakage resilience from contain gaps [LM24]
2023	Chakraborty et al. [CDN23]
	Single-user security in nonce-respecting setting
2024	Lefevre and Mennink [LM24]
	Multi-user security in nonce-respecting and nonce-misuse setting
	Multi-user security under state recovery
2024	Chakraborty et al. [CDN24]
	Extended [CDN23] to multi-user security and nonce-misuse setting

2019		Guo et al. [GPPS19]	only "proof sketches"
		Multi-user security in nonce-misuse resilience setting Multi-user security under leakage resilience	— contain gaps [LM24]
2023		Chakraborty et al. [CDN23] Single-user security in nonce-respecting setting	equal versus
2024		Lefevre and Mennink [LM24]	independent p, q
		Multi-user security in nonce-respecting and nonce-misuse set	ting
		Multi-user security under state recovery	
2024	•	Chakraborty et al. [CDN24]	
		Extended [CDN23] to multi-user security and nonce-misuse s	etting 🛶
			contains mistake (this work)

2019		Guo et al. [GPPS19]	/	only "proof sketches"
		Multi-user security in nonce-misuse resilience setting	}=	contain gang [LM24]
		Multi-user security under leakage resilience	J	contain gaps [LM24]
2023	•	Chakraborty et al. [CDN23]		
		Single-user security in nonce-respecting setting	>>	$_$ equal versus independent $p q$
2024	•	Lefevre and Mennink [LM24]		macpenaent p,q
		Multi-user security in nonce-respecting and nonce-mis	use setting	5
		Multi-user security under state recovery		
2024		Chakraborty et al. [CDN24]		
		Extended [CDN23] to multi-user security and nonce-m	nisuse sett	ing 🛶
2025	Ļ	Lefevre and Mennink (this work)		
		Let's clean this up!		contains mistake (this work)

Our Contribution

- Three flavors of conventional security:
 - Nonce-respecting security [BN00]
 - **2** Nonce-misuse resistance [RS06]
 - **3** Nonce-misuse resilience [ADL17]

Our Contribution

- Three flavors of conventional security:
 - Nonce-respecting security [BN00]
 - **2** Nonce-misuse resistance [RS06]
 - 3 Nonce-misuse resilience [ADL17]
- Three flavors of leaky security:
 - Bounded leakage resilience in leveled implementation [DP08, PSV15]
 - **2** State-recovery security [LM24]
 - **③** Security under release of unverified plaintext [ABL⁺14]

Our Contribution

- Three flavors of conventional security:
 - Nonce-respecting security [BN00]
 - **2** Nonce-misuse resistance [RS06]
 - 3 Nonce-misuse resilience [ADL17]
- Three flavors of leaky security:
 - Bounded leakage resilience in leveled implementation [DP08, PSV15]
 - **2** State-recovery security [LM24]
 - **③** Security under release of unverified plaintext [ABL⁺14]
- We categorize existing lower and upper bounds
- We derive new security bounds and matching attacks where needed
Our Contribution

Complete Overview of Generic Security of the Ascon-AE Mode

- Three flavors of conventional security:
 - Nonce-respecting security [BN00]
 - **2** Nonce-misuse resistance [RS06]
 - 3 Nonce-misuse resilience [ADL17]
- Three flavors of leaky security:
 - Bounded leakage resilience in leveled implementation [DP08, PSV15]
 - **2** State-recovery security [LM24]
 - **③** Security under release of unverified plaintext [ABL⁺14]
- We categorize existing lower and upper bounds
- We derive new security bounds and matching attacks where needed
- All results assume that p = q is a random permutation

nonce-respecting security

confidentiality

authenticity

nonce-respecting security	
confidentiality	$\frac{\mu \mathcal{N}}{2^k} + \frac{\mathcal{M} \mathcal{N}}{2^b} + \frac{\mathcal{N}}{2^c}$
authenticity	$\frac{Q_D}{2^t} + \frac{\mu \mathcal{N}}{2^k} + \frac{\mathcal{M} \mathcal{N}}{2^b} + \frac{\mathcal{N}}{2^c}$

 $\begin{array}{ll} \mu & \text{number of users} \\ Q_E/\mathcal{M}_E & \text{encryption queries/complexity} \\ Q_D/\mathcal{M}_D & \text{decryption queries/complexity} \\ Q/\mathcal{M} & \text{construction queries/complexity} \\ \mathcal{N} & \text{permutation queries} \end{array}$

- Q/\mathcal{M} construction queries/complexity
- \mathcal{N} permutation queries

 Q_E/\mathcal{M}_E encryption gueries/complexity Q_D/\mathcal{M}_D decryption queries/complexity Q/Mconstruction gueries/complexity N

permutation gueries

nonce-misuse resistance	
confidentiality	1
authenticity	$(\star) + \frac{MN}{2^c}$

μ	number of users
Q_E / M_E	encryption queries/complexity
Q_D/M_D	decryption queries/complexity
Q/M	construction queries/complexity
\mathcal{N}	permutation queries

1	analysis of [GPPS19] incomplete	1
(new: security bounds	1
1	and matching attacks	į.
	· · · · · · · · · · · · · · · · · · ·	

nonce-misuse resilience	
confidentiality	$(\star) + \frac{M_E N}{2^c}$
authenticity	$(\star) + \frac{MN}{2^c}$

nonce-misuse resistance	
confidentiality	1
authenticity	$(\star) + \frac{MN}{2^c}$

	number of users
$_E/M_E$	encryption queries/complexity
$_D/\mathcal{M}_D$	decryption queries/complexity
/M	construction queries/complexity
	permutation queries

nonce-misuse resilience		
confidentiality	$(\star) + \frac{M_E N}{2^c}$	¢
authenticity	$(\star) + \frac{MN}{2^c}$	

nonce-misuse r	esistance
confidentiality	1
authenticity	$(\star) + \frac{MN}{2^c}$

QQQ Ň

μ

 $\begin{array}{ll} \mu & \mbox{number of users} \\ Q_E/\mathcal{M}_E & \mbox{ercyption queries/complexity} \\ Q_D/\mathcal{M}_D & \mbox{decryption queries/complexity} \end{array}$

 Q/\mathcal{M} construction queries/complexity

N permutation queries

nonce-misuse	resilience	
confidentiality	$(\star) + \frac{\mathcal{M}_E \mathcal{N}}{2^c}$	
authenticity	$(\star) + \frac{MN}{2^c}$	

nonce-misuse re	sistance
confidentiality	1
authenticity	$(\star) + \frac{MN}{2^c}$

leakage	resilience,	no	leakage
confidentiality			
authenticity			

leakage resilience, limited confidentiality authenticity

leakage resilience, unlimited
confidentiality
authenticity

 Q_E/\mathcal{M}_E encryption queries/complexity Q_D/\mathcal{M}_D decryption queries/complexity Q/\mathcal{M} construction queries/complexity \mathcal{N} permutation queries

	Ŷ		
leakage i	resilience,	no	leakage
confidentiality			$(\star) + \frac{\mathcal{M}_E \mathcal{N}}{2^c}$
authenticity			$(\star) + \frac{MN}{2^c}$

leakage resilience, limited	
confidentiality	
authenticity	

leakage resilience, unlimited
confidentiality
authenticity

nonce-misuse re	sistance
confidentiality	1
authenticity	$(\star) + \frac{MN}{2^c}$

\uparrow		
leakage resilience, no leakage		
confidentiality	$(\star) + \frac{\mathcal{M}_E \mathcal{N}}{2^c}$	
authenticity	$(\star) + \frac{MN}{2^c}$	

leakag	e resilience, unlimited
confidentiality	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{\mathcal{Q}\mathcal{N}}{2^k}\right\}$
authenticity	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k}\right\}$

nonce-misuse i	resistance
confidentiality	1
authenticity	$(\star) + \frac{MN}{2^c}$

	leakage	resilience,	limited
confident	iality		
authentic	ity		

leakage resilience, no leakage

confidentiality

authenticity

 $(\star) + \frac{\mathcal{M}_E \mathcal{N}}{2^c}$

 $(\star) + \frac{MN}{2c}$

nonce-misuse resistance	
confidentiality	1
authenticity	$(\star) + \frac{MN}{2^c}$

II		
leakage resilience, limited		
confidentiality	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{\mathcal{Q}\mathcal{N}}{2^k}\right\}$	
authenticity	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{\mathcal{Q}\mathcal{N}}{2^k}\right\}$	
	↑ ∥o	

≙

	↓	
leakage resilience, unlimited		
confidentiality	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{\mathcal{Q}\mathcal{N}}{2^k}\right\}$	
authenticity	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k}\right\}$	

leakage resilience, no leakage

 $(\star) + \frac{\mathcal{M}_E \mathcal{N}}{2^c}$

 $(\star) + \frac{MN}{2c}$

 $\left\{ \frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k} \right\}$ $\left\{ \frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k} \right\}$

nonce-misuse resistance		
confidentiality	1	
authenticity	$(\star) + \frac{MN}{2^c}$	

	leaka	ge resilience, limited
	confidentiality	$(\star) + \frac{\mathcal{MN}}{2^c} + \min\left\{\frac{\mathcal{MN}}{2}\right\}$
41	authenticity	$(\star) + \frac{\mathcal{MN}}{2^c} + \min\left\{\frac{\mathcal{MN}}{2}\right\}$
		∯ ↓o

confidentiality

authenticity

leakage resilience, unlimited		
confidentiality	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k}\right\}$	
authenticity	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{\mathcal{Q}\mathcal{N}}{2^k}\right\}$	

state-recovery security	
confidentiality	1
authenticity	$(\star) + \frac{\mathcal{N}^2}{2^c}$

	v
leakage resilie	nce, no leakage
confidentiality	$(\star) + \frac{\mathcal{M}_E \mathcal{N}}{2^c}$
authenticity	$(\star) + \frac{\mathcal{MN}}{2^c}$

leakage resilience, limited			
confidentiality	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k}\right\}$		
authenticity	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k}\right\}$		
↑ ↓o			
leakage resilience, unlimited			
confidentiality	$(\star) + \frac{\mathcal{M}\mathcal{N}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k}\right\}$		
authenticity	$(\star) + \frac{\mathcal{MN}}{2^c} + \min\left\{\frac{\mathcal{N}^2}{2^c}, \frac{Q\mathcal{N}}{2^k}\right\}$		

	nonce-misuse resistance	
;	confidentiality	1
	authenticity	$(\star) + \frac{MN}{2^c}$

RUP security	
confidentiality	1
authenticity	$(\star) + \frac{MN}{2^c}$

setting	confidentiality as long as	authenticity as long as
nonce-respecting		
nonce-misuse resilience		
nonce-misuse resistance		
state-recovery security		

setting	confidentiality as long as	authenticity as long as
nonce-respecting	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}$	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}$, $Q_D \ll 2^t$
nonce-misuse resilience		
nonce-misuse resistance		
state-recovery security		

Simplified Numerical Interpretation

setting	confidentiality as long as	authenticity as long as
nonce-respecting	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}$	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}, Q_D \ll 2^t$
nonce-misuse resilience	$\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}$	$\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}, Q_D \ll 2^t$
nonce-misuse resistance		
state-recovery security		

setting	confidentiality as long as	authenticity as long as
nonce-respecting nonce-misuse resilience nonce-misuse resistance state-recovery security	$ \mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\} $ $ \mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\} $	$ \begin{split} \mathcal{N} &\ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}, Q_D \ll 2^t \\ \mathcal{N} &\ll \min\{2^k/\mu, 2^c/\mathcal{M}\}, Q_D \ll 2^t \\ \mathcal{N} &\ll \min\{2^k/\mu, 2^c/\mathcal{M}\}, Q_D \ll 2^t \end{split} $

Simplified Numerical Interpretation

setting	confidentiality as long as	authenticity as long as
nonce-respecting	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}$	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}, Q_D \ll 2^t$
nonce-misuse resilience	$\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}$	$\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}, Q_D \ll 2^t$
nonce-misuse resistance	_	$\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}, Q_D \ll 2^t$
state-recovery security	—	$\mathcal{N} \ll \min\{2^k/\mu, 2^{c/2}\}, \qquad Q_D \ll 2^t$

setting	confidentiality as long as	authenticity as long as
nonce-respecting nonce-misuse resilience	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}$ $\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}$	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}, Q_D \ll 2^t$ $\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}, Q_D \ll 2^t$
nonce-misuse resistance	_	$\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}, Q_D \ll 2^t$
state-recovery security	—	$\mathcal{N} \ll \min\{2^k/\mu, 2^{c/2}\}, \qquad Q_D \ll 2^t$

Application to Ascon-AEAD Parameters

•
$$(k, b, c, r, t) = \begin{cases} (128, 320, 256, 64, 128) \text{ for Ascon-128} \\ (128, 320, 192, 128, 128) \text{ for Ascon-128a} \\ (160, 320, 256, 64, 128) \text{ for Ascon-80pq} \end{cases}$$

• Assume online complexity of $Q, \mathcal{M} \ll 2^{64}$ (could be taken higher)

setting	confidentiality as long as	authenticity as long as
nonce-respecting	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}$ $\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\}$	$\mathcal{N} \ll \min\{2^k/\mu, 2^b/\mathcal{M}, 2^c\}, Q_D \ll 2^t$ $\mathcal{N} \ll \min\{2^k/\mu, 2^c/\mathcal{M}\} \qquad Q_D \ll 2^t$
nonce-misuse resistance	$\mathcal{N} \ll \min\{2 / \mu, 2 / \mathcal{N}\}$	$\mathcal{N} \ll \min\{2^{\prime}/\mu, 2^{\prime}/\mathcal{M}\}, Q_D \ll 2^{t}$ $\mathcal{N} \ll \min\{2^{k}/\mu, 2^{c}/\mathcal{M}\}, Q_D \ll 2^{t}$
state-recovery security	—	$\mathcal{N} \ll \min\{2^k/\mu, 2^{c/2}\}, \qquad Q_D \ll 2^t$

Application to Ascon-AEAD Parameters

- $(k, b, c, r, t) = \begin{cases} (128, 320, 256, 64, 128) \text{ for Ascon-128} \\ (128, 320, 192, 128, 128) \text{ for Ascon-128a} \\ (160, 320, 256, 64, 128) \text{ for Ascon-80pq} \end{cases}$
- Assume online complexity of $Q, \mathcal{M} \ll 2^{64}$ (could be taken higher)
- Generic security as long as $\mathcal{N} \ll 2^{128}/\mu$ (exceptions: $\mathcal{N} \ll 2^{160}/\mu$ for Ascon-80pg; $\mathcal{N} \ll 2^{96}$ for Ascon-128a under state-recovery)

Ascon-Hash/Ascon-(C)XOF

Ascon-Hash/Ascon-(C)XOF

Ascon-Hash/Ascon-(C)XOF

Sponge [BDPV07]

- Permutation p on b bits
 - r is the rate
 - c is the capacity (security parameter)
- Output of ν bits (256 for Ascon-Hash, unlimited for the XOFs)

• Sponge indifferentiable from random up to bound $\mathcal{N}^2/2^c$ [BDPV08]

- Sponge indifferentiable from random up to bound $\mathcal{N}^2/2^c$ [BDPV08]
- Security of sponge truncated to ν bits against classical attacks [AMP10]:

Collision resistance: Second preimage resistance: Preimage resistance: $\begin{aligned} &\mathcal{N}^2/2^c + \mathcal{N}^2/2^{\nu+1} \\ &\mathcal{N}^2/2^c + \mathcal{N}/2^{\nu} \\ &\mathcal{N}^2/2^c + \mathcal{N}/2^{\nu} \end{aligned}$

- Sponge indifferentiable from random up to bound $\mathcal{N}^2/2^c$ [BDPV08]
- Security of sponge truncated to ν bits against classical attacks [AMP10]:

- Sponge indifferentiable from random up to bound $\mathcal{N}^2/2^c$ [BDPV08]
- Security of sponge truncated to ν bits against classical attacks [AMP10]:

• Attacks already described in [BDPV07]

- Sponge indifferentiable from random up to bound $\mathcal{N}^2/2^c$ [BDPV08]
- Security of sponge truncated to ν bits against classical attacks [AMP10]:

• Attacks already described in [BDPV07]

- Sponge indifferentiable from random up to bound $\mathcal{N}^2/2^c$ [BDPV08]
- Security of sponge truncated to ν bits against classical attacks [AMP10]:

- Attacks already described in [BDPV07]
- Tightened preimage resistance bound by Lefevre and Mennink [LM22]:

Preimage resistance: $\min \left\{ \mathcal{N}/2^{\nu-r}, \mathcal{N}/2^{c/2} \right\} + \mathcal{N}/2^{\nu} \leftarrow \text{attack in } \min \{2^{\nu-r}+2^{c/2}, 2^{\nu}\}$

•
$$(b, c, r, \nu) = \begin{cases} (320, 256, 64, 256) \text{ for Ascon-Hash} \\ (320, 256, 64, \infty) \text{ for Ascon-XOF} \\ (320, 256, 64, \infty) \text{ for Ascon-CXOF} \end{cases}$$

•
$$(b, c, r, \nu) = \begin{cases} (320, 256, 64, 256) \text{ for Ascon-Hash} \\ (320, 256, 64, \infty) \text{ for Ascon-XOF} \\ (320, 256, 64, \infty) \text{ for Ascon-CXOF} \end{cases}$$

• Generic collision resistance as long as

 $\mathcal{N} \ll \min\{2^{128}, 2^{\nu/2}\}$

•
$$(b, c, r, \nu) = \begin{cases} (320, 256, 64, 256) \text{ for Ascon-Hash} \\ (320, 256, 64, \infty) \text{ for Ascon-XOF} \\ (320, 256, 64, \infty) \text{ for Ascon-CXOF} \end{cases}$$

- Generic collision resistance as long as $\mathcal{N} \ll \min\{2^{128}, 2^{\nu/2}\}$
- Generic second preimage resistance as long as $\mathcal{N} \ll \min\{2^{128}, 2^{\nu}\}$

•
$$(b, c, r, \nu) = \begin{cases} (320, 256, 64, 256) \text{ for Ascon-Hash} \\ (320, 256, 64, \infty) \text{ for Ascon-XOF} \\ (320, 256, 64, \infty) \text{ for Ascon-CXOF} \end{cases}$$

- Generic collision resistance as long as $\mathcal{N} \ll \min\{2^{128}, 2^{\nu/2}\}$
- Generic second preimage resistance as long as $\mathcal{N} \ll \min\{2^{128}, 2^{\nu}\}$
- Generic preimage resistance as long as $\mathcal{N} \ll \min\{2^{192}, 2^{\nu}\}$

Bonus: Ascon-PRF

Bonus: Ascon-PRF [DEMS24]

Variant of Full-State Keyed Sponge [BDPV12, MRV15]

- Permutation p on b bits
 - r is the rate, c is the capacity (security parameter)

Bonus: Ascon-PRF [DEMS24]

Variant of Full-State Keyed Sponge [BDPV12, MRV15]

- Permutation p on b bits
 - r is the rate, c is the capacity (security parameter)
- Domain separation to avoid squeezed tags being misused in absorption
2015

Mennink et al. [MRV15] Security of FSKS but with proof-inherent "multiplicity term"

2015

Mennink et al. [MRV15]

Security of FSKS but with proof-inherent "multiplicity term"

2017 Daemen et al. [DMV17]

Generalized duplex Applies to Ascon-PRF but with non-tight term $\mathcal{MN}/2^c$

```
2015 Mennink et al. [MRV15]
Security of FSKS but with proof-inherent "multiplicity term"
2017 Daemen et al. [DMV17]
Generalized duplex
Applies to Ascon-PRF but with non-tight term MN/2<sup>c</sup>
2019 Dobraunig and Mennink [DM19]
Leakage resilience of generalized duplex
Applies to Ascon-PRF
```

2015	Mennink et al. [MRV15]
	Security of FSKS but with proof-inherent "multiplicity term"
2017	Daemen et al. [DMV17]
	Generalized duplex
	Applies to Ascon-PRF but with non-tight term $\mathcal{MN}/2^c$
2019	Dobraunig and Mennink [DM19]
	Leakage resilience of generalized duplex
	Applies to Ascon-PRF
2023	Mennink [Men23]
	Duplex guide and improved analysis of Ascon-PRF

2015	ł.	Mennink et al. [MRV15]
		Security of FSKS but with proof-inherent "multiplicity term"
2017	ł	Daemen et al. [DMV17]
		Generalized duplex
		Applies to Ascon-PRF but with non-tight term $\mathcal{MN}/2^c$
2019	ł.	Dobraunig and Mennink [DM19]
		Leakage resilience of generalized duplex
		Applies to Ascon-PRF
2023	ł.	Mennink [Men23]
		Duplex guide and improved analysis of Ascon-PRF
2025	ł.	Lefevre and Mennink (this work)
		Adapt bound of [Men23] with improved multicollision strategy
	-	

Generic Security of Ascon-PRF (2/2)

Generic Security Bound

• Ascon-PRF is multi-user secure up to bound $\frac{\mu N}{2^k} + \frac{N}{2^{c'}} + \frac{MN}{2^b}$

Generic Security of Ascon-PRF (2/2)

Generic Security Bound

• Ascon-PRF is multi-user secure up to bound $\frac{\mu N}{2^k} + \frac{N}{2^{c'}} + \frac{MN}{2^b}$

Application to Ascon-PRF Parameters

- $(k, b, c, r, c', r', t) = (128, 320, 64, 256, 192, 128, \infty)$
- Assume online complexity of $\mathcal{M}\ll 2^{64}$ (could be taken higher)

Generic Security of Ascon-PRF (2/2)

Generic Security Bound

• Ascon-PRF is multi-user secure up to bound $\frac{\mu N}{2^k} + \frac{N}{2^{c'}} + \frac{MN}{2^b}$

Application to Ascon-PRF Parameters

- $(k, b, c, r, c', r', t) = (128, 320, 64, 256, 192, 128, \infty)$
- Assume online complexity of $\mathcal{M}\ll 2^{64}$ (could be taken higher)
- Generic security as long as $\mathcal{N}\ll 2^{128}/\mu$

More in Paper: https://eprint.iacr.org/2024/1969

- Exact security models, settings, and discussions
- Discussion on multicollision bounding, assumption on p, q, \ldots
- All proofs and generic attacks

More in Paper: https://eprint.iacr.org/2024/1969

- Exact security models, settings, and discussions
- Discussion on multicollision bounding, assumption on p, q, \ldots
- All proofs and generic attacks

What We Did Not Cover

- Related-key security and security for arbitrary key distributions
- Security under fault attacks
- Variant with nonce masking [DM24]
- Committing security \longrightarrow next talk!

More in Paper: https://eprint.iacr.org/2024/1969

- Exact security models, settings, and discussions
- Discussion on multicollision bounding, assumption on p, q, \ldots
- All proofs and generic attacks

What We Did Not Cover

- Related-key security and security for arbitrary key distributions
- Security under fault attacks
- Variant with nonce masking [DM24]
- Committing security \longrightarrow next talk!

hank you for you

References i

Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan Yasuda.

How to Securely Release Unverified Plaintext in Authenticated Encryption. In Palash Sarkar and Tetsu Iwata, editors, *Advances in Cryptology - ASIACRYPT* 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages 105–125. Springer, 2014.

References ii

Tomer Ashur, Orr Dunkelman, and Atul Luykx.

Boosting Authenticated Encryption Robustness with Minimal Modifications.

In Jonathan Katz and Hovav Shacham, editors, *Advances in Cryptology* -*CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III,* volume 10403 of *Lecture Notes in Computer Science*, pages 3–33. Springer, 2017.

References iii

Elena Andreeva, Bart Mennink, and Bart Preneel.

Security Reductions of the Second Round SHA-3 Candidates.

In Mike Burmester, Gene Tsudik, Spyros S. Magliveras, and Ivana Ilic, editors, Information Security - 13th International Conference, ISC 2010, Boca Raton, FL, USA, October 25-28, 2010, Revised Selected Papers, volume 6531 of Lecture Notes in Computer Science, pages 39–53. Springer, 2010.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. **Sponge Functions.**

Ecrypt Hash Workshop 2007, May 2007.

References iv

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the Indifferentiability of the Sponge Construction.

In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

 Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
 Duplexing the Sponge: Single-Pass Authenticated Encryption and Other Applications.

In Ali Miri and Serge Vaudenay, editors, *Selected Areas in Cryptography - 18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12, 2011,*

Revised Selected Papers, volume 7118 of *Lecture Notes in Computer Science*, pages 320–337. Springer, 2011.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. **Permutation-based encryption, authentication and authenticated encryption.**

Directions in Authenticated Ciphers, July 2012.

Mihir Bellare and Chanathip Namprempre.

Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm.

In Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory and Application of Cryptology and

References vi

Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume 1976 of *Lecture Notes in Computer Science*, pages 531–545. Springer, 2000.

Bishwajit Chakraborty, Chandranan Dhar, and Mridul Nandi. Exact Security Analysis of ASCON.

In Jian Guo and Ron Steinfeld, editors, *Advances in Cryptology - ASIACRYPT* 2023 - 29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part III, volume 14440 of Lecture Notes in Computer Science, pages 346–369. Springer, 2023.

References vii

- Bishwajit Chakraborty, Chandranan Dhar, and Mridul Nandi.
 Tight Multi-user Security of Ascon and Its Large Key Extension.
 In Tianqing Zhu and Yannan Li, editors, Information Security and Privacy 29th Australasian Conference, ACISP 2024, Sydney, NSW, Australia, July 15-17, 2024, Proceedings, Part I, volume 14895 of Lecture Notes in Computer Science, pages 57–76. Springer, 2024.
- Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
 Ascon v1.2: Lightweight Authenticated Encryption and Hashing.
 J. Cryptol., 34(3):33, 2021.

References viii

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon MAC, PRF, and Short-Input PRF - Lightweight, Fast, and Efficient Pseudorandom Functions.

In Elisabeth Oswald, editor, *Topics in Cryptology - CT-RSA 2024 - Cryptographers' Track at the RSA Conference 2024, San Francisco, CA, USA, May 6-9, 2024, Proceedings*, volume 14643 of *Lecture Notes in Computer Science*, pages 381–403. Springer, 2024.

References ix

Christoph Dobraunig and Bart Mennink.

Leakage Resilience of the Duplex Construction.

In Steven D. Galbraith and Shiho Moriai, editors, *Advances in Cryptology* -*ASIACRYPT 2019 - 25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part III*, volume 11923 of *Lecture Notes in Computer Science*, pages 225–255. Springer, 2019. Christoph Dobraunig and Bart Mennink.

Generalized Initialization of the Duplex Construction.

In Christina Pöpper and Lejla Batina, editors, *Applied Cryptography and Network Security - 22nd International Conference, ACNS 2024, Abu Dhabi, United Arab Emirates, March 5-8, 2024, Proceedings, Part II,* volume 14584 of *Lecture Notes in Computer Science*, pages 460–484. Springer, 2024.

 Joan Daemen, Bart Mennink, and Gilles Van Assche.
 Full-State Keyed Duplex with Built-In Multi-user Support.
 In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,

References xi

Proceedings, Part II, volume 10625 of *Lecture Notes in Computer Science*, pages 606–637. Springer, 2017.

Stefan Dziembowski and Krzysztof Pietrzak.

Leakage-Resilient Cryptography.

In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 293–302. IEEE Computer Society, 2008.

 Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
 Towards Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge Construction.

Cryptology ePrint Archive, Report 2019/193, 2019. http://eprint.iacr.org/2019/193 (full version of [GPPS20]).

References xii

Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert. Towards Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge Construction.

IACR Trans. Symmetric Cryptol., 2020(1):6–42, 2020.

Philipp Jovanovic, Atul Luykx, and Bart Mennink.
 Beyond 2^{c/2} Security in Sponge-Based Authenticated Encryption Modes.
 In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
 Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages 85–104. Springer, 2014.

References xiii

Charlotte Lefevre and Bart Mennink.

Tight Preimage Resistance of the Sponge Construction.

In Yevgeniy Dodis and Thomas Shrimpton, editors, *Advances in Cryptology* -*CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV*, volume 13510 of *Lecture Notes in Computer Science*, pages 185–204. Springer, 2022.

Charlotte Lefevre and Bart Mennink.

Generic Security of the Ascon Mode: On the Power of Key Blinding. In Maria Eichlseder and Sébastien Gambs, editors, *Selected Areas in Cryptography, 31st International Workshop, SAC 2024, Montréal, Quebec, Canada, August 26-27, Revised Selected Papers*, Lecture Notes in Computer Science. Springer, 2024.

to appear.

References xiv

Bart Mennink.

Understanding the Duplex and Its Security.

IACR Trans. Symmetric Cryptol., 2023(2):1–46, 2023.

 Bart Mennink, Reza Reyhanitabar, and Damian Vizár.
 Security of Full-State Keyed Sponge and Duplex: Applications to Authenticated Encryption.

In Tetsu Iwata and Jung Hee Cheon, editors, *Advances in Cryptology -ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, November 29 -December 3, 2015, Proceedings, Part II,* volume 9453 of *Lecture Notes in Computer Science*, pages 465–489. Springer, 2015.

References xv

Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-Resilient Authentication and Encryption from Symmetric Cryptographic Primitives.

In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, *Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October 12-16, 2015*, pages 96–108. ACM, 2015.

Phillip Rogaway and Thomas Shrimpton.

A Provable-Security Treatment of the Key-Wrap Problem.

In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science, pages 373–390. Springer, 2006.