
Chosen-prefix Collisions on AES-like Hashing

Shiyao Chen1, Xiaoyang Dong2, Jian Guo1, Tianyu Zhang1

1Nanyang Technological University, Singapore
2Tsinghua University, China

March 19, 2025 @ Rome, Italy

Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

2 / 24

Hash functions

A hash function maps an arbitrary-length message a to fixed-length hash value.

Hash functions need to be resistant to collision attacks.

IV

m1 m2

ff f
y1 y2

y!

m!

Fig. 5. The plain Merkle-Damg̊ard Construction

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.
We have already mentioned in introduction a counter-example based on

MAC. Namely, we showed that MAC(k,m) = H(k‖m) provides a secure MAC
in the random oracle model for H, but is completely insecure when H is replaced
by the previous Merkle-Damg̊ard construction MDf , because of the message ex-
tension attack. In the following, we give a more direct refutation based on the
definition of indifferentiability, using again the message extension attack.

We consider only one-block messages or two-block messages. For such mes-
sages, we have that MDf (m1) = f(0,m1) and MDf (m1,m2) = f(f(0,m1),m2).
We build a distinguisher that can fool any simulator as follows. The distinguisher
first makes a MDf -query for m1 and receives u = MDf (m1). Then it makes a
query for v = f(u,m2) to random oracle f . The distinguisher then makes a
MDf -query for (m1,m2) and eventually checks that v = MDf (m1,m2); in this
case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher always
outputs 1 when interacting with MDf and f . However, when the distinguisher
interacts with H and S (who must simulate f), we observe that S has no informa-
tion about m1 (because S does not see the distinguisher’s H-queries). Therefore,
the simulator cannot answer v such that v = H(m1,m2), except with negligible
probability.

3.3 Prefix-free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction are
guaranteed to be prefix-free, then the plain MD construction is secure. Namely,
prefix-free encoding enables to eliminate the message expansion attack described
previously. This “fix” is similar to the fix for the CBC-MAC [3], which is also
insecure in its plain form. Thus, the plain MD construction can be safely used
for any application of the random oracle H where the length of the inputs is
fixed or where one uses domain separation (e.g., prepending 0, 1, . . . to differen-
tiate between inputs from different domains). For other applications, one must
specifically ensure that prefix-freeness is satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable in-
jective function g : {0, 1}∗ → ({0, 1}κ)∗ such that for all x #= y, g(x) is not a
prefix of g(y). Moreover, it must be easy to recover x given only g(x). We provide

Figure: Merkle-Damg̊ard hash function

3 / 24

Collision attack and variants

Given a hash function H, we have the following variants of collision attacks:

• Collision attack: for a chosen IV , find M0,M1 s.t. H(IV ||M0) = H(IV ||M1)

• Semi-free-start collision attack: find M0,M1 and IV ′ s.t. H(IV ′||M0) = H(IV ′||M1)

• Free-start collision attack: find M0,M1 and IV ′
0, IV

′
1 s.t. H(IV ′

0||M0) = H(IV ′
1||M1)

At Eurocrypt 2007, Stevens, Lenstra, and de Weger introduced:

• Chosen-prefix collision (CPC) attack: for any chosen IV0, IV1, find M0,M1 s.t.
H(IV0||M0) = H(IV1||M1)

In terms of difficulty: CPC > collision > semi-free-start collision > free-start collision

4 / 24

Collision attack and variants

Given a hash function H, we have the following variants of collision attacks:

• Collision attack: for a chosen IV , find M0,M1 s.t. H(IV ||M0) = H(IV ||M1)

• Semi-free-start collision attack: find M0,M1 and IV ′ s.t. H(IV ′||M0) = H(IV ′||M1)

• Free-start collision attack: find M0,M1 and IV ′
0, IV

′
1 s.t. H(IV ′

0||M0) = H(IV ′
1||M1)

At Eurocrypt 2007, Stevens, Lenstra, and de Weger introduced:

• Chosen-prefix collision (CPC) attack: for any chosen IV0, IV1, find M0,M1 s.t.
H(IV0||M0) = H(IV1||M1)

In terms of difficulty: CPC > collision > semi-free-start collision > free-start collision

4 / 24

Collision attack and variants

Given a hash function H, we have the following variants of collision attacks:

• Collision attack: for a chosen IV , find M0,M1 s.t. H(IV ||M0) = H(IV ||M1)

• Semi-free-start collision attack: find M0,M1 and IV ′ s.t. H(IV ′||M0) = H(IV ′||M1)

• Free-start collision attack: find M0,M1 and IV ′
0, IV

′
1 s.t. H(IV ′

0||M0) = H(IV ′
1||M1)

At Eurocrypt 2007, Stevens, Lenstra, and de Weger introduced:

• Chosen-prefix collision (CPC) attack: for any chosen IV0, IV1, find M0,M1 s.t.
H(IV0||M0) = H(IV1||M1)

In terms of difficulty: CPC > collision > semi-free-start collision > free-start collision

4 / 24

Collision attack and variants

Given a hash function H, we have the following variants of collision attacks:

• Collision attack: for a chosen IV , find M0,M1 s.t. H(IV ||M0) = H(IV ||M1)

• Semi-free-start collision attack: find M0,M1 and IV ′ s.t. H(IV ′||M0) = H(IV ′||M1)

• Free-start collision attack: find M0,M1 and IV ′
0, IV

′
1 s.t. H(IV ′

0||M0) = H(IV ′
1||M1)

At Eurocrypt 2007, Stevens, Lenstra, and de Weger introduced:

• Chosen-prefix collision (CPC) attack: for any chosen IV0, IV1, find M0,M1 s.t.
H(IV0||M0) = H(IV1||M1)

In terms of difficulty: CPC > collision > semi-free-start collision > free-start collision

4 / 24

The practical impact of CPC attacks

There are many abuse scenarios of CPC attacks in real word applications, to list a few:

• Generation of colliding X.509 certificates for different identities [SLW07]

• Creation of rogue Certificate Authorities [SSALMOW09]

• Transcript collision attacks and SLOTH attacks on TLS, IKE, and SSH [BL16]

• PGP/GnuPG key-certification forgery [LP20]

An efficient CPC attack directly marks the retirement of a hash function!

Two notable series of works:

• On MD5, by Stevens et al. [SLW07; SSALMOW09; SLW12]

• On SHA-1, by Lurent and Peyrin [LP19; LP20]

5 / 24

The practical impact of CPC attacks

There are many abuse scenarios of CPC attacks in real word applications, to list a few:

• Generation of colliding X.509 certificates for different identities [SLW07]

• Creation of rogue Certificate Authorities [SSALMOW09]

• Transcript collision attacks and SLOTH attacks on TLS, IKE, and SSH [BL16]

• PGP/GnuPG key-certification forgery [LP20]

An efficient CPC attack directly marks the retirement of a hash function!

Two notable series of works:

• On MD5, by Stevens et al. [SLW07; SSALMOW09; SLW12]

• On SHA-1, by Lurent and Peyrin [LP19; LP20]

5 / 24

The practical impact of CPC attacks

There are many abuse scenarios of CPC attacks in real word applications, to list a few:

• Generation of colliding X.509 certificates for different identities [SLW07]

• Creation of rogue Certificate Authorities [SSALMOW09]

• Transcript collision attacks and SLOTH attacks on TLS, IKE, and SSH [BL16]

• PGP/GnuPG key-certification forgery [LP20]

An efficient CPC attack directly marks the retirement of a hash function!

Two notable series of works:

• On MD5, by Stevens et al. [SLW07; SSALMOW09; SLW12]

• On SHA-1, by Lurent and Peyrin [LP19; LP20]

5 / 24

Generic bound of collision attack (and variants)

On a hash function with n-bit output, we have generic attacks listed as follows:

Time Memory Generic attack

Classical O(2n/2) O(1) cMem Parallel rho [OW99]

Arbitrary qRAM O(2n/3) O(2n/3) qRAM BHT algorithm [BHT98]

Without qRAM O(22n/5) O(2n/5) cMem CNS algorithm [CNS17]

Time-space Tradeoff O(2n/2) O(1) cMem Quantum parallel rho [Ber09]

We focus in the classical and quantum time-space tradeoff (TSTO) setting.

6 / 24

Generic bound of collision attack (and variants)

On a hash function with n-bit output, we have generic attacks listed as follows:

Time Memory Generic attack

Classical O(2n/2) O(1) cMem Parallel rho [OW99]

Arbitrary qRAM O(2n/3) O(2n/3) qRAM BHT algorithm [BHT98]

Without qRAM O(22n/5) O(2n/5) cMem CNS algorithm [CNS17]

Time-space Tradeoff O(2n/2) O(1) cMem Quantum parallel rho [Ber09]

We focus in the classical and quantum time-space tradeoff (TSTO) setting.

6 / 24

Generic bound of collision attack (and variants)

On a hash function with n-bit output, we have generic attacks listed as follows:

Time Memory Generic attack

Classical O(2n/2) O(1) cMem Parallel rho [OW99]

Arbitrary qRAM O(2n/3) O(2n/3) qRAM BHT algorithm [BHT98]

Without qRAM O(22n/5) O(2n/5) cMem CNS algorithm [CNS17]

Time-space Tradeoff O(2n/2) O(1) cMem Quantum parallel rho [Ber09]

We focus in the classical and quantum time-space tradeoff (TSTO) setting.

6 / 24

Generic bound of collision attack (and variants)

On a hash function with n-bit output, we have generic attacks listed as follows:

Time Memory Generic attack

Classical O(2n/2) O(1) cMem Parallel rho [OW99]

Arbitrary qRAM O(2n/3) O(2n/3) qRAM BHT algorithm [BHT98]

Without qRAM O(22n/5) O(2n/5) cMem CNS algorithm [CNS17]

Time-space Tradeoff O(2n/2) O(1) cMem Quantum parallel rho [Ber09]

We focus in the classical and quantum time-space tradeoff (TSTO) setting.

6 / 24

Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

7 / 24

The AES round function

AES is selected by NIST in 2001 from the Rijndael block cipher family.

#SBi

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SB

#SRi

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

SR

#MCi

MC

#AKi #RKi #SBi+1

An encryption state of AES is organized as a 4 ∗ 4 grid of bytes. An AES round consists
of the following operations:

• SubBytes (SB): a non-linear byte-wise substitution (S-box)

• ShiftRows (SR): a cyclic left shift on the i-th row by i bytes

• MixColumns (MC): a column-wise left multiplication of an MDS matrix

• AddRoundKey (AK): a bitwise XOR of the round key to the state

8 / 24

AES-like Hashing

Description

Hash functions built on an AES-like compression function are conventionally referred to as
AES-like hashing

Examples include:

• AES-MMO (ISO/IEC standard and standard in the Zigbee protocol suite)

• Whirlpool (ISO/IEC standard)

• Streebog (ISO/IEC standard)

• Grøstl (NIST SHA-3 competition finalists)

• Saturnin (NIST LWC 2nd candidates)

9 / 24

Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

10 / 24

Rebound Attacks

fbw fin ffw

Inbound

OutboundOutbound

Introduced by Mendel et al. at FSE 2009 [MRST09]1, the technique is a variant of
differential attacks with two phases:

• Inbound phase: allows efficient generation of starting points (i.e., input pairs
conforming with differential characteristic) → ”solving the inbound”

• Outbound phase: probabilistically fulfills the rest constraints for collision

1https://tosc.iacr.org/index.php/ToSC/ToT_Award
11 / 24

https://tosc.iacr.org/index.php/ToSC/ToT_Award

Rebound Attacks

fbw fin ffw

Inbound

OutboundOutbound

Introduced by Mendel et al. at FSE 2009 [MRST09]1, the technique is a variant of
differential attacks with two phases:

• Inbound phase: allows efficient generation of starting points (i.e., input pairs
conforming with differential characteristic)

→ ”solving the inbound”

• Outbound phase: probabilistically fulfills the rest constraints for collision

1https://tosc.iacr.org/index.php/ToSC/ToT_Award
11 / 24

https://tosc.iacr.org/index.php/ToSC/ToT_Award

Rebound Attacks

fbw fin ffw

Inbound

OutboundOutbound

Introduced by Mendel et al. at FSE 2009 [MRST09]1, the technique is a variant of
differential attacks with two phases:

• Inbound phase: allows efficient generation of starting points (i.e., input pairs
conforming with differential characteristic) → ”solving the inbound”

• Outbound phase: probabilistically fulfills the rest constraints for collision

1https://tosc.iacr.org/index.php/ToSC/ToT_Award
11 / 24

https://tosc.iacr.org/index.php/ToSC/ToT_Award

Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

12 / 24

CPC attack framework based on rebound attacks

P/P ′ ∆P ∆H1

E H1/H
′
1

δi ∈ SIV

u i/
u
′
i
∆u i

δ i

E

u
j /u ′

j
∆u

j

δj
E

M/M ′ ∆M

H
2/H ′

2

∆T = 0
T = T ′

IB

OB

OBRebound Attack

Find a class of rebound attacks and a set S, such that for any difference in the chaining
value (i.e., key in MMO mode) δ ∈ S, we are able to construct a free-start collision.

1. Birthday phase: find (ui , u
′
i) such that δi = CF (IV0, ui)⊕ CF (IV1, u

′
i) ∈ S.

2. Rebound phase: perform the related-key rebound attack and according to δi .

13 / 24

CPC attack framework based on rebound attacks

P/P ′ ∆P ∆H1

E H1/H
′
1

δi ∈ SIV

u i/
u
′
i
∆u i

δ i

E

u
j /u ′

j
∆u

j

δj
E

M/M ′ ∆M

H
2/H ′

2

∆T = 0
T = T ′

IB

OB

OBRebound Attack

Find a class of rebound attacks and a set S, such that for any difference in the chaining
value (i.e., key in MMO mode) δ ∈ S, we are able to construct a free-start collision.

1. Birthday phase: find (ui , u
′
i) such that δi = CF (IV0, ui)⊕ CF (IV1, u

′
i) ∈ S.

2. Rebound phase: perform the related-key rebound attack and according to δi .

13 / 24

CPC attack framework based on rebound attacks

P/P ′ ∆P ∆H1

E H1/H
′
1

δi ∈ SIV

u i/
u
′
i
∆u i

δ i

E

u
j /u ′

j
∆u

j

δj
E

M/M ′ ∆M

H
2/H ′

2

∆T = 0
T = T ′

IB

OB

OBRebound Attack

Find a class of rebound attacks and a set S, such that for any difference in the chaining
value (i.e., key in MMO mode) δ ∈ S, we are able to construct a free-start collision.

1. Birthday phase: find (ui , u
′
i) such that δi = CF (IV0, ui)⊕ CF (IV1, u

′
i) ∈ S.

2. Rebound phase: perform the related-key rebound attack and according to δi .

13 / 24

Complexity analysis

Birthday phase: the time complexity to find proper (ui , u
′
i) is

√
2n/|S| in quantum TSTO

and classical setting.

Rebound phase: assuming the probability of the outbound phase as p,

• in classical setting, assuming the time complexity to find one starting point is T c
IB,

the time complexity is T c
IB/p.

• in quantum TSTO, assuming the time complexity to find one starting point is T q
IB,

the time complexity is T q
IB/

√
p.

Remark :

• CPC attacks are backward compatible to collision attacks

• The framework is also a conversion from (a particular type of) free-start collision
attacks to two-block collision attacks

14 / 24

Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

15 / 24

Hosoyamada and Sasaki’s memoryless technique [HS20]

X3 Y3 Z3 W3

SB SC MR AC

X2 Y2 Z2 W2

SB SC MR AC

X1 Y1 Z1 W1

SB SC MR AC

Z0 W0

SC MR AC

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

”Solving the inbound”: given any ∆Z0,∆W3

(equiv. ∆X1,∆Y3), generate starting point Z0,Z
′
0.

Steps:

1. Enumerate X1[], compute Z2[],Z ′
2[]

2. For row i , enumerate Z2[],Z ′
2[], compute full

row i of Y3,Y
′
3, check if they comply with ∆Y3

3. After all rows of Y3,Y
′
3 are recovered, compute

backward to check if they comply with ∆X1[]

Time: tC = 28·(d
2/2+d/2+d/2), tQ =

√
tC

Memory: O(1)

16 / 24

Hosoyamada and Sasaki’s memoryless technique [HS20]

X3 Y3 Z3 W3

SB SC MR AC

X2 Y2 Z2 W2

SB SC MR AC

X1 Y1 Z1 W1

SB SC MR AC

Z0 W0

SC MR AC

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

”Solving the inbound”: given any ∆Z0,∆W3

(equiv. ∆X1,∆Y3), generate starting point Z0,Z
′
0.

Steps:

1. Enumerate X1[], compute Z2[],Z ′
2[]

2. For row i , enumerate Z2[],Z ′
2[], compute full

row i of Y3,Y
′
3, check if they comply with ∆Y3

3. After all rows of Y3,Y
′
3 are recovered, compute

backward to check if they comply with ∆X1[]

Time: tC = 28·(d
2/2+d/2+d/2), tQ =

√
tC

Memory: O(1)

16 / 24

Hosoyamada and Sasaki’s memoryless technique [HS20]

X3 Y3 Z3 W3

SB SC MR AC

X2 Y2 Z2 W2

SB SC MR AC

X1 Y1 Z1 W1

SB SC MR AC

Z0 W0

SC MR AC

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

”Solving the inbound”: given any ∆Z0,∆W3

(equiv. ∆X1,∆Y3), generate starting point Z0,Z
′
0.

Steps:

1. Enumerate X1[], compute Z2[],Z ′
2[]

2. For row i , enumerate Z2[],Z ′
2[], compute full

row i of Y3,Y
′
3, check if they comply with ∆Y3

3. After all rows of Y3,Y
′
3 are recovered, compute

backward to check if they comply with ∆X1[]

Time: tC = 28·(d
2/2+d/2+d/2), tQ =

√
tC

Memory: O(1)

16 / 24

Improved memoryless algorithm to solve 3-round inbound

X3 Y3 Z3 W3

SB SC MR AC

X2 Y2 Z2 W2

SB SC MR AC

X1 Y1 Z1 W1

SB SC MR AC

Z0 W0

SC MR AC

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

We improve Step II, now for each row:

• Instead of enumerating Z2[],Z ′
2[], and check

with ∆Y3

• We enumerate Z2[], compute Y3, and obtain
Y ′
3 = ∆Y3 ⊕ Y3

This replaces the filtering on ∆Y3

Time: tC = 28·(d
2/2+d/2), tQ =

√
tC

Memory: O(1)

17 / 24

Improved memoryless algorithm to solve 3-round inbound

X3 Y3 Z3 W3

SB SC MR AC

X2 Y2 Z2 W2

SB SC MR AC

X1 Y1 Z1 W1

SB SC MR AC

Z0 W0

SC MR AC

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

We improve Step II, now for each row:

• Instead of enumerating Z2[],Z ′
2[], and check

with ∆Y3

• We enumerate Z2[], compute Y3, and obtain
Y ′
3 = ∆Y3 ⊕ Y3

This replaces the filtering on ∆Y3

Time: tC = 28·(d
2/2+d/2), tQ =

√
tC

Memory: O(1)

17 / 24

Improved memoryless algorithm to solve 3-round inbound

X3 Y3 Z3 W3

SB SC MR AC

X2 Y2 Z2 W2

SB SC MR AC

X1 Y1 Z1 W1

SB SC MR AC

Z0 W0

SC MR AC

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

We improve Step II, now for each row:

• Instead of enumerating Z2[],Z ′
2[], and check

with ∆Y3

• We enumerate Z2[], compute Y3, and obtain
Y ′
3 = ∆Y3 ⊕ Y3

This replaces the filtering on ∆Y3

Time: tC = 28·(d
2/2+d/2), tQ =

√
tC

Memory: O(1)

17 / 24

Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

18 / 24

Target Type of Attack Rounds Time C-Mem qRAM Setting Source

Hash

Collision 4/10 2120 216 - Classic [MRST09]

function

Collision 5/10 2120 264 - Classic [LMRRS09; GP10]

Collision 6/10 2248 2248 - Classic [DHSLWH21]

Collision 6/10 2240 2240 - Classic [CGLSZ24]

Collision 6/10 2228 - - Quantum [HS20]

Collision 6/10 2201.4 - - Quantum This work

Collision/CPC 6/10 2205.4 - - Quantum This work

Compression

Semi-free 5/10 2120 216 - Classic [MRST09]

function

Semi-free 7/10 2184 28 - Classic [LMRRS09]

Free-start 8/10 2120 28 - Classic [SWWW12]

Free-start 9/10 2220.5 - - Quantum [DZSWWH21]

Free-start 9/10 2204.53 - - Quantum This work

19 / 24

Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

20 / 24

Target Type of Attack Rounds Time C-Mem qRAM Setting Source

Hash

Collision 5/16 264 264 - Classic [DZSWWH21]

function
Collision 7/16 2113.5 - - Quantum [DZSWWH21]

Collision/CPC 6/16 2112 264 - Classic This work

Collision/CPC 7/16 2113 - - Quantum This work

21 / 24

Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

22 / 24

Target Type of Attack Rounds Time C-Mem qRAM Setting Source

Hash

Collision 5/10 256 216 - Classic [MRST09]

function

Collision 6/10 256 232 - Classic [LMRRS09; GP10]

Collision 7/10 242.5 - 248 Quantum [HS20]

Collision 7/10 259.5 - - Quantum [HS20]

Collision 7/10 245.8 - - Quantum [DSSGWH20]

Collision 8/10 255.53 - - Quantum [DGLP22]

Collision/CPC 5/10 257 232 - Classic, MMO This work

Collision/CPC 5/10 252 232 - Classic, MP This work

Collision/CPC 6/10 261 - - Quantum This work

23 / 24

Thank you for listening :)

	Backgound
	Chosen-prefix collision (CPC) attacks
	AES-like hashing
	Rebound Attacks

	Technical contributions
	CPC attack framework on AES-like hashing
	Improved memoryless algorithm to solve 3-round inbound

	Applications
	Whirlpool
	Saturnin-hash
	AES128-MMO/MP

