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Hash functions

A hash function maps an arbitrary-length message a to fixed-length hash value.

Hash functions need to be resistant to collision attacks.
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Fig. 5. The plain Merkle-Damg̊ard Construction

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.
We have already mentioned in introduction a counter-example based on

MAC. Namely, we showed that MAC(k,m) = H(k‖m) provides a secure MAC
in the random oracle model for H, but is completely insecure when H is replaced
by the previous Merkle-Damg̊ard construction MDf , because of the message ex-
tension attack. In the following, we give a more direct refutation based on the
definition of indifferentiability, using again the message extension attack.

We consider only one-block messages or two-block messages. For such mes-
sages, we have that MDf (m1) = f(0,m1) and MDf (m1,m2) = f(f(0,m1),m2).
We build a distinguisher that can fool any simulator as follows. The distinguisher
first makes a MDf -query for m1 and receives u = MDf (m1). Then it makes a
query for v = f(u,m2) to random oracle f . The distinguisher then makes a
MDf -query for (m1,m2) and eventually checks that v = MDf (m1,m2); in this
case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher always
outputs 1 when interacting with MDf and f . However, when the distinguisher
interacts with H and S (who must simulate f), we observe that S has no informa-
tion about m1 (because S does not see the distinguisher’s H-queries). Therefore,
the simulator cannot answer v such that v = H(m1,m2), except with negligible
probability.

3.3 Prefix-free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction are
guaranteed to be prefix-free, then the plain MD construction is secure. Namely,
prefix-free encoding enables to eliminate the message expansion attack described
previously. This “fix” is similar to the fix for the CBC-MAC [3], which is also
insecure in its plain form. Thus, the plain MD construction can be safely used
for any application of the random oracle H where the length of the inputs is
fixed or where one uses domain separation (e.g., prepending 0, 1, . . . to differen-
tiate between inputs from different domains). For other applications, one must
specifically ensure that prefix-freeness is satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable in-
jective function g : {0, 1}∗ → ({0, 1}κ)∗ such that for all x #= y, g(x) is not a
prefix of g(y). Moreover, it must be easy to recover x given only g(x). We provide

Figure: Merkle-Damg̊ard hash function

3 / 24



Collision attack and variants

Given a hash function H, we have the following variants of collision attacks:

• Collision attack: for a chosen IV , find M0,M1 s.t. H(IV ||M0) = H(IV ||M1)

• Semi-free-start collision attack: find M0,M1 and IV ′ s.t. H(IV ′||M0) = H(IV ′||M1)

• Free-start collision attack: find M0,M1 and IV ′
0, IV

′
1 s.t. H(IV ′

0||M0) = H(IV ′
1||M1)

At Eurocrypt 2007, Stevens, Lenstra, and de Weger introduced:

• Chosen-prefix collision (CPC) attack: for any chosen IV0, IV1, find M0,M1 s.t.
H(IV0||M0) = H(IV1||M1)

In terms of difficulty: CPC > collision > semi-free-start collision > free-start collision
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The practical impact of CPC attacks

There are many abuse scenarios of CPC attacks in real word applications, to list a few:

• Generation of colliding X.509 certificates for different identities [SLW07]

• Creation of rogue Certificate Authorities [SSALMOW09]

• Transcript collision attacks and SLOTH attacks on TLS, IKE, and SSH [BL16]

• PGP/GnuPG key-certification forgery [LP20]

An efficient CPC attack directly marks the retirement of a hash function!

Two notable series of works:

• On MD5, by Stevens et al. [SLW07; SSALMOW09; SLW12]

• On SHA-1, by Lurent and Peyrin [LP19; LP20]
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Generic bound of collision attack (and variants)

On a hash function with n-bit output, we have generic attacks listed as follows:

Time Memory Generic attack

Classical O(2n/2) O(1) cMem Parallel rho [OW99]

Arbitrary qRAM O(2n/3) O(2n/3) qRAM BHT algorithm [BHT98]

Without qRAM O(22n/5) O(2n/5) cMem CNS algorithm [CNS17]

Time-space Tradeoff O(2n/2) O(1) cMem Quantum parallel rho [Ber09]

We focus in the classical and quantum time-space tradeoff (TSTO) setting.
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The AES round function

AES is selected by NIST in 2001 from the Rijndael block cipher family.
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An encryption state of AES is organized as a 4 ∗ 4 grid of bytes. An AES round consists
of the following operations:

• SubBytes (SB): a non-linear byte-wise substitution (S-box)

• ShiftRows (SR): a cyclic left shift on the i-th row by i bytes

• MixColumns (MC): a column-wise left multiplication of an MDS matrix

• AddRoundKey (AK): a bitwise XOR of the round key to the state
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AES-like Hashing

Description

Hash functions built on an AES-like compression function are conventionally referred to as
AES-like hashing

Examples include:

• AES-MMO (ISO/IEC standard and standard in the Zigbee protocol suite)

• Whirlpool (ISO/IEC standard)

• Streebog (ISO/IEC standard)

• Grøstl (NIST SHA-3 competition finalists)

• Saturnin (NIST LWC 2nd candidates)
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Rebound Attacks

fbw fin ffw

Inbound

OutboundOutbound

Introduced by Mendel et al. at FSE 2009 [MRST09]1, the technique is a variant of
differential attacks with two phases:

• Inbound phase: allows efficient generation of starting points (i.e., input pairs
conforming with differential characteristic) → ”solving the inbound”

• Outbound phase: probabilistically fulfills the rest constraints for collision

1https://tosc.iacr.org/index.php/ToSC/ToT_Award
11 / 24

https://tosc.iacr.org/index.php/ToSC/ToT_Award


Rebound Attacks

fbw fin ffw

Inbound

OutboundOutbound

Introduced by Mendel et al. at FSE 2009 [MRST09]1, the technique is a variant of
differential attacks with two phases:

• Inbound phase: allows efficient generation of starting points (i.e., input pairs
conforming with differential characteristic)

→ ”solving the inbound”

• Outbound phase: probabilistically fulfills the rest constraints for collision

1https://tosc.iacr.org/index.php/ToSC/ToT_Award
11 / 24

https://tosc.iacr.org/index.php/ToSC/ToT_Award


Rebound Attacks

fbw fin ffw

Inbound

OutboundOutbound

Introduced by Mendel et al. at FSE 2009 [MRST09]1, the technique is a variant of
differential attacks with two phases:

• Inbound phase: allows efficient generation of starting points (i.e., input pairs
conforming with differential characteristic) → ”solving the inbound”

• Outbound phase: probabilistically fulfills the rest constraints for collision

1https://tosc.iacr.org/index.php/ToSC/ToT_Award
11 / 24

https://tosc.iacr.org/index.php/ToSC/ToT_Award


Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

12 / 24



CPC attack framework based on rebound attacks
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OBRebound Attack

Find a class of rebound attacks and a set S, such that for any difference in the chaining
value (i.e., key in MMO mode) δ ∈ S, we are able to construct a free-start collision.

1. Birthday phase: find (ui , u
′
i ) such that δi = CF (IV0, ui )⊕ CF (IV1, u

′
i ) ∈ S.

2. Rebound phase: perform the related-key rebound attack and according to δi .
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Complexity analysis

Birthday phase: the time complexity to find proper (ui , u
′
i ) is

√
2n/|S| in quantum TSTO

and classical setting.

Rebound phase: assuming the probability of the outbound phase as p,

• in classical setting, assuming the time complexity to find one starting point is T c
IB,

the time complexity is T c
IB/p.

• in quantum TSTO, assuming the time complexity to find one starting point is T q
IB,

the time complexity is T q
IB/

√
p.

Remark :

• CPC attacks are backward compatible to collision attacks

• The framework is also a conversion from (a particular type of) free-start collision
attacks to two-block collision attacks
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Hosoyamada and Sasaki’s memoryless technique [HS20]
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”Solving the inbound”: given any ∆Z0,∆W3

(equiv. ∆X1,∆Y3), generate starting point Z0,Z
′
0.

Steps:

1. Enumerate X1[ ], compute Z2[ ],Z ′
2[ ]

2. For row i , enumerate Z2[ ],Z ′
2[ ], compute full

row i of Y3,Y
′
3, check if they comply with ∆Y3

3. After all rows of Y3,Y
′
3 are recovered, compute

backward to check if they comply with ∆X1[ ]

Time: tC = 28·(d
2/2+d/2+d/2), tQ =

√
tC

Memory: O(1)
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Improved memoryless algorithm to solve 3-round inbound
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We improve Step II, now for each row:

• Instead of enumerating Z2[ ],Z ′
2[ ], and check

with ∆Y3

• We enumerate Z2[ ], compute Y3, and obtain
Y ′
3 = ∆Y3 ⊕ Y3

This replaces the filtering on ∆Y3

Time: tC = 28·(d
2/2+d/2), tQ =

√
tC

Memory: O(1)
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Target Type of Attack Rounds Time C-Mem qRAM Setting Source

Hash

Collision 4/10 2120 216 - Classic [MRST09]

function

Collision 5/10 2120 264 - Classic [LMRRS09; GP10]

Collision 6/10 2248 2248 - Classic [DHSLWH21]

Collision 6/10 2240 2240 - Classic [CGLSZ24]

Collision 6/10 2228 - - Quantum [HS20]

Collision 6/10 2201.4 - - Quantum This work

Collision/CPC 6/10 2205.4 - - Quantum This work

Compression

Semi-free 5/10 2120 216 - Classic [MRST09]

function

Semi-free 7/10 2184 28 - Classic [LMRRS09]

Free-start 8/10 2120 28 - Classic [SWWW12]

Free-start 9/10 2220.5 - - Quantum [DZSWWH21]

Free-start 9/10 2204.53 - - Quantum This work

19 / 24



Outline

1. Backgound
1.1 Chosen-prefix collision (CPC) attacks
1.2 AES-like hashing
1.3 Rebound Attacks

2. Technical contributions
2.1 CPC attack framework on AES-like hashing
2.2 Improved memoryless algorithm to solve 3-round inbound

3. Applications
3.1 Whirlpool
3.2 Saturnin-hash
3.3 AES128-MMO/MP

20 / 24



Target Type of Attack Rounds Time C-Mem qRAM Setting Source

Hash

Collision 5/16 264 264 - Classic [DZSWWH21]

function
Collision 7/16 2113.5 - - Quantum [DZSWWH21]

Collision/CPC 6/16 2112 264 - Classic This work

Collision/CPC 7/16 2113 - - Quantum This work
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Target Type of Attack Rounds Time C-Mem qRAM Setting Source

Hash

Collision 5/10 256 216 - Classic [MRST09]

function

Collision 6/10 256 232 - Classic [LMRRS09; GP10]

Collision 7/10 242.5 - 248 Quantum [HS20]

Collision 7/10 259.5 - - Quantum [HS20]

Collision 7/10 245.8 - - Quantum [DSSGWH20]

Collision 8/10 255.53 - - Quantum [DGLP22]

Collision/CPC 5/10 257 232 - Classic, MMO This work

Collision/CPC 5/10 252 232 - Classic, MP This work

Collision/CPC 6/10 261 - - Quantum This work
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Thank you for listening :)
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