Chosen-prefix Collisions on AES-like Hashing

Shiyao Chen¹, Xiaoyang Dong², Jian Guo¹, **Tianyu Zhang**¹

¹Nanyang Technological University, Singapore ²Tsinghua University, China

March 19, 2025 @ Rome, Italy

1. Backgound

- 1.1 Chosen-prefix collision (CPC) attacks
- 1.2 AES-like hashing
- 1.3 Rebound Attacks

2. Technical contributions

- 2.1 CPC attack framework on AES-like hashing
- 2.2 Improved memoryless algorithm to solve 3-round inbound

- 3.1 Whirlpoo
- 3.2 Saturnin-hash
- 3.3 AES128-MMO/MP

Hash functions

A hash function maps an arbitrary-length message a to fixed-length hash value.

Hash functions need to be resistant to collision attacks.

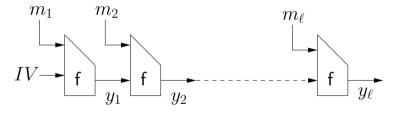


Figure: Merkle-Damgård hash function

Given a hash function H, we have the following variants of collision attacks:

• Collision attack: for a chosen IV, find M_0, M_1 s.t. $H(IV||M_0) = H(IV||M_1)$

Given a hash function H, we have the following variants of collision attacks:

- Collision attack: for a chosen IV, find M_0, M_1 s.t. $H(IV||M_0) = H(IV||M_1)$
- Semi-free-start collision attack: find M_0, M_1 and IV' s.t. $H(IV'||M_0) = H(IV'||M_1)$
- Free-start collision attack: find M_0 , M_1 and IV'_0 , IV'_1 s.t. $H(IV'_0||M_0) = H(IV'_1||M_1)$

Given a hash function H, we have the following variants of collision attacks:

- Collision attack: for a chosen IV, find M_0, M_1 s.t. $H(IV||M_0) = H(IV||M_1)$
- Semi-free-start collision attack: find M_0 , M_1 and IV' s.t. $H(IV'||M_0) = H(IV'||M_1)$
- Free-start collision attack: find M_0 , M_1 and IV'_0 , IV'_1 s.t. $H(IV'_0||M_0) = H(IV'_1||M_1)$

At Eurocrypt 2007, Stevens, Lenstra, and de Weger introduced:

• Chosen-prefix collision (CPC) attack: for any chosen IV_0 , IV_1 , find M_0 , M_1 s.t. $H(IV_0||M_0) = H(IV_1||M_1)$

Given a hash function H, we have the following variants of collision attacks:

- Collision attack: for a chosen IV, find M_0, M_1 s.t. $H(IV||M_0) = H(IV||M_1)$
- Semi-free-start collision attack: find M_0, M_1 and IV' s.t. $H(IV'||M_0) = H(IV'||M_1)$
- Free-start collision attack: find M_0 , M_1 and IV'_0 , IV'_1 s.t. $H(IV'_0||M_0) = H(IV'_1||M_1)$

At Eurocrypt 2007, Stevens, Lenstra, and de Weger introduced:

• Chosen-prefix collision (CPC) attack: for any chosen IV_0 , IV_1 , find M_0 , M_1 s.t. $H(IV_0||M_0) = H(IV_1||M_1)$

In terms of difficulty: CPC > collision > semi-free-start collision > free-start collision

The practical impact of CPC attacks

There are many abuse scenarios of CPC attacks in real word applications, to list a few:

- Generation of colliding X.509 certificates for different identities [SLW07]
- Creation of rogue Certificate Authorities [SSALMOW09]
- Transcript collision attacks and SLOTH attacks on TLS, IKE, and SSH [BL16]
- PGP/GnuPG key-certification forgery [LP20]

The practical impact of CPC attacks

There are many abuse scenarios of CPC attacks in real word applications, to list a few:

- Generation of colliding X.509 certificates for different identities [SLW07]
- Creation of rogue Certificate Authorities [SSALMOW09]
- Transcript collision attacks and SLOTH attacks on TLS, IKE, and SSH [BL16]
- PGP/GnuPG key-certification forgery [LP20]

An efficient CPC attack directly marks the retirement of a hash function!

The practical impact of CPC attacks

There are many abuse scenarios of CPC attacks in real word applications, to list a few:

- Generation of colliding X.509 certificates for different identities [SLW07]
- Creation of rogue Certificate Authorities [SSALMOW09]
- Transcript collision attacks and SLOTH attacks on TLS, IKE, and SSH [BL16]
- PGP/GnuPG key-certification forgery [LP20]

An efficient CPC attack directly marks the **retirement** of a hash function!

Two notable series of works:

- On MD5, by Stevens et al. [SLW07; SSALMOW09; SLW12]
- On SHA-1, by Lurent and Peyrin [LP19; LP20]

On a hash function with n-bit output, we have generic attacks listed as follows:

	Time	Memory	Generic attack
Classical	$O(2^{n/2})$	O(1) cMem	Parallel rho [OW99]

On a hash function with n-bit output, we have generic attacks listed as follows:

	Time	Memory	Generic attack
Classical	$O(2^{n/2})$	$\mathit{O}(1)$ cMem	Parallel rho [OW99]
Arbitrary qRAM	$O(2^{n/3})$	$O(2^{n/3})$ qRAM	BHT algorithm [BHT98]

On a hash function with n-bit output, we have generic attacks listed as follows:

	Time	Memory	Generic attack
Classical	$O(2^{n/2})$	$\mathit{O}(1)$ cMem	Parallel rho [OW99]
Arbitrary qRAM	Arbitrary qRAM $O(2^{n/3})$		BHT algorithm [BHT98]
Without qRAM	Without qRAM $O(2^{2n/5})$		CNS algorithm [CNS17]

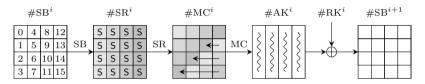
On a hash function with n-bit output, we have generic attacks listed as follows:

	Time	Memory	Generic attack	
Classical	Classical $O(2^{n/2})$ $O(1)$ cM		Parallel rho [OW99]	
Arbitrary qRAM	Arbitrary qRAM $O(2^{n/3})$		BHT algorithm [BHT98]	
Without qRAM	$O(2^{2n/5})$	$O(2^{n/5})$ cMem CNS algorithm [CNS		
Time-space Tradeoff	$O(2^{n/2})$	O(1) c Mem	Quantum parallel rho [Ber09]	

We focus in the classical and quantum time-space tradeoff (TSTO) setting.

1. Backgound

- 1.1 Chosen-prefix collision (CPC) attacks
- 1.2 AES-like hashing
- 1.3 Rebound Attacks


2. Technical contributions

- 2.1 CPC attack framework on AES-like hashing
- 2.2 Improved memoryless algorithm to solve 3-round inbound

- 3.1 Whirlpoo
- 3.2 Saturnin-hash
- 3.3 AES128-MMO/MP

The AES round function

AES is selected by NIST in 2001 from the Rijndael block cipher family.

An encryption state of AES is organized as a 4*4 grid of bytes. An AES round consists of the following operations:

- SubBytes (SB): a non-linear byte-wise substitution (S-box)
- ShiftRows (SR): a cyclic left shift on the *i*-th row by *i* bytes
- MixColumns (MC): a column-wise left multiplication of an MDS matrix
- AddRoundKey (AK): a bitwise XOR of the round key to the state

AES-like Hashing

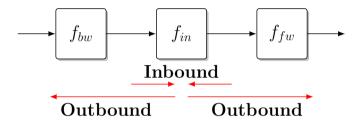
Description

Hash functions built on an AES-like compression function are conventionally referred to as AES-like hashing

Examples include:

- AES-MMO (ISO/IEC standard and standard in the Zigbee protocol suite)
- Whirlpool (ISO/IEC standard)
- Streebog (ISO/IEC standard)
- Grøstl (NIST SHA-3 competition finalists)
- Saturnin (NIST LWC 2nd candidates)

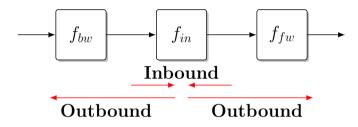
1. Backgound


- 1.1 Chosen-prefix collision (CPC) attacks
- 1.2 AES-like hashing
- 1.3 Rebound Attacks

2. Technical contributions

- 2.1 CPC attack framework on AES-like hashing
- 2.2 Improved memoryless algorithm to solve 3-round inbound

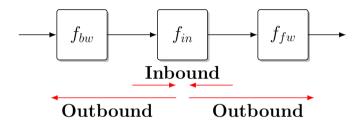
- 3.1 Whirlpool
- 3.2 Saturnin-hash
- 3.3 AES128-MMO/MP


Rebound Attacks

Introduced by Mendel *et al.* at FSE 2009 [MRST09]¹, the technique is a variant of differential attacks with two phases:

https://tosc.iacr.org/index.php/ToSC/ToT_Award

Rebound Attacks



Introduced by Mendel *et al.* at FSE 2009 [MRST09]¹, the technique is a variant of differential attacks with two phases:

• **Inbound phase**: allows efficient generation of **starting points** (*i.e.*, input pairs conforming with differential characteristic)

https://tosc.iacr.org/index.php/ToSC/ToT_Award

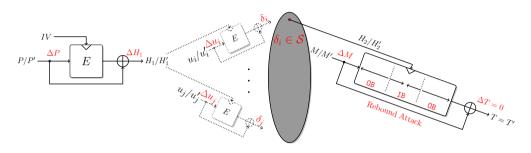
Rebound Attacks

Introduced by Mendel *et al.* at FSE 2009 [MRST09]¹, the technique is a variant of differential attacks with two phases:

- Inbound phase: allows efficient generation of starting points (i.e., input pairs conforming with differential characteristic) → "solving the inbound"
- Outbound phase: probabilistically fulfills the rest constraints for collision

¹https://tosc.iacr.org/index.php/ToSC/ToT_Award

1. Backgound


- 1.1 Chosen-prefix collision (CPC) attacks
- 1.2 AES-like hashing
- 1.3 Rebound Attacks

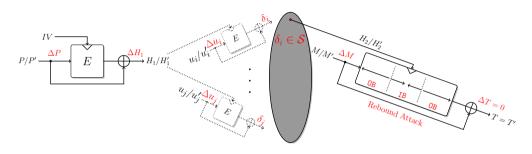
2. Technical contributions

- 2.1 CPC attack framework on AES-like hashing
- 2.2 Improved memoryless algorithm to solve 3-round inbound


- 3.1 Whirlpoo
- 3.2 Saturnin-hash
- 3.3 AES128-MMO/MF

CPC attack framework based on rebound attacks

Find a class of rebound attacks and a set S, such that for any difference in the chaining value (i.e., key in MMO mode) $\delta \in S$, we are able to construct a free-start collision.


CPC attack framework based on rebound attacks

Find a class of rebound attacks and a set S, such that for any difference in the chaining value (i.e., key in MMO mode) $\delta \in S$, we are able to construct a free-start collision.

1. Birthday phase: find (u_i, u_i') such that $\delta_i = CF(IV_0, u_i) \oplus CF(IV_1, u_i') \in S$.

CPC attack framework based on rebound attacks

Find a class of rebound attacks and a set S, such that for any difference in the chaining value (i.e., key in MMO mode) $\delta \in S$, we are able to construct a free-start collision.

- 1. Birthday phase: find (u_i, u_i') such that $\delta_i = CF(IV_0, u_i) \oplus CF(IV_1, u_i') \in S$.
- 2. Rebound phase: perform the related-key rebound attack and according to δ_i .

Complexity analysis

Birthday phase: the time complexity to find proper (u_i, u_i') is $\sqrt{2^n/|\mathcal{S}|}$ in quantum TSTO and classical setting.

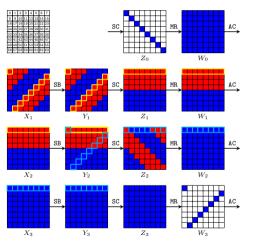
Rebound phase: assuming the probability of the outbound phase as p,

- in classical setting, assuming the time complexity to find one starting point is $\mathcal{T}_{\text{IB}}^c$, the time complexity is $\mathcal{T}_{\text{IB}}^c/p$.
- in quantum TSTO, assuming the time complexity to find one starting point is $\mathcal{T}_{\text{IB}}^q$, the time complexity is $\mathcal{T}_{\text{IB}}^q/\sqrt{p}$.

Remark:

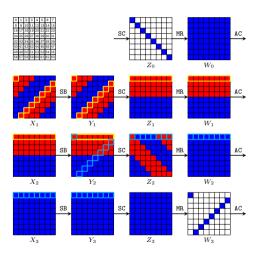
- CPC attacks are backward compatible to collision attacks
- The framework is also a **conversion** from (a particular type of) free-start collision attacks to two-block collision attacks

1. Backgound


- 1.1 Chosen-prefix collision (CPC) attacks
- 1.2 AES-like hashin
- 1.3 Rebound Attacks

2. Technical contributions

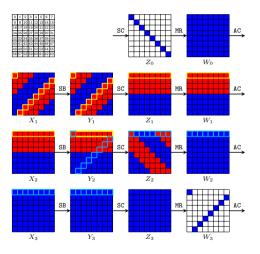
- 2.1 CPC attack framework on AES-like hashing
- 2.2 Improved memoryless algorithm to solve 3-round inbound


- 3.1 Whirlpoo
- 3.2 Saturnin-hash
- 3.3 AES128-MMO/MP

Hosoyamada and Sasaki's memoryless technique [HS20]

"Solving the inbound": given any ΔZ_0 , ΔW_3 (equiv. ΔX_1 , ΔY_3), generate starting point Z_0 , Z_0' .

Hosoyamada and Sasaki's memoryless technique [HS20]

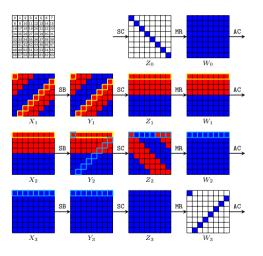


"Solving the inbound": given any ΔZ_0 , ΔW_3 (equiv. ΔX_1 , ΔY_3), generate starting point Z_0 , Z_0' .

Steps:

- 1. Enumerate $X_1[\blacksquare]$, compute $Z_2[\blacksquare]$, $Z_2'[\blacksquare]$
- 2. For row i, enumerate $Z_2[\blacksquare], Z_2'[\blacksquare]$, compute full row i of Y_3, Y_3' , check if they comply with ΔY_3
- 3. After all rows of Y_3 , Y_3' are recovered, compute backward to check if they comply with ΔX_1

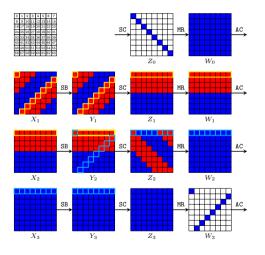
Hosoyamada and Sasaki's memoryless technique [HS20]


"Solving the inbound": given any ΔZ_0 , ΔW_3 (equiv. ΔX_1 , ΔY_3), generate starting point Z_0 , Z_0' .

Steps:

- 1. Enumerate $X_1[\blacksquare]$, compute $Z_2[\blacksquare]$, $Z_2'[\blacksquare]$
- 2. For row i, enumerate $Z_2[\blacksquare], Z_2'[\blacksquare]$, compute full row i of Y_3, Y_3' , check if they comply with ΔY_3
- 3. After all rows of Y_3 , Y_3' are recovered, compute backward to check if they comply with ΔX_1

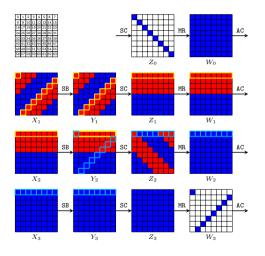
Time:
$$t_C = 2^{8 \cdot (d^2/2 + d/2 + d/2)}$$
, $t_Q = \sqrt{t_C}$
Memory: $O(1)$


Improved memoryless algorithm to solve 3-round inbound

We improve **Step II**, now for each row:

• Instead of enumerating $Z_2[\blacksquare], Z_2'[\blacksquare]$, and check with ΔY_3

Improved memoryless algorithm to solve 3-round inbound



We improve **Step II**, now for each row:

- Instead of enumerating $Z_2[\blacksquare], Z_2'[\blacksquare]$, and check with ΔY_3
- We enumerate $Z_2[lacksquare]$, compute Y_3 , and obtain $Y_3' = \Delta Y_3 \oplus Y_3$

This replaces the filtering on ΔY_3

Improved memoryless algorithm to solve 3-round inbound

We improve **Step II**, now for each row:

- Instead of enumerating $Z_2[\blacksquare], Z_2'[\blacksquare]$, and check with ΔY_3
- We enumerate $Z_2[lacksquare]$, compute Y_3 , and obtain $Y_3' = \Delta Y_3 \oplus Y_3$

This replaces the filtering on ΔY_3

Time: $t_C = 2^{8 \cdot (d^2/2 + d/2)}$, $t_Q = \sqrt{t_C}$ Memory: O(1)

1. Backgound

- 1.1 Chosen-prefix collision (CPC) attacks
- 1.2 AES-like hashing
- 1.3 Rebound Attacks

2. Technical contributions

- 2.1 CPC attack framework on AES-like hashing
- 2.2 Improved memoryless algorithm to solve 3-round inbound

- 3.1 Whirlpool
- 3.2 Saturnin-hash
- 3.3 AES128-MMO/MP

Target	Type of Attack	Rounds	Time	C-Mem	qRAM	Setting	Source
	Collision	4/10	2^{120}	2^{16}	-	Classic	[MRST09]
	Collision	5/10	2^{120}	2^{64}	-	Classic	[LMRRS09; GP10]
	Collision	6/10	2^{248}	2^{248}	-	Classic	[DHSLWH21]
Hash	Collision	6/10	2^{240}	2^{240}	-	Classic	[CGLSZ24]
function	Collision	6/10	2^{228}	-	-	Quantum	[HS20]
	Collision	6/10	$2^{201.4}$	-	-	Quantum	This work
	Collision/CPC	6/10	2 ^{205.4}	-	-	Quantum	This work
	Semi-free	5/10	2 ¹²⁰	2^{16}	-	Classic	[MRST09]
	Semi-free	7/10	2^{184}	2 ⁸	-	Classic	[LMRRS09]
Compression function	Free-start	8/10	2^{120}	2 ⁸	-	Classic	[SWWW12]
	Free-start	9/10	$2^{220.5}$	-	-	Quantum	[DZSWWH21]
	Free-start	9/10	2 ^{204.53}	-	-	Quantum	This work

1. Backgound

- 1.1 Chosen-prefix collision (CPC) attacks
- 1.2 AES-like hashing
- 1.3 Rebound Attacks

2. Technical contributions

- 2.1 CPC attack framework on AES-like hashing
- 2.2 Improved memoryless algorithm to solve 3-round inbound

- 3.1 Whirlpoo
- 3.2 Saturnin-hash
- 3.3 AES128-MMO/MP

Target	Type of Attack	Rounds	Time	C-Mem	qRAM	Setting	Source
Hash	Collision Collision	5/16 7/16	2^{64} $2^{113.5}$	2 ⁶⁴	-	Classic Quantum	[DZSWWH21] [DZSWWH21]
function	Collision/CPC Collision/CPC	6/16 7/16	2 ¹¹² 2 ¹¹³	2 ⁶⁴	-	Classic Quantum	This work This work

1. Backgound

- 1.1 Chosen-prefix collision (CPC) attacks
- 1.2 AES-like hashing
- 1.3 Rebound Attacks

2. Technical contributions

- 2.1 CPC attack framework on AES-like hashing
- 2.2 Improved memoryless algorithm to solve 3-round inbound

- 3.1 Whirlpoo
- 3.2 Saturnin-hash
- 3.3 AES128-MMO/MP

Target	Type of Attack	Rounds	Time	C-Mem	qRAM	Setting	Source
	Collision	5/10	2^{56}	2^{16}	-	Classic	[MRST09]
	Collision	6/10	2^{56}	2^{32}	-	Classic	[LMRRS09; GP10]
	Collision	7/10	$2^{42.5}$	-	2 ⁴⁸	Quantum	[HS20]
	Collision	7/10	$2^{59.5}$	-	-	Quantum	[HS20]
Hash	Collision	7/10	2 ^{45.8}	-	-	Quantum	[DSSGWH20]
function	Collision	8/10	$2^{55.53}$	-	-	Quantum	[DGLP22]
	Collision/CPC	5/10	2 ⁵⁷	2 ³²	-	Classic, MMO	This work
	Collision/CPC	5/10	2^{52}	2^{32}	-	Classic, MP	This work
	Collision/CPC	6/10	2^{61}	-	-	Quantum	This work

Thank you for listening:)