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CODE-BASED CRYPTOGRAPHY

Code-Based Cryptography:
Hardness of decoding a random code

−→ Average-case problem!
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SELF-REDUCIBILITY

Self-reducibility:

Is decoding in average
(
random code

)
as hard as decoding all codes?

−→ Worst-to-average case reduction

• [BLVW19]: Worst-case hardness for LPN and cryptographic hashing via code

smoothing, Eurocrypt ’19

• [YZ21]: Smoothing out binary linear codes and worst-case sub-exponential

hardness for LPN, CRYPTO ’21

−→ Both papers rely on smoothing bounds
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OUR CONTRIBUTIONS

▶ We developed general smoothing bounds to offer a greater degree of freedom

when compared to [BLVW19,YZ21]

▶ We showed some inherent limitation of the worst-to-average case reduction

[BLVW19,YZ21]

▶ We failed to improved parameters of [BLVW19,YZ21] by relying on stronger upper

bounds
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DECODING A RANDOM CODE



CODING THEORY

(
Binary linear

)
code:

A [n, k]-code C is a subspace of Fn2
n : length k : dimension

• Basis/Generator matrix rep.: rows of A ∈ Fk×n
2 form a basis,

C =
{
sA : s ∈ Fk2

}
• Knapsack/Parity-check rep.: C as null space of a full-rank H ∈ F(n−k)×n

2 ,

C =
{
c ∈ Fn2 : Hc⊤ = 0

}

Hamming weight:

∀x ∈ Fn2 , |x| def= {i ∈ [1, n] : xi ≠ 0}
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SOME NOTATION

• X← S : X picked uniformly at random in S

• e← Ber(p)⊗n : the ei’s are independent and P(ei = x) =
{

1− p if x = 0
p if x = 1

Ber(p)⊗n concentrates over words of Hamming weight ≈ np
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AVERAGE DECODING PROBLEM (PRIMAL REPRESENTATION)

DP(n, k, t) primal rep.

• Input: (A, y def= sA+ e) where A← Fk×n
2 , s← Fk2 and e← Ber(t/n)⊗n

• Aim: recover s ∈ Fk2

Equivalent formulation:

▶ Syndrome decoding problem: given H and He⊤ recover e . . .

Learning Parity with Noise (LPN): easier than DP(n, k, t)

▶ n
(
number of samples

)
can be chosen as large as we want
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WORST TO AVERAGE CASE REDUCTION



THE PROBLEM

We are given a fixed instance

(G, xG+ r) where the Hamming weight of r is w

and we want to recover r.

But, we have an algorithm A solving DP with probability ε(
it does not solve for any A, s, e

)
PA,s,e (A(A, sA+ e) = e) = ε
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THE APPROACH

⟨a,b⟩ def=
∑

aibi

Key-idea:

From (G, y def= xG+ r), build a “uniform” instance that will being fed to A

1. e← D
(
distribution which can be chosen as we want

)
2. Compute,

⟨y, e⟩ = ⟨xG, e⟩+ ⟨r, e⟩ = ⟨ x︸︷︷︸
secret

, eG⊤⟩+ ⟨r, e⟩︸ ︷︷ ︸
noise

To build a truly Decoding instance:

▶ We would like eG⊤ “very close to uniform”

▶ Need to analyze noise distribution e = ⟨r, e⟩ (the easy part)
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CONTRADICTORY REQUIREMENTS

⟨y, e⟩ = ⟨xG, e⟩+ ⟨r, e⟩ = ⟨ x︸︷︷︸
secret

, eG⊤⟩+ ⟨r, e⟩︸ ︷︷ ︸
noise

−→ We want eG⊤ “very close to uniform”

A first approach:

Choose each bit of e with probability 1/2, then eG⊤ is uniform

But, doing this is useless: ⟨r, e⟩ will be a uniform noise. . .

Therefore, impossible to solve

eG⊤, ⟨x, eG⊤⟩+ ⟨r, e⟩︸ ︷︷ ︸
noise



−→ We need to carefully choose the noise!
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CLOSENESS: STATISTICAL DISTANCE

Statistical distance:
Given two random variables X, Y with distributions f, g,

∆(X, Y) = ∆(f, g) = 1
2
∑
x
|f(x)− g(x)|

If an algorithm succeeds with inputs X and probability ε, then it succeeds given Y with

probability ≥ ε−∆(X, Y)
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OUR AIM

True Random decoding sample

1. We want the following to be small:

α
def
= ∆

(
(eG⊤, ⟨x, eG⊤⟩+ ⟨r, e⟩), ( a︸︷︷︸

uniform

, ⟨x, a⟩+ e︸︷︷︸
same distrib as ⟨r, e⟩

)
)

2. Then we feed
(
eG⊤, ⟨x, eG⊤⟩+ ⟨r, e⟩

)
to the Decoding-solver A with prob. ε

3. If we give n samples to A, it will recover x with prob. ≥ ε− nα

A simplification for the talk:

We will target ∆

eG⊤, a︸︷︷︸
uniform

 to be small when G is fixed but e random variable
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A GEOMETRICAL INTERPRETATION: PRIMAL REPRESENTATION

Aim: ∆

eG⊤, a︸︷︷︸
uniform

 small

Which object is eG⊤?

−→ Let us take the code C ⊆ Fn2 point of view

C =
{
c : cG⊤ = 0

}

eG⊤ defines a coset of C

Primal representation:

eG⊤ uniform⇐⇒ uniform in Fn2/C, i.e. uniform modulo C

eG⊤ uniform for e← D ⇐⇒ c+ e uniform in Fn2 where c← C and e← D
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POTATOES

c+ e uniform in Fn2 where c← C and e← D

c ∈ C

after adding noise

Fn2

Starting from codewords and adding noise
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POTATOES

c+ e uniform in Fn2 where c← C and e← D

c ∈ C

after adding noise

Fn2

Starting from codewords and adding noise

Optimal ball radius: Gilbert-Varshamov radius

tGV : smallest t such that
(n
t

)
· ♯C ≥ 2n = ♯Fn2
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SMOOTHING PARAMETER



OUR RESULT

Notation:

• unif: uniform distribution of Fn2

• 1C : indicator function of C =
{
c : cG⊤ = 0

}
• Convolution, f ⋆ g(x) def=

∑
y∈Fn2

f(y)g(x− y)

If X← f and Y← g are independent, then X+ Y← f ⋆ g

Our upper bound:

∆

(
1C
♯C

⋆ f, unif
)
≤

√
2n

∑
u>0

Nu(C⊥)|̂f(u)|2

where C⊥ dual code and Nu(C⊥) = ♯
{
c⊥ ∈ C⊥ : |c⊥| = u

}
(
via Cauchy-Schwartz + Parseval

)
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OUR DREAM

Our dream:
If f concentrates over words of Hamming weight t, then√
2n

∑
u>0

Nu(C⊥)|̂f(u)|2 is negligible as soon as t ≥ tGV

−→ Optimal smoothing noise!
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THE RANDOM CASE

Upper bound in average:

EC⊥

√
2n

∑
u>0

Nu(C⊥)|̂f(u)|2
 ≤

√√√√2n
∑
u>0

(n
u
)

2k
|̂f(u)|2

−→ This “average” upper bound is only function of f
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CHOICES OF DISTRIBUTION

▶ Choose f as Ber(t/n)⊗n , then our bound is negligible when

t ≥ n
2

(
1−

√
2k/n − 1

)
≫ tGV

▶ Choose f as uniform distribution over sphere with radius t, then our bound is

negligible when
t ≥ tGV

Conclusion:
Our bound enables optimal smoothing noise
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ABOUT THE NON-RANDOM CASE

We need to obtain a bound for a fixed C, but how to upper-bound Nu(C⊥)?

−→ We used the best known upper-bound
(
second linear programming bound

)

Failed attempt:
We obtained exactly the same constraint than already known smoothing bound using

implicitly the trivial bound Nu(C⊥) ≤ ♯C⊥
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CONCLUSION



CONCLUSION

▶ The worst-to-average case reduction can now be instantiated with any

distribution for smoothing and our bound enables optimal parameter choice

▶ The Bernoulli distribution is not a good choice
(
unless to use a truncated

argument
)

▶ The reduction has inherent limitation du to the constraint coming from the

Gilbert-Varshamov radius
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