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CODE-BASED CRYPTOGRAPHY

Code-Based Cryptography:
Hardness of decoding a random code J

— Average-case problem!



SELF-REDUCIBILITY

Self-reducibility: J

Is decoding in average (random code) as hard as decoding all codes?

— Worst-to-average case reduction

e [BLVW19]: Worst-case hardness for LPN and cryptographic hashing via code

smoothing, Eurocrypt "19

e [YZ21]: Smoothing out binary linear codes and worst-case sub-exponential

hardness for LPN, CRYPTO '21

— Both papers rely on smoothing bounds



OUR CONTRIBUTIONS

» We developed general smoothing bounds to offer a greater degree of freedom

when compared to [BLVW19,YZ21]

» We showed some inherent limitation of the worst-to-average case reduction

[BLVW19,YZ21]

> We failed to improved parameters of [BLVW19,YZ21] by relying on stronger upper

bounds



DECODING A RANDOM CODE



CODING THEORY

(Binary linear) code:
A [n, R]-code C is a subspace of F]
n: length k: dimension

e Basis/Generator matrix rep.: rows of A € F£*" form a basis,

C:{SA: SGFS}

e Knapsack/Parity-check rep.: C as null space of a full-rank H € ]Fﬁ”_k)xn,

c={ceF]: H™ =0}

Hamming weight:
n def .
vxeFy), |x| ={ie[l,n]: x#0} J




SOME NOTATION

e X« S: Xpicked uniformly at random in S

1—p ifx=0

o e« Ber(p)®": the g;'s are independent and P(g; = x) = { 5 =1

Ber(p)®" concentrates over words of Hamming weight ~ np )




AVERAGE DECODING PROBLEM (PRIMAL REPRESENTATION)

DP(n, k,t) primal rep.

o Input: (A,y %' sA + e) where A « FfX" s « F% and e <+ Ber(t/n)®"

e Aim: recover s € %

Equivalent formulation:

» Syndrome decoding problem: given H and He T recovere. ..

Learning Parity with Noise (LPN): easier than DP(n, k, t)

> n (number of samples) can be chosen as large as we want



WORST TO AVERAGE CASE REDUCTION



THE PROBLEM

We are given a fixed instance

(G, xG + r) where the Hamming weight of r is w )

and we want to recoverr.

But, we have an algorithm A solving DP with probability e

(it does not solve for any A, s, e)

Prse (A(A,SA+e)=e)=¢



THE APPROACH

(a,b) £ 3" ai;

Key-idea: J

From (G,y % xG + r), build a “uniform” instance that will being fed to A

1. e+ D (distribution which can be chosen as we want)

2. Compute,
,e) = (xG,e) 4+ (r,e) = ( x ,eG') +(r,e
(y,e) ={ ) +(re) <v )+ (r.e)

secret noise

To build a truly Decoding instance:

» We would like eGT “very close to uniform”

> Need to analyze noise distribution e = (r, e) (the easy part)




CONTRADICTORY REQUIREMENTS

<y> e) = <X67e> + <r’ e> = <\X’,7 eGT> +&/e_>’

secret noise

— We want eGT “very close to uniform”

A first approach:
Choose each bit of e with probability 1/2, then eGT is uniform J

But, doing this is useless: (r,e) will be a uniform noise. ..

Therefore, impossible to solve (eGT, (x,eGT) + (r, e))
~———

noise

— We need to carefully choose the noise! )
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CLOSENESS: STATISTICAL DISTANCE

Statistical distance:

Given two random variables X, Y with distributions f, g,

AKY) = A(9) = 5 3100 - 909

If an algorithm succeeds with inputs X and probability €, then it succeeds given Y with

probability > e — A(X,Y)



OUR AIM

True Random decoding sample

1. We want the following to be small:

a d:‘E‘CA((eGT, (x,eG ") + (r,e)), (\a/, (x,a) + & ))

uniform same distrib as (r, e)

2. Then we feed (eGT, (x,eGT) + (r,e)) to the Decoding-solver A with prob. e

3. If we give n samples to A, it will recover x with prob. > e — na

A simplification for the talk:

uniform

We will target A (eGT, \a/) to be small when G is fixed but e random variable




A GEOMETRICAL INTERPRETATION: PRIMAL REPRESENTATION
Aim: A <eGT, a ) small

Which object is eGT ?

— Let us take the code C C FJ point of view
C= {c DGl = 0} J

eGT defines a coset of C

Primal representation:

eG " uniform <= uniform in F§/C, i.e. uniform modulo C

eG T uniform for e « D <=> ¢ + e uniform in F) wherec«+ Cande «+ D

14



POTATOES

¢ + e uniform in F) where c <— C and e <~ D J

Starting from codewords and adding noise

o cecC

after adding noise




POTATOES

¢ + e uniform in F) where c <— C and e < D J

Starting from codewords and adding noise

o cecC

after adding noise

Optimal ball radius: Gilbert-Varshamov radius J

tey : smallest t such that (:) HC > 2" = {FY




SMOOTHING PARAMETER



OUR RESULT

Notation:

e unif: uniform distribution of ¥

e 1c: indicator function of C = {c: ¢GT =0}

o Convolution, fx g(x) &' 2yer fY)9(x —)

If X< fand Y < g are independent, then X+ Y « fxg

Our upper bound:

u>0

where ¢+ dual code and Ny (Ct) = ¢ {ci- ect: |t = u}

(via Cauchy-Schwartz + Parseval>



OUR DREAM

Our dream:

If f concentrates over words of Hamming weight t, then

\/2” S Nu(CL)[f(u)]? is negligible as soon as t > tgy
u>0

— Optimal smoothing noise!



THE RANDOM CASE

Upper bound in average:
Ecs ( DY Nu(Cl)If(U)|2> NEDD %ﬁwz
u>0 u>0

— This “average” upper bound is only function of f
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CHOICES OF DISTRIBUTION

> Choose fas Ber(t/n)®", then our bound is negligible when

t> g (1— V27 —1) > tov

» Choose fas uniform distribution over sphere with radius t, then our bound is
negligible when
t > tey

Conclusion:
Our bound enables optimal smoothing noise J
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ABOUT THE NON-RANDOM CASE

We need to obtain a bound for a fixed C, but how to upper-bound Ny (C+)? )

— We used the best known upper-bound (second linear programming bound)

Failed attempt:
We obtained exactly the same constraint than already known smoothing bound using

implicitly the trivial bound Ny(C*) < fCt
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CONCLUSION



CONCLUSION

» The worst-to-average case reduction can now be instantiated with any

distribution for smoothing and our bound enables optimal parameter choice

» The Bernoulli distribution is not a good choice (unless to use a truncated

argument)

» The reduction has inherent limitation du to the constraint coming from the

Gilbert-Varshamov radius
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