Lattice-based Proof-Friendly Signatures from Vanishing Short Integer Solutions

Adrien Dubois¹, Michael Klooß², Russell W. F. Lai³ Ivy K. Y. Woo³

¹ENS de Lyon, France ²ETH Zurich, Switzerland ³Aalto University, Finland

Why proof-friendly signatures?

Why proof-friendly signatures?

Starting point for proof-friendly signatures

Pairing-based Cryptography

Boneh-Boyen (BB) Signatures Boneh-Boyen-Shacham (BBS) Signatures Starting point for proof-friendly signatures

Pairing-based Cryptography

Boneh-Boyen (BB) Signatures Boneh-Boyen-Shacham (BBS) Signatures

Boneh Boyen (BB) signatures (lite version) [BB04]

The simplest pairing-based (proof-friendly) signature scheme.

Setting:

 \dagger Cyclic groups \mathbb{G} and $\mathbb{G}_{\mathcal{T}}$ of prime order q

† Implicit notation for group elements: $[a] = a \cdot [1]$, $[a]_T = a \cdot [1]_T$, [a] + [b] = [a + b]

† Pairing $\cdot : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$, $[a] \cdot [b] = [ab]_T$

Construction:

public key :
$$[x] \in \mathbb{G}$$

secret key : $x \in \mathbb{Z}_q$
signature of $m \in \mathbb{Z}_q$: $[u] = \left[rac{1}{x-m}
ight] \in \mathbb{G}$

Verification:

$$([x] - [1] \cdot m) \cdot [u] \stackrel{?}{=} [1]_T$$

Boneh Boyen (BB) signatures (lite version) [BB04]

The simplest pairing-based (proof-friendly) signature scheme.

Setting:

- \dagger Cyclic groups \mathbb{G} and $\mathbb{G}_{\mathcal{T}}$ of prime order q
- † Implicit notation for group elements: $[a] = a \cdot [1]$, $[a]_T = a \cdot [1]_T$, [a] + [b] = [a + b]
- † Pairing $\cdot : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{T}, \ [a] \cdot [b] = [ab]_{T}$

Construction:

public key :
$$[x] \in \mathbb{G}$$

secret key : $x \in \mathbb{Z}_q$
signature of $m \in \mathbb{Z}_q$: $[u] = \left[\frac{1}{x-m}\right] \in \mathbb{G}$

Verification:

$$([x] - [1] \cdot m) \cdot [u] \stackrel{?}{=} [1]_T$$

Boneh Boyen (BB) signatures (lite version) [BB04]

The simplest pairing-based (proof-friendly) signature scheme.

Setting:

- \dagger Cyclic groups ${\mathbb G}$ and ${\mathbb G}_{\mathcal T}$ of prime order q
- † Implicit notation for group elements: $[a] = a \cdot [1]$, $[a]_T = a \cdot [1]_T$, [a] + [b] = [a + b]
- † Pairing $\cdot : \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T, \ [a] \cdot [b] = [ab]_T$

Construction:

public key :
$$[x] \in \mathbb{G}$$

secret key : $x \in \mathbb{Z}_q$
signature of $m \in \mathbb{Z}_q$: $[u] = \left[\frac{1}{x-m}\right] \in \mathbb{G}$

Verification:

$$([x] - [1] \cdot m) \cdot [u] \stackrel{?}{=} [1]_T$$

Boneh Boyen Shacham (BBS) signatures [BBS04]

A popular pairing-based proof-friendly signature scheme. Extension of BB signatures which allows to **sign committed messages**.

Construction:

public key : $[\mathbf{c}] \in \mathbb{G}^{\ell}, [d] \in \mathbb{G}, [x] \in \mathbb{G}$ secret key : $x \in \mathbb{Z}_q$ signature of $\mathbf{m} \in \mathbb{Z}_q^{\ell}$: $[u] \in \mathbb{G}, t \in \mathbb{Z}_q$ where $[u] = \frac{\langle [\mathbf{c}], \mathbf{m} \rangle + [d]}{x - t}$

Verification:

$$([x] - [1] \cdot t) \cdot [u] \stackrel{?}{=} \langle [\mathbf{c}], \mathbf{m} \rangle + [d]$$

Verification is a single pairing equation, i.e. quadratic in $(\mathbf{m}, [u], t)$ – very friendly to the Groth-Sahai proof system.

Boneh Boyen Shacham (BBS) signatures [BBS04]

A popular pairing-based proof-friendly signature scheme. Extension of BB signatures which allows to **sign committed messages**.

Construction:

public key : $[\mathbf{c}] \in \mathbb{G}^{\ell}, [d] \in \mathbb{G}, [x] \in \mathbb{G}$ secret key : $x \in \mathbb{Z}_q$ signature of $\mathbf{m} \in \mathbb{Z}_q^{\ell}$: $[u] \in \mathbb{G}, t \in \mathbb{Z}_q$ where $[u] = \frac{\langle [\mathbf{c}], \mathbf{m} \rangle + [d]}{v - t}$

Verification:

$$([x] - [1] \cdot t) \cdot [u] \stackrel{?}{=} \langle [\mathbf{c}], \mathbf{m} \rangle + [d]$$

Verification is a single pairing equation, i.e. quadratic in $(\mathbf{m}, [u], t)$ – very friendly to the Groth-Sahai proof system.

Boneh Boyen Shacham (BBS) signatures [BBS04]

A popular pairing-based proof-friendly signature scheme. Extension of BB signatures which allows to **sign committed messages**.

Construction:

public key :
$$[\mathbf{c}] \in \mathbb{G}^{\ell}, [d] \in \mathbb{G}, [x] \in \mathbb{G}$$

secret key : $x \in \mathbb{Z}_q$
signature of $\mathbf{m} \in \mathbb{Z}_q^{\ell}$: $[u] \in \mathbb{G}, t \in \mathbb{Z}_q$ where $[u] = \frac{\langle [\mathbf{c}], \mathbf{m} \rangle + [d]}{x - t}$

Verification:

$$([x] - [1] \cdot t) \cdot [u] \stackrel{?}{=} \langle [\mathbf{c}], \mathbf{m} \rangle + [d]$$

Verification is a single pairing equation, i.e. quadratic in $(\mathbf{m}, [u], t)$ – very friendly to the Groth-Sahai proof system.

Q: What is "proof-friendly" for lattice-based signatures?

A: Verification is checking bounded-norm satisfiability of system of linear and low-degree polynomials

 \rightsquigarrow very friendly to e.g. the [LNP22] proof system.

Jeudy, Roux-Langlois and Sanders [JRS23]:

$$(\mathbf{A} | \mathbf{B} + t \cdot \mathbf{G}) \cdot \mathbf{u} \stackrel{?}{=} \mathbf{C} \cdot \mathbf{m} + \mathbf{d} \mod \alpha$$
$$\land ||\mathbf{m}||, ||\mathbf{u}|| \stackrel{?}{\leq} \beta \land t \stackrel{?}{\in} \mathcal{T}$$

ightarrow Require gadget trapdoorightarrow Large (e.g. > 100 kB) signature size

Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23]:

$$\mathbf{A} \cdot \mathbf{u} \stackrel{?}{=} \mathbf{C} \cdot \mathbf{m} + f(t) \mod q$$
$$\land \|\mathbf{m}\|, \|\mathbf{u}\| \stackrel{?}{\leq} \beta \land t \stackrel{?}{\in} \mathcal{T}$$

 \rightarrow Security critically depends on choice of *f* \rightarrow [BLNS23] focuses on *f* = binary decomposition

Q: What is "proof-friendly" for lattice-based signatures?

A: Verification is checking bounded-norm satisfiability of system of linear and low-degree polynomials

 \rightsquigarrow very friendly to e.g. the [LNP22] proof system.

Jeudy, Roux-Langlois and Sanders [JRS23]:

$$(\mathbf{A} | \mathbf{B} + t \cdot \mathbf{G}) \cdot \mathbf{u} \stackrel{?}{=} \mathbf{C} \cdot \mathbf{m} + \mathbf{d} \mod q$$
$$\land ||\mathbf{m}||, ||\mathbf{u}|| \stackrel{?}{\leq} \beta \land t \stackrel{?}{\in} \mathcal{T}$$

ightarrow Require gadget trapdoor \Longrightarrow Large (e.g. > 100 kB) signature size

Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23]:

$$\mathbf{A} \cdot \mathbf{u} \stackrel{?}{=} \mathbf{C} \cdot \mathbf{m} + f(t) \mod q$$
$$\land \|\mathbf{m}\|, \|\mathbf{u}\| \stackrel{?}{\leq} \beta \land t \stackrel{?}{\in} \mathcal{T}$$

 \rightarrow Security critically depends on choice of *f* \rightarrow [BLNS23] focuses on *f* = binary decomposition

Q: What is "proof-friendly" for lattice-based signatures?

A: Verification is checking bounded-norm satisfiability of system of linear and low-degree polynomials

 \rightsquigarrow very friendly to e.g. the [LNP22] proof system.

Jeudy, Roux-Langlois and Sanders [JRS23]:

ightarrow Require gadget trapdoor \Longrightarrow Large (e.g. > 100 kB) signature size

Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23]:

$$\mathbf{A} \cdot \mathbf{u} \stackrel{?}{=} \mathbf{C} \cdot \mathbf{m} + f(t) \mod q$$
$$\land \|\mathbf{m}\|, \|\mathbf{u}\| \stackrel{?}{\leq} \beta \land t \stackrel{?}{\in} \mathcal{T}$$

 \rightarrow Security critically depends on choice of *f* \rightarrow [BLNS23] focuses on *f* = binary decomposition

Q: What is "proof-friendly" for lattice-based signatures?

A: Verification is checking bounded-norm satisfiability of system of linear and low-degree polynomials

 \rightsquigarrow very friendly to e.g. the [LNP22] proof system.

Jeudy, Roux-Langlois and Sanders [JRS23]:

$$(\mathbf{A} | \mathbf{B} + t \cdot \mathbf{G}) \cdot \mathbf{u} \stackrel{?}{=} \mathbf{C} \cdot \mathbf{m} + \mathbf{d} \mod q$$
$$\land ||\mathbf{m}||, ||\mathbf{u}|| \stackrel{?}{\leq} \beta \land t \stackrel{?}{\in} \mathcal{T}$$

ightarrow Require gadget trapdoor \Longrightarrow Large (e.g. > 100 kB) signature size

Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23]:

$$\mathbf{A} \cdot \mathbf{u} \stackrel{?}{=} \mathbf{C} \cdot \mathbf{m} + f(t) \mod q$$
$$\land \|\mathbf{m}\|, \|\mathbf{u}\| \stackrel{?}{\leq} \beta \land t \stackrel{?}{\in} \mathcal{T}$$

→ Security critically depends on choice of f→ [BLNS23] focuses on f = binary decomposition

Q: What is "proof-friendly" for lattice-based signatures?

A: Verification is checking bounded-norm satisfiability of system of linear and low-degree polynomials

 \rightsquigarrow very friendly to e.g. the [LNP22] proof system.

Jeudy, Roux-Langlois and Sanders [JRS23]:

ightarrow Require gadget trapdoor \Longrightarrow Large (e.g. > 100 kB) signature size

Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23]:

$$\mathbf{A} \cdot \mathbf{u} \stackrel{?}{=} \mathbf{C} \cdot \mathbf{m} + f(t) \mod q$$
$$\land \|\mathbf{m}\|, \|\mathbf{u}\| \stackrel{?}{\leq} \beta \land t \stackrel{?}{\in} \mathcal{T}$$

→ Security critically depends on choice of f→ [BLNS23] focuses on f = binary decomposition

More proof-friendly signatures?

Gist:

- † Lattice-based proof-friendly signatures are scarce
- † Idea: Following [ACLMT22], translate BB/BBS to lattice setting!
- † Goal: Efficient designs and need from new plausible assumptions

Roadmap:

- [†] Vanishing short integer solution (vSIS) [CLM23]
- † Strong hinted vSIS (s-Hint-vSIS)
- † (Selectively secure) signatures from s-Hint-vSIS
- † Connection with ISIS_f [BLNS23] and upgrade to adaptive security

More proof-friendly signatures?

Gist:

- † Lattice-based proof-friendly signatures are scarce
- † Idea: Following [ACLMT22], translate BB/BBS to lattice setting!
- † Goal: Efficient designs and need from new plausible assumptions

Roadmap:

- † Vanishing short integer solution (vSIS) [CLM23]
- † Strong hinted vSIS (s-Hint-vSIS)
- † (Selectively secure) signatures from s-Hint-vSIS
- † Connection with ISIS_f [BLNS23] and upgrade to adaptive security

- † Input: matrix $\mathbf{A} \leftarrow \mathbb{Z}_q^{n \times m}$
- † Output: vector $\mathbf{u}^* \in \mathbb{Z}^m$
- † Winning condition:

$$\left(egin{array}{c} {\sf A} \end{array}
ight) \left({\sf u}^*
ight) = \left({\sf 0}
ight) ext{ mod } q ext{ such that } ext{ } 0 < \|{\sf u}^*\| \leq eta$$

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,m} \\ a_{2,1} & \cdots & a_{2,m} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,m} \end{pmatrix} \begin{pmatrix} u_1^* \\ u_2^* \\ \vdots \\ u_m^* \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \mod q$$

$$\begin{pmatrix} a_{1,1}^2 & \cdots & a_{1,m}^2 \\ a_{2,1}^2 & \cdots & a_{2,m}^2 \\ \vdots & \ddots & \vdots \\ a_{n,1}^2 & \cdots & a_{n,m}^2 \end{pmatrix} \begin{pmatrix} u_1^* \\ u_2^* \\ \vdots \\ u_m^* \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \mod q$$

Uniformly sampled
$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_n^T \end{pmatrix} \in \mathbb{Z}_q^{n \times m}$$

Set of *m*-variate rational functions $\mathcal{F} = \{f_1, \cdots, f_k\}$.

$$\begin{pmatrix} f_1(\mathbf{a}_1) & \cdots & f_k(\mathbf{a}_1) \\ f_1(\mathbf{a}_2) & \cdots & f_k(\mathbf{a}_2) \\ \vdots & \ddots & \vdots \\ f_1(\mathbf{a}_n) & \cdots & f_k(\mathbf{a}_n) \end{pmatrix} \begin{pmatrix} u_1^* \\ u_2^* \\ \vdots \\ u_m^* \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \mod q$$

Vanishing short integer solution (vSIS)

Proposed by Cini, Lai and Malavolta [CLM23]

- † **Parameters:** \mathcal{R} , *n*, *m*, *q*, β , family \mathcal{F} of *m*-variate rational functions over \mathcal{R}
- † Input: matrix $\mathbf{A} \leftarrow \mathcal{R}_q^{n \times m}$
- \dagger Output: vector $\mathbf{u}^* \in \mathcal{R}^\mathcal{F}$
- † Winning conditions:

[‡] For each row
$$\mathbf{a}_i$$
 of \mathbf{A} ,
it holds that $\sum_{f \in \mathcal{F}} f(\mathbf{a}_i) \cdot u_f^* = \mathcal{F}(\mathbf{a}_i) \cdot \mathbf{u}^* = 0 \mod q$
[‡] $0 < \|\mathbf{u}^*\| \le \beta$

For trivial \mathcal{F} where $\mathcal{F}(\mathbf{A}) = \mathbf{A}$, we recover the standard SIS problem (with parameters \mathcal{R}, n, m, q).

Vanishing short integer solution (vSIS)

Proposed by Cini, Lai and Malavolta [CLM23]

- † **Parameters:** \mathcal{R} , *n*, *m*, *q*, β , family \mathcal{F} of *m*-variate rational functions over \mathcal{R}
- † Input: matrix $\mathbf{A} \leftarrow \mathcal{R}_q^{n \times m}$
- \dagger Output: vector $\mathbf{u}^* \in \mathcal{R}^\mathcal{F}$
- † Winning conditions:

[‡] For each row
$$\mathbf{a}_i$$
 of \mathbf{A} ,
it holds that $\sum_{f \in \mathcal{F}} f(\mathbf{a}_i) \cdot u_f^* = \mathcal{F}(\mathbf{a}_i) \cdot \mathbf{u}^* = 0 \mod q$
[‡] $0 < \|\mathbf{u}^*\| \le \beta$

For trivial \mathcal{F} where $\mathcal{F}(\mathbf{A}) = \mathbf{A}$, we recover the standard SIS problem (with parameters \mathcal{R}, n, m, q).

† **Parameters:** \mathcal{R} , *n*, *m*, *q*, β , *s*, *Q*, families \mathcal{F} , \mathcal{G} , \mathcal{H} of *m*-variate rational functions over \mathcal{R}

- † Input: matrix A \leftarrow \$ $\mathcal{R}_q^{n \times m}$
- † **Hints:** On selectively choosen queries subset $\{h_1, .., h_Q\} \subseteq_Q \mathcal{H}$, the hints are $\mathbf{u}_1, .., \mathbf{u}_Q$ such that
 - [‡] For each $j \in [m]$, $\mathcal{F}(\mathbf{a}_j) \cdot \mathbf{u}_i = h_i(\mathbf{a}_j) \mod q$ (or more compactly $\mathcal{F}(\mathbf{A}) \cdot \mathbf{u}_i = h_i(\mathbf{A})$)
 - $\mathbf{I} \quad \mathbf{0} < \|\mathbf{u}_i\| \le \beta$
- † Output: vector $\mathbf{u}^{*}\in\mathcal{R}^{\mathcal{F}}$ and $g^{*}\in\mathcal{G}\setminus\mathcal{Q}$
- † Winning conditions:
 - $\stackrel{\ddagger}{} \mathcal{F}(\mathbf{A}) \cdot \mathbf{u}^* = g^*(\mathbf{A}) \mod q$ $\stackrel{\ddagger}{} 0 < \|\mathbf{u}^*\| \le \beta$

† **Parameters:** \mathcal{R} , *n*, *m*, *q*, β , *s*, *Q*, families \mathcal{F} , \mathcal{G} , \mathcal{H} of *m*-variate rational functions over \mathcal{R}

† Input: matrix $\mathbf{A} \leftarrow \mathcal{R}_q^{n \times m}$

† Hints: On selectively choosen queries subset $\{h_1, .., h_Q\} \subseteq_Q \mathcal{H}$, the hints are $u_1, .., u_Q$ such that

For each
$$j \in [m]$$
, $\mathcal{F}(\mathbf{a}_j) \cdot \mathbf{u}_i = h_i(\mathbf{a}_j) \mod q$ (or more compactly $\mathcal{F}(\mathbf{A}) \cdot \mathbf{u}_i = h_i(\mathbf{A})$)

 $0 < \|\mathbf{u}_i\| \le \beta$

- † Output: vector $\mathbf{u}^{*}\in\mathcal{R}^{\mathcal{F}}$ and $g^{*}\in\mathcal{G}\setminus\mathcal{Q}$
- † Winning conditions:

$$\begin{array}{l} \ddagger \ \mathcal{F}(\mathbf{A}) \cdot \mathbf{u}^* = g^*(\mathbf{A}) \ \mathsf{mod} \ q \\ \ddagger \ 0 < \|\mathbf{u}^*\| \le \beta \end{array}$$

- † **Parameters:** \mathcal{R} , *n*, *m*, *q*, β , *s*, *Q*, families \mathcal{F} , \mathcal{G} , \mathcal{H} of *m*-variate rational functions over \mathcal{R}
- † Input: matrix $\mathbf{A} \leftarrow \mathcal{R}_q^{n \times m}$
- † Hints: On selectively choosen queries subset $\{h_1, .., h_Q\} \subseteq_Q \mathcal{H}$, the hints are $\mathbf{u}_1, .., \mathbf{u}_Q$ such that
 - [‡] For each *j* ∈ [*m*], $\mathcal{F}(\mathbf{a}_j) \cdot \mathbf{u}_i = h_i(\mathbf{a}_j) \mod q$ (or more compactly $\mathcal{F}(\mathbf{A}) \cdot \mathbf{u}_i = h_i(\mathbf{A})$) [‡] 0 < ||**u**_i|| ≤ β
- † Output: vector $\mathbf{u}^{*}\in\mathcal{R}^{\mathcal{F}}$ and $g^{*}\in\mathcal{G}\setminus\mathcal{Q}$
- † Winning conditions:
 - $\begin{array}{l} \vdots \ \mathcal{F}(\mathbf{A}) \cdot \mathbf{u}^* = g^*(\mathbf{A}) \ \text{mod} \ q \\ \vdots \ 0 < \|\mathbf{u}^*\| \le \beta \end{array}$

- † **Parameters:** \mathcal{R} , *n*, *m*, *q*, β , *s*, *Q*, families \mathcal{F} , \mathcal{G} , \mathcal{H} of *m*-variate rational functions over \mathcal{R}
- † Input: matrix $\mathbf{A} \leftarrow \mathcal{R}_q^{n \times m}$
- † Hints: On selectively choosen queries subset $\{h_1, .., h_Q\} \subseteq_Q \mathcal{H}$, the hints are $\mathbf{u}_1, .., \mathbf{u}_Q$ such that
 - [‡] For each *j* ∈ [*m*], $\mathcal{F}(\mathbf{a}_j) \cdot \mathbf{u}_i = h_i(\mathbf{a}_j) \mod q$ (or more compactly $\mathcal{F}(\mathbf{A}) \cdot \mathbf{u}_i = h_i(\mathbf{A})$) [‡] 0 < ||**u**_i|| ≤ β
- \dagger Output: vector $\mathbf{u}^* \in \mathcal{R}^\mathcal{F}$ and $g^* \in \mathcal{G} \setminus \mathcal{Q}$

† Winning conditions:

 $\begin{array}{l} \ddagger \ \mathcal{F}(\mathbf{A}) \cdot \mathbf{u}^* = g^*(\mathbf{A}) \bmod q \\ \ddagger \ 0 < \|\mathbf{u}^*\| \le \beta \end{array}$

- [†] **Parameters:** \mathcal{R} , *n*, *m*, *q*, β , *s*, *Q*, families \mathcal{F} , \mathcal{G} , \mathcal{H} of *m*-variate rational functions over \mathcal{R}
- † Input: matrix $\mathbf{A} \leftarrow \mathcal{R}_q^{n \times m}$
- † Hints: On selectively choosen queries subset $\{h_1, .., h_Q\} \subseteq_Q \mathcal{H}$, the hints are $\mathbf{u}_1, .., \mathbf{u}_Q$ such that
 - [‡] For each $j \in [m]$, $\mathcal{F}(\mathbf{a}_j) \cdot \mathbf{u}_i = h_i(\mathbf{a}_j) \mod q$ (or more compactly $\mathcal{F}(\mathbf{A}) \cdot \mathbf{u}_i = h_i(\mathbf{A})$) [‡] $0 < \|\mathbf{u}_i\| \le \beta$
- \dagger Output: vector $\mathbf{u}^* \in \mathcal{R}^\mathcal{F}$ and $g^* \in \mathcal{G} \setminus \mathcal{Q}$
- † Winning conditions:
 - $\begin{array}{l} \ddagger \quad \mathcal{F}(\mathbf{A}) \cdot \mathbf{u}^* = g^*(\mathbf{A}) \bmod q \\ \ddagger \quad 0 < \|\mathbf{u}^*\| \le \beta \end{array}$

How plausible is s-Hint-vSIS?

Heuristic: Strong Linear Independance

If $\mathcal F$ is "strongly linearly independent", i.e. (roughly) for any non-zero $\mathbf u\in \mathcal R^{\mathcal F}$

$$\Pr[\mathcal{F}(\mathbf{A}) \cdot \mathbf{u} = \mathbf{0} \mod q \mid \mathbf{A} \leftarrow \mathfrak{R}_q^{n \times m}] \leq \operatorname{negl}(\lambda),$$

then the vSIS assumption for ${\cal F}$ holds.

Signatures from strong hinted vSIS

[†] For each message μ and randomness τ , define rational function $h_{\mu,\tau}$. Example: $h_{\mu,\tau}(\mathbf{B}) = \frac{1}{\tau - \mu}$

$$+ \mathcal{F}(\mathbf{A}) = \mathbf{A}, \mathcal{H} = \{h_{\mu, au}\}_{\mu, au}, \mathcal{G} = \mathcal{H} \cup \{0\},$$

Construction:

$$\ddagger$$
 Public key: pk $= oldsymbol{A} \in \mathcal{R}_q^{n imes m}, oldsymbol{B} \in \mathcal{R}_q^{n imes \ell}$

- \ddagger Secret key: sk = trapdoor of A
- \ddagger Signature of μ : randomness $au \leftarrow$ \$ $\mathcal T$ and vector $\mathbf u \in \mathcal R^m$ where

$$\mathbf{A} \cdot \mathbf{u} = h_{\mu,\tau}(\mathbf{B}) \bmod q \land \|\mathbf{u}\| \leq \beta.$$

Theorem

Under the s-Hint-vSIS assumption for $(\mathcal{F}, \mathcal{G}, \mathcal{H})$ the signature scheme is strongly existentially unforgeable under selective message attack (sEUF-SMA).

Signatures from strong hinted vSIS

[†] For each message μ and randomness τ , define rational function $h_{\mu,\tau}$. Example: $h_{\mu,\tau}(\mathbf{B}) = \frac{1}{\tau-\mu}$

$$\dagger \ \mathcal{F}(\mathbf{A}) = \mathbf{A}, \mathcal{H} = \{h_{\mu, au}\}_{\mu, au}, \mathcal{G} = \mathcal{H} \cup \{\mathbf{0}\}$$

† Construction:

$$\ddagger$$
 Public key: pk $=$ A $\in \mathcal{R}_q^{n imes m},$ B $\in \mathcal{R}_q^{n imes \ell}$

- Secret key: sk = trapdoor of A
- \ddagger Signature of μ : randomness $au \leftrightarrow \mathfrak{T}$ and vector $\mathbf{u} \in \mathcal{R}^m$ where

$$\mathbf{A} \cdot \mathbf{u} = h_{\mu,\tau}(\mathbf{B}) \mod q \land \|\mathbf{u}\| \leq \beta.$$

Theorem

Under the s-Hint-vSIS assumption for $(\mathcal{F},\mathcal{G},\mathcal{H})$ the signature scheme is strongly existentially unforgeable under selective message attack (sEUF-SMA).

Signatures from strong hinted vSIS

[†] For each message μ and randomness τ , define rational function $h_{\mu,\tau}$. Example: $h_{\mu,\tau}(\mathbf{B}) = \frac{1}{\tau-\mu}$

$$\dagger \ \mathcal{F}(\mathbf{A}) = \mathbf{A}, \mathcal{H} = \{h_{\mu, au}\}_{\mu, au}, \mathcal{G} = \mathcal{H} \cup \{\mathbf{0}\}$$

† Construction:

$$\ddagger$$
 Public key: pk $=$ A $\in \mathcal{R}_q^{n imes m},$ B $\in \mathcal{R}_q^{n imes \ell}$

- Secret key: sk = trapdoor of A
- \ddagger Signature of μ : randomness $au \leftrightarrow \mathfrak{T}$ and vector $\mathbf{u} \in \mathcal{R}^m$ where

$$\mathbf{A} \cdot \mathbf{u} = h_{\mu,\tau}(\mathbf{B}) \bmod q \land \|\mathbf{u}\| \leq \beta.$$

Theorem

Under the s-Hint-vSIS assumption for $(\mathcal{F}, \mathcal{G}, \mathcal{H})$ the signature scheme is strongly existentially unforgeable under selective message attack (sEUF-SMA).

Example instantiations

Instantiations obtained by translating Boneh Boyen (BB) and Boneh Boyen Shacham (BBS):

	Message μ	Randomness $ au$	Function $h_{\mu, au}$		
BB-lite	т	-	$\frac{1}{b-m}$		
BB-full	m	-	$\frac{1}{\mathbf{c}^{T}\mathbf{m}+d}$		
BBS	m	t	$\frac{\mathbf{c}^{T}\mathbf{m}+d}{b-t}$		
BB-tran	m	t	$\mathbf{c}^{T}\mathbf{m} + \frac{1}{b-t}$		

Example instantiations

Instantiations obtained by translating Boneh Boyen (BB) and Boneh Boyen Shacham (BBS):

	Message μ	Randomness $ au$	Function $h_{\mu, au}$
BB-lite	т	-	$\frac{1}{b-m}$
BB-full	m	-	$\frac{1}{\mathbf{c}^{T}\mathbf{m}+d}$
BBS	m	t	$\frac{\mathbf{c}^{T}\mathbf{m}+d}{b-t}$
BB-tran	m	t	$\mathbf{c}^{T}\mathbf{m} + \frac{1}{b-t}$

Assumption: ISIS_f Proposed by Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23]

- † **Parameters:** \mathcal{R} , n, m, q, s, β , a function $f : \mathcal{T} \to \mathcal{R}_q^n$
- † Input: A $\leftarrow \$ $\mathcal{R}_q^{n \times m}$
- † **Hints:** queries oracle which samples (\mathbf{u}_i, t_i) where \mathbf{u}_i Gaussian with parameter *s* and $t_i \leftarrow \mathcal{T}$ subject to

 $\mathbf{A} \cdot \mathbf{u}_i = f(t_i) \mod q$

† Output: (u*, t*)
† Winning conditions

$$\begin{array}{l} \ddagger \mathbf{A} \cdot \mathbf{u}^* = f(t^*) \mod q \\ \ddagger \mathbf{0} < \|\mathbf{u}^*\| \le \beta \\ \ddagger (\mathbf{u}^*, t^*) \notin \{(\mathbf{u}_i, t_i)\}_i \end{array}$$

Theorem [BLNS23]

 $ISIS_f \implies$ interactive version of $ISIS_f \implies$ (s)EUF-CMA-secure signatures.

Assumption: ISIS_f

Proposed by Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23]

- † **Parameters:** \mathcal{R} , n, m, q, s, β , a function $f : \mathcal{T} \to \mathcal{R}_q^n$
- † Input: A \leftarrow \$ $\mathcal{R}_q^{n \times m}$
- [†] Hints: queries oracle which samples (\mathbf{u}_i, t_i) where \mathbf{u}_i Gaussian with parameter *s* and $t_i \leftarrow \mathcal{T}$ subject to

 $\mathbf{A} \cdot \mathbf{u}_i = f(t_i) \bmod q$

- † Output: (u*, t*)
 † Winning conditions:
 - $\begin{array}{l} \ddagger \mathbf{A} \cdot \mathbf{u}^* = f(t^*) \mod q \\ \ddagger 0 < \|\mathbf{u}^*\| \le \beta \\ \ddagger (\mathbf{u}^*, t^*) \notin \{(\mathbf{u}_i, t_i)\}_i \end{array}$

Theorem [BLNS23]

 $ISIS_f \implies$ interactive version of $ISIS_f \implies$ (s)EUF-CMA-secure signatures.

Assumption: ISIS_f

Proposed by Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23]

- † **Parameters:** \mathcal{R} , n, m, q, s, β , a function $f : \mathcal{T} \to \mathcal{R}_q^n$
- † Input: A \leftarrow \$ $\mathcal{R}_q^{n \times m}$
- [†] Hints: queries oracle which samples (\mathbf{u}_i, t_i) where \mathbf{u}_i Gaussian with parameter *s* and $t_i \leftarrow \mathcal{T}$ subject to

 $\mathbf{A} \cdot \mathbf{u}_i = f(t_i) \bmod q$

- † Output: (u*, t*)
 † Winning conditions:
 - $\stackrel{+}{\mathbf{x}} \stackrel{+}{\mathbf{v}} \stackrel{+}{\mathbf{u}}^* = f(t^*) \mod q$ $\stackrel{+}{\mathbf{x}} \stackrel{+}{\mathbf{v}} 0 < ||\mathbf{u}^*|| \le \beta$ $\stackrel{+}{\mathbf{x}} (\mathbf{u}^*, t^*) \notin \{(\mathbf{u}_i, t_i)\}_i$

Theorem [SUNS23]
$ISIS_f \implies$ interactive version of $ISIS_f \implies$ (s)EUF-CMA-secure signatures.

Assumption: GenISIS_f

A minor generalisation where f is keyed/replaced by a family.

- † **Parameters:** \mathcal{R} , n, m, q, s, β , a function $f : \mathcal{K} \times \mathcal{T} \to \mathcal{R}_q^n$
- † Input: A \leftarrow \$ $\mathcal{R}_q^{n imes m}$ and key $k \leftarrow$ \$ \mathcal{K}
- † **Hints:** queries oracle which samples (\mathbf{u}_i, t_i) where \mathbf{u}_i Gaussian with parameter *s* and $t_i \leftarrow \mathcal{T}$ subject to

 $\mathbf{A} \cdot \mathbf{u}_i = f(k, t_i) \bmod q$

- † **Output:** (**u**^{*}, *t*^{*})
- Winning conditions:

s-Hint-vSIS \implies sEUF-SMA of $\Sigma \implies$ sEUF-RMA of $\Sigma \equiv$ GenISIS_f for $f(\mathbf{B}, (\mu, \tau)) = h_{\mu, \tau}(\mathbf{B})$

Assumption: GenISIS_f

A minor generalisation where f is keyed/replaced by a family.

- † **Parameters:** \mathcal{R} , n, m, q, s, β , a function $f : \mathcal{K} \times \mathcal{T} \to \mathcal{R}_q^n$
- † Input: A \leftarrow \$ $\mathcal{R}_q^{n \times m}$ and key $k \leftarrow$ \$ \mathcal{K}
- † Hints: queries oracle which samples (\mathbf{u}_i, t_i) where \mathbf{u}_i Gaussian with parameter *s* and $t_i \leftarrow \mathcal{T}$ subject to

$$\mathbf{A} \cdot \mathbf{u}_i = f(k, t_i) \bmod q$$

- † **Output:** (**u**^{*}, *t*^{*})
- † Winning conditions:
 - $\stackrel{\ddagger}{} \mathbf{A} \cdot \mathbf{u}^* = f(t^*) \mod q$ $\stackrel{\ddagger}{} 0 < ||\mathbf{u}^*|| \le \beta$ $\stackrel{\ddagger}{} (\mathbf{u}^*, t^*) \notin \{(\mathbf{u}_i, t_i)\}_i$

s-Hint-vSIS \implies sEUF-SMA of $\Sigma \implies$ sEUF-RMA of $\Sigma \equiv$ GenISIS_f for $f(\mathbf{B}, (\mu, \tau)) = h_{\mu, \tau}(\mathbf{B})$

Assumption: GenISIS_f

A minor generalisation where f is keyed/replaced by a family.

- † **Parameters:** \mathcal{R} , n, m, q, s, β , a function $f : \mathcal{K} \times \mathcal{T} \to \mathcal{R}_q^n$
- † Input: A \leftarrow \$ $\mathcal{R}_q^{n imes m}$ and key $k \leftarrow$ \$ \mathcal{K}
- † Hints: queries oracle which samples (\mathbf{u}_i, t_i) where \mathbf{u}_i Gaussian with parameter s and $t_i \leftarrow T$ subject to

$$\mathbf{A} \cdot \mathbf{u}_i = f(k, t_i) \bmod q$$

- † Output: (**u***, *t**)
- † Winning conditions:
 - $\begin{array}{l} \ddagger \mathbf{A} \cdot \mathbf{u}^* = f(t^*) \mod q \\ \ddagger 0 < \|\mathbf{u}^*\| \le \beta \\ \ddagger (\mathbf{u}^*, t^*) \notin \{(\mathbf{u}_i, t_i)\}_i \end{array}$

s-Hint-vSIS \implies sEUF-SMA of $\Sigma \implies$ sEUF-RMA of $\Sigma \equiv$ GenISIS_{*t*} for $f(\mathbf{B}, (\mu, \tau)) = h_{\mu, \tau}(\mathbf{B})$

Parameters

Security Level	φ	q	eta	S	ℓ_m	ℓ_r	pk	Sig	
193	1024	2 ²⁰	2 ^{18.99}	2 ¹³	1	2	2.5	9.5	
150	1024	2 ²⁵	2 ^{23.73}	2 ¹⁶	128	2	3.1	11.9	
399	2048	2 ²²	$2^{20.77}$	2 ¹⁴	1	2	5.5	20.8	
312	2048	2 ²⁷	$2^{25.50}$	2 ¹⁷	128	2	6.8	25.5	

Table: Estimated parameters for BB-tran and BBS. Sizes are in KB.

Summary

More lattice assumptions and more proof-friendly signatures!

SUF/EUF: Strong/Existential Unforgeability

SMA/RMA/CMA: Selective/Random/Chosen Message Attack

Adrien Dubois

ENS de Lyon, France

adrien.dubois@ens-lyon.fr

ia.cr/2025/356 - Thank You!

Summary

More lattice assumptions and more proof-friendly signatures!

SUF/EUF: Strong/Existential Unforgeability

SMA/RMA/CMA: Selective/Random/Chosen Message Attack

Adrien Dubois

ENS de Lyon, France

adrien.dubois@ens-lyon.fr

ia.cr/2025/356 - Thank You!

- [ACLMT22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan Thyagarajan. "Lattice-Based SNARKs: Publicly Verifiable, Preprocessing, and Recursively Composable - (Extended Abstract)". In: CRYPTO 2022, Part II. Vol. 13508. 2022, pp. 102–132. DOI: 10.1007/978-3-031-15979-4_4 (pages 18, 19).
- [BB04] Dan Boneh and Xavier Boyen. "Short Signatures Without Random Oracles". In: *EUROCRYPT 2004*. Vol. 3027. 2004, pp. 56–73. DOI: 10.1007/978-3-540-24676-3_4 (pages 7–9).
- [BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. "Short Group Signatures". In: *CRYPTO 2004*. Vol. 3152. 2004, pp. 41–55. DOI: 10.1007/978-3-540-28628-8_3 (pages 10–12).
- [BLNS23] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessandro Sorniotti. "A Framework for Practical Anonymous Credentials from Lattices". In: CRYPTO 2023, Part II. Vol. 14082. 2023, pp. 384–417. DOI: 10.1007/978-3-031-38545-2_13 (pages 13–19, 38–40).

- [CLM23] Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. "Lattice-Based Succinct Arguments from Vanishing Polynomials - (Extended Abstract)". In: CRYPTO 2023, Part II. Vol. 14082. 2023, pp. 72–105. DOI: 10.1007/978-3-031-38545-2_3 (pages 18, 19, 25, 26).
- [JRS23] Corentin Jeudy, Adeline Roux-Langlois, and Olivier Sanders. "Lattice Signature with Efficient Protocols, Application to Anonymous Credentials". In: CRYPTO 2023, Part II. Vol. 14082. 2023, pp. 351–383. DOI: 10.1007/978-3-031-38545-2_12 (pages 13–17).
- [LNP22] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. "Lattice-Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More General". In: *CRYPTO 2022, Part II.* Vol. 13508. 2022, pp. 71–101. DOI: 10.1007/978-3-031-15979-4_3 (pages 13–17).